Skip to main content
. 2024 Mar 4;27(4):109418. doi: 10.1016/j.isci.2024.109418

Table 1.

Vanillin-based monomers used in polymer synthesis

No. Monomers and their derivatives Polymer Propertiesa Potential application Reference
Polyols

1 graphic file with name fx2.gif Polycarbonate
Epoxy
Polycarbonate:
Tg = 99°C–106°C
T5 = 336°C–372°C
Epoxy:
Tg (E″) = 100°C–123°C
Tg (Tanδ) = 107°C–132°C
E' = 2.29–3.02 GPa
T5 = 337°C–363°C
Lower estrogen activity than BPA
Direct replacement for BPA, adhesives Koelewijn and Hernandez et al. 30,31
2 graphic file with name fx3.gif Polyester Tg = 42°C–142°C
Td = 272°C–342°C
Fiber Wu et al. 32
3 graphic file with name fx4.gif Epoxy
Polyester
Recyclability
Epoxy:
Tg = 74°C–119°C
E' = 1.15 GPa (neat) – 7.6 GPa (reinforced with CNF)
Epoxy2:
T5 = 278°C
Tg = 164°C
Tensile modulus = 3131 MPa
Tensile strength = 85 MPa
Polyester:
Tg = 20°C–64°C
T5 = 320°C–345°C
E' (20°C) = 756–1991 MPa
Fiber
Polyesters:
textile, food packaging
Mankar, Koike, Mankar, and Subbotina et al. 33,34,35,36
4 graphic file with name fx5.gif Poly(vanillin) oxalate Biodegradable, biocompatible Medical devices, drug delivery Kwon et al. 37
5 graphic file with name fx6.gif Polyesters
Epoxies
Polyurethanes
Polyesters:
Tg = -5–139°C
E' = 0.1–8.1 GPa
T5 = 270°C–347°C
Potential phenolic functionality
Epoxies:
Tg = 138°C–198°C
Tα = 155°C–200°C
E' = 1.7–2.4 GPa
T5 = 275°C–336°C
Potential flame retardancy
Polyurethanes:
T5 = 330°C–342°C
Young’s modulus = 8.0–9.7 MPa
Polyesters:
Epoxies: potential bio-based alternative for DGEBA (bisphenol A diglycidyl ether)
Llevot, Savonnet and Gang et al38,39,40
6 graphic file with name fx7.gif Epoxies Tg = 132°C, 97°C
Tα = 154°C, 106°C
E' (30 C) = 1.2, 1.5 GPa
Td = 338°C, 361°C
CY = 20%, 19%
To replace BPA-based epoxies Fache et al. 41

Dicarboxylic acids/diesters

7 Inline graphic
7a: R = H, n = 2
7b: R = CH3, n = 4
Polyesters 7a:
Tg = 55°C–69°C
Tm = 212°C–260°C
7b:
Tg = −4.4°C–13°C
Tm = 70.1°C
T5 = 360°C–390°C
E' = 493–581 MPa
Tensile strength = 5.0–7.0 MPa
Strain at break = 12.7–43.7%
Young’s modulus = 66.2–99.7 MPa
Fibers Lange and Pang et al. 42,43
8 graphic file with name fx9.gif Polyesters Tg = −10.3 to −12.7°C
Tm = 24.5, 48.5°C
T5 = 335°C–339°C
E' = 283 MPa
Tensile strength = 4.1 MPa
Strain at break = 22.8%
Young’s modulus = 50 MPa
Biodegradable polyesters Pang et al. 43
9 Inline graphic
R = (CH2)nCH3; n = 0,1,2 & 3
Polyesters Tg = 19°C–89°C
T5 = 340°C–390°C
Tensile strength = 0.34–15.8 MPa
Elongation at break = 55–1880%
Young’s modulus = 0.13–1 MPa
Packaging Enomoto et al. 44

Hydroxy acids/acetylated hydroxyl acids

10 graphic file with name fx11.gif Polyesters Tg = 73°C
Tm = 234°C
Comparable characteristics to PET
Textiles Mialon et al. 45
11 Inline graphic
n = 0, 2, 3, 6, & -CH(CH3)CH2-
Polyesters Comparable characteristics to commercial polyesters such as PET, PBT depending on aliphatic spacers (n) Textiles Mialon, Zamboulis and Gioia et al. 46,47,48
a

Tg = glass transition temperature (measured by differential scanning calorimetry), Tg(E″) = glass transition temperature (measured from the loss modulus curve by dynamic mechanical analysis), Tg(Tanδ) = glass transition temperature (measured from the Tanδ curve by dynamic mechanical analysis), Tm = melting temperature, T5 = decomposition temperature at 5% mass loss, Td = temperature at the maximum degradation rate, Tα = alpha transition temperature, E’ = storage modulus, E’’ = loss modulus, CY = char yield.