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Dimensionality reduction 
for images of IoT using machine 
learning
Ibrahim Ali *, Khaled Wassif  & Hanaa Bayomi 

Sensors, wearables, mobile devices, and other Internet of Things (IoT) devices are becoming 
increasingly integrated into all aspects of our lives. They are capable of gathering enormous amounts 
of data, such as image data, which can then be sent to the cloud for processing. However, this results 
in an increase in network traffic and latency. To overcome these difficulties, edge computing has 
been proposed as a paradigm for computing that brings processing closer to the location where data 
is produced. This paper explores the merging of cloud and edge computing for IoT and investigates 
approaches using machine learning for dimensionality reduction of images on the edge, employing 
the autoencoder deep learning-based approach and principal component analysis (PCA). The encoded 
data is then sent to the cloud server, where it is used directly for any machine learning task without 
significantly impacting the accuracy of the data processed in the cloud. The proposed approach has 
been evaluated on an object detection task using a set of 4000 images randomly chosen from three 
datasets: COCO, human detection, and HDA datasets. Results show that a 77% reduction in data did 
not have a significant impact on the object detection task’s accuracy.
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In recent years, the explosion of sensors, wearables, mobiles, and other Internet of Things (IoT) devices has been 
changing how we live and work. The applications of IoT services have started pervading all industrial sectors, 
from smart homes and cities to education, healthcare, transportation, supply chain management, and logistics. 
There are many forecasts for the huge growth of the IoT. Analysts predict that there will be 41.6 billion connected 
IoT devices1, and the global economic impact of the IoT will be between USD 2.7 trillion and 6.2 trillion by 20252.

Image data from IoT sensor devices are exchanged over the network for storage, processing, or control. To 
realize the benefits of smart IoT systems and extract value from collected images, data analytics is essential in 
the cloud by transferring this data to the cloud for storage and processing. For example, images from a smart 
transportation system are transferred to a far-off data center for storage and processing. Attempting to transfer 
all those images to the cloud for processing will increase latencies and put a strain on communication networks. 
Those connected devices are limited in the analytics they can perform because of limited computation power, 
storage capacity, and other factors.

Edge computing is a distributed computing paradigm that brings processing and data storage closer to the 
sources of data. This is expected to improve response times and save bandwidth3. It is an architecture rather 
than a specific technology. The edge server acts as a connection between a private network in an organization 
and the cloud. It can be used for processing offloading and can act as an intermediary between the cloud and 
IoT devices by performing a reduction on data and sending the reduced data to the cloud for further processing.

Deep learning4 is a subclass of machine learning (ML) that plays a vital role in creating a smarter IoT. It has 
shown remarkable results in various fields, including dimensionality reduction and image recognition. The 
combination of deep learning and dimensionality reduction enhances the capabilities of IoT systems by enabling 
efficient data processing, accurate pattern recognition, and adaptability to changing conditions. These techniques 
contribute to making IoT applications more intelligent, responsive, and resource-efficient. An autoencoder is a 
type of deep neural network that can be used to learn efficient data encoding in an unsupervised manner.

In this paper, two trained autoencoder models are compared in terms of their data reduction capabilities and 
their impact on machine learning tasks within the cloud server. Additionally, a comparative analysis is conducted 
between autoencoder models and principal component analysis (PCA) to explore variations between the two 
approaches.
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Four primary scenarios are taken into consideration. The initial scenario represents the baseline, where 
dimensionality reduction is not applied. This scenario will be used to evaluate the other scenarios and compare 
our approach against the results of this baseline scenario. In the second and third scenarios, two different models 
of autoencoders are employed to reduce the image dimensionality on the edge server, and a machine learning 
(ML) task is run on the decoded images in the cloud. In the fourth scenario, principal component analysis (PCA) 
is used on the edge to encode images similar to the second and third scenarios. Then the cloud machine learning 
task is carried out on the encoded images. The scenarios are carried out for the task of object detection using a 
set of 4000 images randomly chosen from three different data sets. Results show that autoencoders can decrease 
network bandwidth without significantly affecting the accuracy of machine-learning tasks.

The rest of this article is organized as follows: “Background” provides background concepts, and “Related 
works” reviews related work. The methodology is described in “Methodology”, and the experiment and results 
are presented in “Experiment and results”. Finally, “Conclusion and future work” presents a conclusion and 
future work.

Background
This section introduces some concepts about deep learning, principal component analysis, and edge-cloud 
architecture:

Deep learning
Deep learning (DL) is highly valuable for learning complex models due to its ability to automatically extract 
complex patterns and features from data. Using neural networks with multiple layers, deep learning can discern 
hierarchical relationships within information, enabling the modeling of complex structures. This makes it par-
ticularly effective in tasks like image recognition, natural language processing, and pattern recognition, where 
understanding complex details is crucial5. The capacity of deep learning to learn from vast datasets and capture 
precise patterns allows it to play a vital role in various sectors, including healthcare, transportation, and others6.

The autoencoder (AE)7 is a valuable model in dimensionality reduction, simplifying complex datasets by 
capturing essential features. By learning efficient representations, autoencoders compress high-dimensional 
data into a lower-dimensional space. This reduction not only aids in preserving critical information but also 
accelerates computational processes. Autoencoders find applications in diverse fields, from image and signal 
processing to feature extraction, contributing to improved efficiency and streamlined analysis in various tasks.

The autoencoder takes the data, propagates it through a number of hidden layers to understand and condense 
its structure, and finally generates that data again. The autoencoder uses two types of networks: the first is called 
an encoder, and the other is a decoder, with the layers inside the encoder reflected in the decoder.

Principal component analysis
Utilizing principal component analysis (PCA)8 in dimensionality reduction is a fundamental approach to stream-
line complex datasets and enhance computational efficiency. PCA identifies the principal components, which 
are linear combinations of the original features capturing the maximum variance in the data. By focusing on 
these key components, PCA allows for the reduction of data dimensions while preserving essential information. 
This process not only accelerates computational tasks but also aids in mitigating issues associated with high-
dimensional data, such as the curse of dimensionality. In various applications, ranging from image and signal 
processing to machine learning, PCA proves instrumental in simplifying data representations, facilitating more 
effective analysis, and improving the overall performance of algorithms.

Edge‑cloud architecture
Edge devices9 play a pivotal role in the Internet of Things (IoT) ecosystem by bringing computational power 
closer to the data source. Unlike traditional cloud-centric models, edge computing allows for real-time processing 
and analysis of data at or near the point of origin. This minimizes latency, reduces the strain on communication 
networks, and enhances overall system efficiency. Edge devices enable quicker decision-making for applications 
like smart cities, healthcare, and industrial automation. By distributing computing tasks between the edge and 
the cloud, these devices contribute to a more responsive, scalable, and resilient IoT infrastructure. In line with 
this strategy, the edge device will be used to apply dimensionality reduction methods to the image data before 
sending it to the cloud.

Related works
In the past few years, edge computing has been gaining considerable attention from both the research and 
industry sectors because it promises to reduce network traffic and latencies and reduce reliance on the cloud10,11.

Ghosh, Ananda, et al.12 proposed combining the edge-cloud architecture for IoT data analytics by leveraging 
edge nodes to reduce data transfer. To process data near the source, sensors are grouped according to locations, 
and feature learning is performed on the nearby edge node. They conducted experiments on a machine-learning 
task, specifically classification. The evaluation was performed on a task of human activity recognition from sen-
sor data using the Mobile Health text-based dataset. The results demonstrated that the approach could reduce 
both data and the corresponding network traffic by up to approximately 80% with no significant loss of accuracy, 
especially when applying a large sliding window in the preprocessing phase.

Couturier, Salman, et al.13 implemented a denoising super-resolution deep learning model to restore high-
quality images, with the application server receiving degraded images at a high compression ratio from the sender 
side. The experimental analysis demonstrates the effectiveness of this solution in enhancing the visual quality 
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of compressed and downscaled images. As a result, the proposed approach effectively reduces the overall com-
munication overhead and power consumption of constrained Multimedia Internet of Things (MIoT) devices.

Sood et al.14 propose a two-stage network traffic anomaly detection system compatible with the ETSI-NFV 
standard 5G architecture. Their architecture involves reducing dimensionality to compress the sample size at the 
edge of 5G networks, along with a deep neural network (DNN) classifier for detecting traffic anomalies. They 
utilized the UNSW-NB15 dataset and demonstrated that, with a dimensionality reduction factor of 81%, the 
achieved detection accuracy is 98%.

Sujitha, Ben, et al.15 proposed a method comprising two convolutional neural networks (CNNs) and a Lem-
pel–Ziv Markov chain algorithm (LZMA)-based image codec. They presented a new image compression method 
for remote sensing using CNN. To balance image quality and compression efficiency, they used two CNNs, one 
on the encoding side and the other on the decoding side. The results proved the effectiveness of the presented 
method, which achieves an average peak signal-to-noise ratio (PSNR) of 49.90 dB and an average space-saving 
(SS) of 89.38%.

Krishnaraj et al.16 utilized a discrete wavelet transform (DWT)-based deep learning model for image compres-
sion on the Internet of Underwater Things (IOUT), achieving effective compression with better reconstructed 
image quality. A convolutional neural network (CNN) is utilized on both the encoding and decoding sides. The 
DWT-CNN model attains an average peak signal-to-noise ratio (PSNR) of 53.961 with an average space-saving 
(SS) of 79.7038%.

Zebang Song et al.17 demonstrated a lossy image compression architecture that leverages existing deep learn-
ing methods to achieve high coding efficiency. They designed a densely connected autoencoder structure for 
lossy image compression. Experiments show that their method significantly outperforms JPEG and JPEG2000 
and can produce better visual results with sharp edges, rich textures, and fewer artifacts.

Fournier and Aloise18 proposed an empirical comparison between autoencoders and traditional dimensional-
ity reduction methods. They evaluated the performance of PCA compared to Isomap and a deep autoencoder. For 
the evaluations, a K-Nearest Neighbor (KNN) classifier was used, and the results show that PCA computation 
time is faster than that of its neural network counterparts.

Some of the discussed studies did not use edge-cloud architecture integration with the IoT, and some of them 
focused on other data reduction methods without employing autoencoders or PCA. Additionally, some of them 
didn’t apply their evaluations to images. In contrast, our work explores the use of deep learning approaches for 
image dimensionality reduction on edge servers to decrease network traffic and latencies caused by data transfer 
to the cloud. We also apply an object detection machine learning task on the cloud to evaluate the approach.

Methodology
This section introduces the methodology of the edge-cloud architecture and also presents methods for data 
reduction with the autoencoder and PCA.

The overall architecture of the edge cloud is described in Fig. 1, illustrating its three main components: IoT 
sensors, serving as the data source; edge servers; and the cloud server. The initiation of the edge-cloud architec-
ture involves receiving data from IoT sensors at the edge. The diagram further illustrates a potential scenario 
where data from diverse sensors is directed to various edge nodes, and all nodes subsequently forward this data 
to a centralized location. This setup allows machine learning tasks running in the cloud to benefit from data 
originating from various sources, including edge nodes. While specific tasks can be performed on the edge 

Figure 1.   Edge-cloud architecture for IoT.
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nodes, they would only have access to data from a subset of sensors. Data reduction can also occur at the edge 
to minimize the amount of data transmitted to the cloud.

Previous research has demonstrated the effectiveness of autoencoders and PCA in the field of dimension-
ality reduction. In some cases, autoencoders not only reduce dimensionality but can also detect repetitive 
structures19,20. Figure 2 describes the autoencoder architecture, which takes input data and processes it through 
several hidden layers. The number of neurons in the hidden layers is smaller than the number of neurons in the 
input layer, forcing an autoencoder to learn the internal structure of the data.

To integrate the autoencoder into the edge-cloud architecture, the encoder component of the network is 
located on the edge, while the decoder component is on the cloud. This way, when high-dimensional data arrives 
at the edge node, it is reduced to a smaller number of dimensions according to the encoder architecture. After this 
data is sent to the cloud, it can be reconstructed using the cloud-based decoder component of the autoencoder 
and then utilized for ML tasks.

A pre-trained model of the autoencoder was used in the experiments. Because autoencoder training requires 
a significant amount of time and computation, it must take place on high-spec devices such as the cloud or 
computers equipped with GPUs.

Principal Component Analysis (PCA) is a widely used linear dimensionality reduction technique. It is quicker 
and less expensive to compute than autoencoders. Also, it is quite similar to a single-layered autoencoder with 
a linear activation function.

This paper explores four fundamental scenarios, as illustrated in Fig. 3.

Scenario 1
This represents the default scenario, where image data from sensors is transmitted directly to the cloud server, 
and machine learning tasks are executed directly using the original data.

Scenario 2
Data from sensors is sent to edge nodes, where data reduction is performed using principal component analysis 
(PCA). Encoded data is then sent to the cloud, where machine learning tasks are carried out with the encoded 
data.

Scenario 3
The edge nodes perform dimensionality reduction on the data using a two-layer autoencoder, which is a trained 
model with two hidden layers. Machine learning tasks are then carried out on the cloud directly with the decoded 
data.

Scenario 4
Similar to scenario 3, but utilizing a three-layer autoencoder at the edge. The three-layer autoencoder is a trained 
model with three hidden layers.

Experiment and results
This section describes the experiments and the results.

Figure 2.   Autoencoder architecture.
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Experiment preparation
In our approach, a dataset comprising 6000 images has been used to train the autoencoder. The trained model 
will be used in the experiments to perform dimensionality reduction with the image data at the edge. The train-
ing performed on a machine has the following benefits:

•	 Nvidia GM107M [GeForce GTX 960 M]
•	 Intel CoreTM i7-6700HQ CPU @ 2.60 GHz
•	 16 GB of RAM

And the training model parameters include:

•	 Optimizer: Adam
•	 Epochs: 50
•	 Activation: ReLu

The dataset, which comprises 6000 images, was selected from both the COCO and DIV2K datasets:

•	 The Microsoft Common Objects in Context (MS COCO) dataset21 is a large-scale dataset used for object 
detection, segmentation, key-point detection, and captioning. It comprises over 328K images with varying 
sizes and resolutions, each annotated with 80 object categories and five captions describing the scene.

•	 The DIV2K dataset22 comprises 1000 diverse 2K-resolution RGB images. All images were manually collected 
and have a resolution of 2K pixels on at least one axis (vertical or horizontal). DIV2K encompasses a wide 
diversity of content, ranging from people, handmade objects, and environments to natural scenery, including 
underwater scenes.

Figures 4 and 5 display the training and validation losses for the two-layer and three-layer autoencoders, 
respectively. In the two-layer autoencoder, the training loss was 0.00362, and the validation loss was 0.00359. 
For the three-layer autoencoder, the training loss was 0.00205, and the validation loss was 0.00203. Additionally, 
the Structural Similarity Index Measure (SSIM)23 is calculated for both models. SSIM is a method for predicting 
the perceived quality of digital television, cinematic pictures, and other types of digital images and videos. It 
is employed to measure the similarity between two images. The training shows that the Multi-Scale Structural 
Similarity Index Measure (MS-SSIM) on validation is 0.85716 for the two-layer autoencoder and 0.88425 for the 
three-layer autoencoder. This indicates a higher-quality reconstruction for the three-layer autoencoder compared 
to the two-layer autoencoder.

When we increased the number of epochs to more than 50 and the number of hidden layers to more than 
three layers, overfitting occurred. Increasing the epoch size and the number of hidden layers provides the model 
with more time to converge to an optimal solution, potentially resulting in improved accuracy. However, there is 
a risk of overfitting during training, where the model may become too specialized for the training data, capturing 
noise. This could lead to a reduction in accuracy on the validation or test set.

Figure 3.   Computation models.
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In machine learning, it is important to maintain the accuracy of the final machine learning task as high as 
possible. Since the primary objective of the proposed architecture is to reduce network traffic and latencies, 
considering the amount of data that can be reduced at the edge is also important.

Machine learning task
The proposed approach has been evaluated for the task of image object detection using YOLO, which stands for 
‘You Only Look Once’. YOLO is a technique employed for real-time object recognition and detection in various 
images. It treats object detection as a regression problem, providing class probabilities for observed images. 
Convolutional neural networks (CNN) are utilized in the algorithm for rapid object identification. As the name 
implies, the approach requires only one forward propagation through a neural network to detect objects24.

Figure 4.   Training and validation loss for the two-layer autoencoder.

Figure 5.   Training and validation loss for the three-layer autoencoder.
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Data sets
A set of 4000 images was used in the object detection task experiments, randomly chosen from three different 
datasets. The three datasets were selected to represent the diversity of the data used in the experiments. The 
datasets are:

•	 The MS COCO dataset21.
•	 The human detection dataset25 comprises 921 images from closed-circuit television (CCTV) footage, encom-

passing both indoor and outdoor scenes with varying sizes and resolutions. Among these, 559 images feature 
humans, while the remaining 362 do not. The dataset is sourced from CCTV footage on YouTube and the 
Open Indoor Images dataset.

•	 The HDA Person Dataset26 is a multi-camera, high-resolution image sequence dataset designed for research 
in high-definition surveillance. 80 cameras, including VGA, HD, and Full HD resolutions, were recorded 
simultaneously for 30 min in a typical indoor office scenario during a busy hour, involving more than 80 
people. Most of the image data is captured by traditional cameras with a resolution of 640 × 480.

Experiments
The following four experiments were conducted, aligning with the four scenarios outlined in Fig. 3. The experi-
ment was executed according to the flow in Fig. 6, starting with the data from the camera sensors or the existing 
collection of images. An Android mobile application was developed to run on Lenovo tablets, responsible for 
transferring images to the edge servers (via the edge node’s IP address and socket programming). Furthermore, 
the edge performs dimensionality reduction methods on the received images. Figure 7 shows a developed simula-
tion desktop application used in edge nodes to receive images from sensors, manage the dimensionality reduction 
method, and transmit encoded data to the cloud server.

Experiment 1
Images are sent directly to the cloud from sensors, where an object detection task is performed on the data and 
the accuracy is measured. It will be used later to evaluate other experiments.

Experiment 2
The principal component analysis (PCA) is utilised at the edge nodes to instantly reduce the dimensionality of 
data, and then the encoded data is sent to the cloud. The object detection task was carried out on the encoded 
data in the cloud, and the accuracy was computed.

Experiment 3
Utilizing the encoder component of the autoencoder on the edge, the two-layer autoencoder encodes images in 
real time. The edge application directly transmits the encoded images to the cloud. Subsequently, the autoen-
coder’s decoder component operates in the cloud to decode the data. The decoded images are then used for the 
object detection task, and the accuracy is computed.

Experiment 4
Similar to Experiment 3, but employing the three-layer autoencoder.

Figure 6.   Flowchart diagram of the experiment.
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The encoding and decoding times are taken into consideration for the autoencoder and PCA; the following 
three (Tables 1, 2, 3) provide examples of the encoding and decoding times for three different groups of images 
with different sizes and resolutions. It was noticed that the three-layer autoencoder’s encoding and decoding 
time was greater than the two-layer autoencoder’s in the chosen samples of images because it kept the quality of 
the decoded images close to the original ones.

Results
Two aspects of the system were evaluated: the impact of data reduction on the ML task accuracy and the degree 
of data reduction. For experiment 1, the accuracy, recall, precision, and F1-Score were calculated, and the results 
were all the same, or very close, at 93.06%. For experiment 2, the results were 84.66%. For experiment 3, the 
results were 87.63%. And for Experiment 4, the results were 89.14%.

Figure 7.   Simulations of edge device application.

Table 1.   Group 1 (high resolutions).

Encoding and decoding time for 10 images 
totalling 52.7 MB in size

Method Time (seconds)

1 Two-layer autoencoder encode 16.1521

2 Two-layer autoencoder decode 50.0732

3 Three-layer autoencoder encode 21.3842

4 Three-layer autoencoder decode 62.3097

5 PCA encode 24.0819

Table 2.   Group 2 (medium resolutions).

Encoding and decoding time for 10 images 
totalling 2.6 MB

Method Time (seconds)

1 Two-layer autoencoder encode 1.2671

2 Two-layer autoencoder decode 7.1150

3 Three-layer autoencoder encode 3.0814

4 Three-layer autoencoder decode 9.2671

5 PCA encode 2.1552
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The accuracy of the object detection task using an autoencoder and PCA is compared in Fig. 8. It is noticeable 
that when using the three-layer model of the autoencoder, the machine learning task achieved good accuracy 
close to the original scenario, which is better than using the two-layer model. However, when using PCA to 
encode the data, the machine learning task achieved less accuracy than an autoencoder.

As the results show, increasing the number of hidden layers in the autoencoder model by one improves the 
quality of the autoencoder’s latent representation when decoding the data and results in high machine-learning 
accuracy.

Additionally, the following (Figs. 9, 10, 11) compare the accuracy of the object detection task using different 
groups of images with various sizes and resolutions. In group #1, the accuracy for the native experiment was 
100, while using both models of the autoencoder resulted in an accuracy of 90, and it was 80 when using PCA. 
For group #2, the accuracy for the native experiment was 89, and when using the two-layer and three-layer 
autoencoders, the accuracy was 82 and 86, respectively, and it was 80 when using PCA. In group #3, the accuracy 
for the native experiment was 84, and when using the two-layer and three-layer autoencoders, the accuracy was 
74 and 79, respectively, and it was 77 when using PCA. It was observed that an increase in image resolution 
enhances the quality of the decoded images produced by the autoencoder decoder part, resulting in improved 
accuracy for object detection tasks.

Because the main objective of our approach is to reduce network traffic and latencies, it is important to 
examine how much the proposed approach reduces data size. Figure 12 compares the uploaded original data 
size to the total size for other experiments. Figure 13 shows the percentage of the total size of uploaded images. 
It can be seen that the data is reduced from 710 MB for the original data to 142.1 MB when using the two-layer 
autoencoder (i.e. an 80% reduction), 163.9 MB when using the three-layer autoencoder (i.e. a 77% reduction), 
and 226.3 MB when using PCA (i.e. a 68% reduction). Consequently, the data sent to the cloud is significantly 
reduced, which is especially important in the case of large data quantities such as those in the IoT.

The experiments presented here show that, by using autoencoders, we were able to reduce the dimensionality 
of the images without significantly impacting the accuracy of machine-learning tasks. Additionally, images with 
high resolution and quality exhibited better results than images with low quality in terms of object detection 
tasks and the autoencoder decoder components when decoding the encoded data. Based on these outcomes, 

Table 3.   Group 3 (low resolutions).

Encoding and decoding time for 10 images 
totalling 107.1 KB

Method Time (seconds)

1 Two-layer autoencoder encode 0.4440

2 Two-layer autoencoder decode 0.7247

3 Three-layer autoencoder encode 1.2618

4 Three-layer autoencoder decode 2.2730

5 PCA encode 0.5266

Figure 8.   Accuracy outcomes.
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it is clear that applying this approach can effectively lower both the bandwidth usage and storage needs of IoT 
devices. Moreover, increasing the compression rate in a deep learning autoencoder for images will improve stor-
age efficiency and faster transmission, but at the cost of decreased image quality and potential loss of information. 
The trade-off between compression and image fidelity needs to be carefully managed based on the goals and 
constraints of the particular application or use case.

Conclusion and future work
Massive amounts of data have been generated through data collected across IoT applications, mostly through 
the sensors connected to the devices, and this trend is expected to continue. There will be an increase in network 
traffic and latency if all of this data is attempted to be transferred to the cloud for processing and storage.

Figure 9.   Group #1: accuracy of the object detection task using 10 images totaling 52.7 MB in size (high 
resolution).

Figure 10.   Group #2: accuracy of the object detection task using 10 images totaling 2.6 MB in size (medium 
resolution).
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To address these challenges, this work proposes combining edge and cloud architectures for IoT and uti-
lizing machine learning, specifically autoencoders and PCA, to reduce the quantity of data sent to the cloud. 
The autoencoder’s encoder component is placed at the edge. Afterward, the data is transferred to the cloud for 
additional processing. The original data can be restored using the decoder component of the autoencoder and 
then used directly for the machine learning task, such as object detection. The proposed approach was evaluated 
on a set of 4000 images randomly chosen from three datasets: COCO, human detection, and HDA datasets.

Results show that the autoencoder model is capable of significantly reducing the size of uploaded images 
without a significant impact on machine learning task accuracy.

The suggested approach is used and examined only for images. Future research will explore how the suggested 
approach might be applied to various types of data. Moreover, the research will examine how the suggested 
methodology might be used for various machine learning tasks and with various datasets.

Figure 11.   Group #3: accuracy of the object detection task using 10 images totaling 107.1 KB in size (low 
resolution).

Figure 12.   Data size for different scenarios.
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Data availability
The datasets used or analysed during the current study are available from the corresponding author upon rea-
sonable request.
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