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A B S T R A C T   

Rapid advancements in protein sequencing technology have resulted in gaps between proteins with identified 
sequences and those with mapped structures. Although sequence-based predictions offer insights, they can be 
incomplete due to the absence of structural details. Conversely, structure-based methods face challenges with 
respect to newly sequenced proteins. The AlphaFold Multimer has remarkable accuracy in predicting the 
structure of protein complexes. However, it cannot distinguish whether the input protein sequences can interact. 
Nonetheless, by analyzing the information in the models predicted by the AlphaFold Multimer, we propose a 
highly accurate method for predicting protein interactions. This study focuses on the use of deep neural net-
works, specifically to analyze protein complex structures predicted by the AlphaFold Multimer. By transforming 
atomic coordinates and utilizing sophisticated image-processing techniques, vital 3D structural details were 
extracted from protein complexes. Recognizing the significance of evaluating residue distances in protein in-
teractions, this study leveraged image recognition approaches by integrating Densely Connected Convolutional 
Networks (DenseNet) and Deep Residual Network (ResNet) within 3D convolutional networks for protein 3D 
structure analysis. When benchmarked against leading protein-protein interaction prediction methods, such as 
SpeedPPI, D-script, DeepTrio, and PEPPI, our proposed method, named SpatialPPI, exhibited notable efficacy, 
emphasizing the promising role of 3D spatial processing in advancing the realm of structural biology. The 
SpatialPPI code is available at: https://github.com/ohuelab/SpatialPPI.   

1. Introduction 

Proteins are essential for various biological functions and form the 
basis of life by catalyzing reactions, transporting molecules, and forming 
cellular and tissue structures. Predicting protein-protein interactions 
(PPIs) is complex due to their intricate and dynamic interplay. Accurate 
PPI prediction aids in understanding underlying biological mechanisms 
and developing disease treatments. Currently, the dominant approaches 
for PPIs forecasting include sequence-based predictions [1–4], which 
use the amino acid chains of two proteins as the input, and 
structure-based predictions [5,6], which use experimentally determined 
3D structures. PPI predictions can be categorized into similarity 
methods based on homologous interactions [7,8] and machine 
learning-based methods [9–12]. D-script [13] is currently one of the 
most widely applied machine learning-based prediction methods for 
directly predicting PPIs from protein sequences. D-script achieves this 
by utilizing a natural language processing approach to design a pre-
trained language model for generating input representations of protein 

sequences. Further, the D-script estimates the contact map of the protein 
and uses an interaction module to summarize the interactions. Another 
novel approach to predict PPIs is DeepTrio [14], which predicts PPIs by 
inputting protein sequences into a Siamese architecture with mask 
multiple parallel CNNs. It also provides visualization of the importance 
of each protein residue using both online and offline tools, along with 
additional predictions for single proteins. PEPPI [15] combines a ho-
mologous search and multilayer perceptron classifier [16] using 
Gaussian kernel density estimation. PEPPI uses a multi-prong pipeline to 
predict PPIs using a Gaussian kernel density estimation. These modules 
include a database lookup module, a conjoint triad-trained neural 
network, and two “interology” based modules: a threading-based mod-
ule using a modified version of SPRING [17] and a sequence-based 
module using BLAST [18]. 

On the other hand, the exponential growth rate of known protein 
sequences promoted by the rapid development of automated sequencing 
technologies has led to a significant disparity in the pace of protein se-
quences and experimental protein structure determination. This trend 
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has been widely observed [19] and is primarily due to the inherent 
complexity and time-consuming nature of the experimental methods 
used to determine protein structures. Alternatively, determining the 
protein sequence is relatively straightforward and can be achieved using 
automated sequencing technologies. An exponential sequence-structure 
gap was observed between the number of known structures in the Data 
Bank [20] and the number of known sequences in the UniProt database 
[21]. However, predicting PPIs based on the 3D structure of proteins is 
advantageous over sequence-based prediction as PPIs are frequently 
mediated by specific structural features such as complementary binding 
surfaces and specific hydrogen bonds, which can be more accurately 
modeled using 3D structure information than sequence information 
alone [22]. In contrast, sequence-based predictions of PPIs rely on 
identifying conserved motifs and domains involved in protein in-
teractions, which can be disadvantageous due to the diversity of po-
tential binding partners and the limited information provided by the 
sequence alone [23]. Furthermore, 3D structure-based predictions of 
PPIs offer a more comprehensive view of the interactions, including the 
types of interactions, such as hydrophobic and electrostatic interactions, 
and the specific residues involved [24]. Such detailed information not 
only provides insights into the mechanisms underlying PPIs but also 
significantly enhances pathway analysis, informing drug discovery ef-
forts and the design of novel therapeutics. Overall, the use of 3D struc-
tural information for PPI prediction holds great promise for advancing 
our understanding of complex biological processes and developing new 
treatments for diseases. However, due to the complexity associated with 
obtaining protein structure information, the prediction methods based 
on this type of information face data insufficiency challenges and diffi-
culty in predicting new proteins due to a lack of experimental data. 

The AlphaFold Multimer [25] is a potential solution to the deficiency 
of structure-based PPI prediction methods. The AlphaFold Multimer is a 
deep neural network-based method developed by the AlphaFold team at 
DeepMind to predict the structure of protein complexes composed of 
multiple interacting proteins; thus, offering a novel approach for 
investigating PPIs. Due to the complex nature of PPIs, predicting their 
structures and functions remains a challenge in the field of structural 
biology. However, the ability of AlphaFold Multimer to generate accu-
rate and reliable predictions of protein complex structures could 
significantly enhance our understanding of the mechanisms underlying 
these interactions. With the increased accuracy of structural predictions, 
insight can be gained into the binding sites and key residues involved in 
PPIs; thereby improving the ability to develop deep learning methods 
that predict these interactions. 

The FoldDock algorithm [26] took advantage of protein complexes 
prediction methods. The FoldDock utilizes multiple sequence align-
ments (MSAs) generated using AlphaFold to generate pDockQ scores. 
The pDockQ score of FoldDock was calculated using a sigmoidal fit of 
the average pLDDT score [27] generated using AlphaFold. Thus, the 
FoldDock algorithm can predict the potential of two proteins to interact 
with each other and has achieved state-of-the-art accuracy. SpeedPPI is a 
PPI prediction method based on predicted protein structures. According 
to a description by the FoldDock team, SpeedPPI [28] is an improved 
version of FoldDock with enhanced usability and speed [29]. 

Furthermore, Jones et al. [30] have proposed an approach that uti-
lizes a neural network for transforming 3D protein-ligand complexes 
into a 3D data structure by rescaling atomic coordinates at a 1 Å reso-
lution to forecast protein-ligand binding affinity, which discussed a 
method for inputting protein structures to convolutional neural net-
works. In addition to these methods, 3D convolutional neural networks 
(3D-CNNs) have been extensively used in computer vision domains such 
as medical diagnosis for 3D image segmentation [31,32] as well as 
recognizing gestures and activities in videos [33,34]. Specifically, 
Densely Connected Convolutional Networks (DenseNet) [35] and Deep 
Residual Network (ResNet) [36] have become the main backbones of 
computer vision networks [37,38]. Both network structures are 
designed to solve the degradation problem that occurs when the depth of 

the network structure increases; that is, the accuracy of the network 
saturates or even decreases as the depth of the network increases. Pro-
tein structure analysis is similar in this regard with computer vision data 
structure analysis. The image information is represented as a 3D array in 
computing, where the first two dimensions represent the spatial co-
ordinates, and the third dimension represents the color information of 
the position. Furthermore, the techniques used for video analysis are 
similar to those used for protein processing. By stacking multiple images 
on top of each other, the first dimension represents time, the second and 
third dimensions represent spatial coordinates, and the last dimension 
represents the color information at that position. In deep learning, the 
core issues of computer vision and protein structure analysis are similar: 
finding regions with features by calculating the correlations between 
adjacent units in space, detecting patterns in these regions, and classi-
fying them based on their features. Because of their similarities, ResNet 
and DenseNet are expected to be leverage for protein analysis [39,40]. 
Together, these approaches provide a promising path for understanding 
the complex interactions between proteins and improving the ability to 
predict and model their behavior. 

Therefore, we propose SpatialPPI, a method that uses deep neural 
networks to analyze protein complexes predicted by the AlphaFold 
Multimer to forecast PPIs. Spatial models of the protein complexes were 
determined by transforming the atomic coordinates and calculating the 
atomic distributions. This approach employs advanced image processing 
strategies to extract crucial 3D structural information from protein 
complexes. In this project, both DenseNet and ResNet backbone struc-
tures were implemented in 3D convolutional networks to resolve protein 
3D structure data. The proposed method shows promising results in 
predicting PPIs, thereby highlighting the potential of 3D space- 
rendering processing methods in advancing structural biology 
research. The SpatialPPI code is available at https://github.com/oh 
uelab/SpatialPPI under the Apache-2.0 license. 

2. Materials and methods 

SpatialPPI is a pipeline that can predict the possibility of two single- 
chain proteins to interact with each other. The sequence information of 
the two proteins was used as the input to the pipeline. The structural 
information of the potential complex was predicted using the AlphaFold 
Multimer, and the prediction result was rendered into 3D tensors as the 
input to the convolutional neural network to generate the prediction.  
Fig. 1 shows the flowchart of SpatialPPI. 

2.1. Dataset construction 

The quality and reliability of PPI data are paramount for the devel-
opment and evaluation of computational models and algorithms for PPI 
prediction. In this study, we used BioGRID v4.4.206 [41], a compre-
hensive biomedical interaction repository, as the primary source of 
interacting protein pairs. BioGRID contains more than 2 million exper-
imentally validated PPIs from more than 70,000 publications in primary 
literature. This ensured the authenticity and accuracy of the positive 
datasets used in this study. 

However, obtaining reliable negative datasets for PPI predictions 
remains challenging. As demonstrated by Wei et al. [42], experimentally 
validated datasets of non-interacting proteins are more reliable as 
negative datasets than randomly matched proteins that are not present 
in the positive set. To address this issue, we used Negatome 2.0 [43], a 
manually annotated literature data resource, to source non-interacting 
protein pairs for our study. Negatome describes the lack of protein in-
teractions and includes 2171 non-interacting pairs from 1828 proteins. 

Although both Negatome 2.0 and BioGRID are experimentally 
determined datasets, it should be noted that conflicts exist between the 
positive and negative datasets. A total of 26.5% of the pairs in the 
Negatome had conflicting records in the BioGRID, of which 296 conflicts 
had more than one publication in the BioGRID. To mitigate the 
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detrimental effects of conflict on the integrity of the resulting dataset 
and enhance its overall quality, we engaged in a meticulous curation 
process. This process involved eliminating conflicts, duplicates, and self- 
interactions from the dataset. Additionally, when dealing with proteins 
having similar interactions with other proteins with high sequence 
identity or when two protein pairs had similar chains and the same 
interaction type (PPI/Non-PPI), we removed the pair which the inter-
actor has fewer interactions to prevent data redundancy. This was done 
to circumvent the potential issue of sequences with substantial similarity 
in both training and test sets, which could lead to overfitting. Such 
overfitting adversely affects the evaluation outcomes, thereby not 
accurately representing the true efficacy of the model. 

Furthermore, to ensure a balanced and diverse composition of the 
dataset, we implemented a criteria mandating that each protein be 
represented by at least one pair of interacting proteins and one pair of 
non-interacting proteins. This approach was adopted to maintain a 
comprehensive and representative dataset, essential for robust and 
reliable model training and evaluation. The final dataset comprises a 
total of 1200 protein pairs, consisting of 600 positive and 600 negative 
instances, derived from 375 Homo sapiens proteins. Overall, the resulting 
dataset represents a high-quality and reliable resource for the develop-
ment and evaluation of computational models and algorithms for pre-
dicting PPIs. 

2.2. Protein structure using AlphaFold Multimer 

In view of the achievement of AlphaFold [44] in the 14th Critical 

Assessment of Structural Prediction Competition [45], the algorithm 
was used in this study to generate possible protein complexes of the 
input sequences. The AlphaFold Multimer uses the AlphaFold model to 
predict the structures of individual protein subunits and then assembles 
them into a complex using an optimization algorithm. The optimization 
algorithm considers both the predicted structure and binding affinity of 
each subunit to minimize the energy of the complex. This high-accuracy 
protein structure prediction method allows the pipeline to accept 
easy-to-acquire protein sequence data and simultaneously obtain more 
spatial information from the protein structure to improve the prediction 
accuracy. 

The structural prediction of 1200 protein complexes was performed 
using AlphaFold Multimer version 2.3.1, which was released on January 
12, 2023 [46]. The AlphaFold Multimer was executed using the 
jackhmmer search from HMMER3 [47] targeting Uniref90 [48], UniProt 
[49], and MGnify [50], and a joint search of the Big Fantastic Database 
[51,52] and UniRef30[53] using HHBlits [54]. For each input, five 
different models were generated using the AlphaFold Multimer, and 
each model donated one prediction, yielding a total of 6000 Protein Data 
Bank (PDB) files. 

2.3. 3D rendering of protein structure 

Extracting the features of input data and converting them into data 
structures that can be recognized by neural networks has always been an 
issue that has attracted the attention of deep learning researchers. The 
prediction results of the AlphaFold Multimer are in PDB format [55], 

Fig. 1. Flow chart of SpatialPPI. First, the AlphaFold Multimer predicts the two-input protein sequences and generates the structure of the protein complex, which is 
stored in a PDB file. The protein complex is tensorized by calculating its interface using either one-hot encoding, volume encoding, or distance encoding. The tensor is 
then passed to the neural network as input data. After data augmentation, the DenseNet backbone or ResNet backbone predicts and outputs the probability that the 
input proteins can interact with each other. 
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which is a list of coordinates for atoms. The method used in this study is 
to map the preprocessed protein complex structure into a 3D tensor 
according to the coordinates. This method has also been used in previous 
studies [30,56]. Its advantage is that, compared with linear data stored 
in PDB format files or two-dimensional data such as distance matrices, it 
can better express the spatial structure information of proteins; thus, 
providing more information for the input part of the neural network. In 
addition, it allows for drawing conclusions that may not have been 
summarized by human analyses. The current opinion is that whether 
proteins can bind to each other depends mainly on the contact surfaces 
of the two proteins [57]. Therefore, in this study, the contact surface of 
the protein complex was selected as the center of the input data. To this 
end, the preprocessing stage consists of removing the predicted 
low-confidence parts, calculating the residues belonging to the contact 
surface, and building a tensor centered on the geometric center of the 
contact surface. 

Disordered structures are common in eukaryotic proteomes. Previ-
ous studies have estimated the proportion of disordered residues in the 
human proteome to range between 37–50% [58]. The AlphaFold 
research team discovered that the pLDDT is an adequate predictor of 
intrinsically disordered areas because the distribution of pLDDT be-
tween resolved and unresolved residues in the PDB sequence is sub-
stantially dissimilar [53]. The same study indicates that AlphaFold 
places long domains with pLDDT scores of less than 50 to exhibit a 
ribbon-like appearance and should be interpreted as a prediction of a 
disordered state and not as structural information [59]. Hence, these 
parts had no substantial effect on the structure of the protein in-
teractions. However, these free, long, single chains are often entangled 
with another chain to form a part of the region where the two proteins 
are proximal to each other (Fig. 2). Therefore, long single strands with 
pLDDT scores > 50 were deleted to reduce the influence of contact re-
gions other than the interface predicted by AlphaFold. 

The center of the tensor was defined as the geometric center of the 
residue in contact with the two chains. The interface calculation was 
primarily performed by calculating the distance matrix of carbon atoms 
using the remoteness indicator code alpha from the PDB file. The 
threshold for the two protein-contact regions was set at 12 Å rather than 
8 Å, which is commonly used [60]. This is because, as a prediction 
method, the model generated by the AlphaFold Multimer is likely to 
have a small displacement of atoms in its position. By expanding the 
general threshold range, more regions can be selected for reference. If all 
distances in both sequences were greater than the threshold, the 

threshold was gradually increased until at least one residue was selected 
for each sequence. The reason for this is to choose an area where the two 
sequences are spatially closest to each other as the center of the input 
data; thus, ensuring that the input data provide the greatest possibility 
for subsequent neural network analysis. 

Each tensor is defined to represent a 3D space, and each position in 
the matrix represents the spatial information in a cube with a side length 
of 1 Å. The tensor size is restricted to (64, 64, 64, 8). Due to the 
computing power limitations of the current era, it is practically impos-
sible to continue reducing the per-unit length as it will drastically in-
crease the cost. The first three indexes are coordinates rounded to 1 Å, 
which means that each tensor stands for a space of cube with the size 
64 Å × 64 Å × 64 Å. The last dimension comprises four types of atoms: 
carbon, nitrogen, oxygen, and sulfur. The four elements located in the 
two amino acid sequences occupied four positions for a total of eight 
positions. Hydrogen was excluded because it is not in the main structure 
predicted by AlphaFold. 

After defining the tensor, the next step involved calculating the 
representation of each atom in the tensor. Three types of tensorization 
methods were implemented and evaluated: one-hot, volume, and dis-
tance encoding. 

2.3.1. One-hot encoding 
The most common encoding method is one-hot encoding. This 

method begins by rounding the coordinates of an atom to an integer to 
determine its location. The value of that cell was marked as 1 according 
to the chain and type of atom, whereas all other positions were marked 
as 0. This method was used by Jones et al. [24]. A schematic of one-hot 
encoding is shown in Fig. 3(a). 

An advantage of this method is that it is easy to calculate and un-
derstand. The spatial distribution of atoms is expressed directly. 
Nevertheless, there is also the problem of deleting all the atomic coor-
dinate information after a decimal place. Given that it is generally 
believed that the condition for the contact of two residues to be 
considered feasible is that their atomic distance is less than 8 Å; how-
ever, the discarded part may be closer to 1 Å. Such large deviations may 
have harmful effects on the forecast results. 

2.3.2. Volume encoding 
Volume encoding is a more accurate method to express the spatial 

distribution of atoms than the one-hot encoding because the atomic 
radius may not be negligible. The diameters of the atoms in the protein 

Fig. 2. Examples of disordered areas, which usually appear in the AlphaFold prediction result. Disordered areas are often flexible and float in space. In the prediction 
results of the AlphaFold Multimer, the disordered area is often intertwined with the rest of the structure, and the distance is lower than the common contact 
threshold, which is 8 Å. (a) and (b) Represent AlphaFold Multimer predicted structure of protein complexes P17036 and Q9H2S9. (a) The pLDDT score of the 
predicted structure, where the color indicates the level of the pLDDT score. It can be observed that there is a large disordered area on the periphery of the structure. 
(b) The interface between the two structures. The blue and yellow parts represent two chains, respectively, and the red area represents the interface residues whose 
distance is less than 8 Å. Multiple contact areas formed by disordered areas intertwining with each other are presented in the figure. 
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are listed in Table 1. It calculates the volume distribution of atoms and 
defines the value in each cell as the intersection of the atomic volume 
and the cell. A schematic diagram of volume encoding is shown in Fig. 3 
(b). This method can be more accurate for spatial representation than 
the one-hot method. As the probability that the center of an atom is in 
the center of a cell is negligible, this method provides a more explicit 
representation of the spatial distribution of atoms without increasing the 
input size of the neural network. 

For a cell at coordinates 
(

xi, yj, zk

)
, the side length is equal to a, and 

the center of the atom is defined as 
(
xa, ya, za

)
with radius R. Let S 

represent the projection of the intersection between the cell and atom 
onto the x − y plane. The volume of the intersection can be calculated 
using the following formula: 

l =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (xi − xa)
2
−
(
yj − ya

)2
√

volume =

∫∫

S

{min(zk + a, za + l) − max(zk, za − a)}dσ 

The implementation of volume calculation for the intersection of the 
atom and the unit would be calculated through integration. However, 
this method is time consuming. Therefore, random simulations were 
used as a replacement. The random simulation method generated 
1000,000 random points within the cell. The intersection volume was 
estimated by counting the number of points inside an atom. The volume 
calculated using this method was compared with that calculated by 
integration to verify its effectiveness. The accuracy of this method was 
approximately 99.5%. 

2.3.3. Distance encoding 
Distance encoding is based on the characteristics of interatomic 

interactions. The main factors that affect protein interactions include 
electrostatic interactions, hydrogen bonds, hydrophobic effects, and van 
der Waals forces [62]. Distance is the main factor affecting these factors. 

The distance encoding algorithm renders the surrounding cells as the 
distance between the cell and center of the atom, starting from each 
atomic position. A schematic diagram of distance encoding is shown in 
Fig. 3(c). One problem with both one-hot and volume encoding is that 
most of the space is empty when represented because of the nature of the 
protein complex itself. This property causes the resulting tensor to be 
treated mathematically as a sparse matrix. Studies have demonstrated 
that the performance of neural networks deteriorates when the input 
matrix is too sparse [63]. This is because such a sparse matrix results in 
each input data point providing updates to only a limited number of 
neurons, which dramatically reduces the training efficiency. Simulta-
neously, this sparse matrix causes the trained network to rely more on 
local details; thus, reducing the network stability. The advantage of 
distance coding is that it fills most of the data space, making the tensor 
spatially dense. This method provides relatively rich atomic coordinate 
information without increasing the amount of data, unlike volume 
encoding, and improves the training efficiency and quality of the neural 
network. 

Distance is defined as the Euclidean distance from the center of the 
cell to the center point of the atom. The maximum distance for rendering 
was set to 12 Å, which is the same as the interface calculation. When a 
cell is within the threshold of two or more identical atoms simulta-
neously, the value of the cell is defined as the smaller of the two dis-
tances. When a cell was within a threshold of two or more different 
atoms simultaneously, the distance between the corresponding atoms 

was marked at the same time. For a cell at coordinates 
(

xi, yj, zk

)
, and 

the center of the atom defined as 
(
xa, ya, za

)
, then the distance can be 

calculated using the following formula: 

distance =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xa)
2
+
(

yj − ya

)2
+ (zk − za)

2
√

2.4. Architecture of neural networks 

The number of samples affects model performance. However, due to 
the specificity of biological data, numerous data augmentation tech-
niques, such as flipping, were inappropriate for this study [64]. There-
fore, data augmentation relies on rotations of the input data. Because the 
input tensor is defined as a cube, the coordinate system can be estab-
lished from the eight vertices of the cube as the coordinate origins, and 
interchanging the x, y, and z axes results in 24 rotation possibilities. This 

Fig. 3. Schematic diagram of the three encoding methods used for rendering atoms into space. The dotted grid represents part of the tensor, while the blue sphere 
represents the radius of the atom to be calculated. (a) One-hot Encoding: Marks the cell where the atom center is located. The red point in the center represents the 
atom center, and the cell location is marked in red. (b) Volume Encoding: Values of each cell equal to the volume of the intersection of the cell and the atom. The red 
part represents the intersection of the closest upper left corner cell and atom, and the volume of this part is marked as the value of the cell. (c) Distance Encoding: 
Values of each cell are equal to the distance from the atom center to the cell. The red dotted line represents the distance between the closest upper left corner cell and 
the atom center. This value is marked as the value of the cell. 

Table 1 
The diameter of the atoms included in PDB files [61]. The 
atomic diameters of the main atoms constituting amino 
acids: carbon, nitrogen, oxygen, and sulfur are all larger 
than the designed unit side length, which is 1 Å.  

Atom Atomic Diameter (Å) 

Hydrogen  0.50 
Carbon  1.40 
Nitrogen  1.30 
Oxygen  1.20 
Sulfur  2.00  
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approach alleviates data shortcomings. Simultaneously, the network 
structure was trained to balance by rotation to address the inconsistent 
orientation of the predicted protein complex. Additionally, random 
displacement within a ± 6 Å range in the three axial directions have 
been introduced. By increasing variation in positioning, this approach 
aims to mitigate the potential for overfitting. 

In this study, modified ResNet and DenseNet were used as backbone 
options for the neural network, with implementations adapted from Ju 
[65] and Dudovitch [66]. The core architecture of the network consisted 
of four blocks, each comprising of four convolution 3D layers. ResNet 
introduces shortcut connections in each block, passing data from the 
front of a block directly to the back to mitigate the gradient vanishing 
problem; thereby improving the performance of deep neural networks. 
DenseNet follows a similar idea by connecting all previous layers to 
subsequent layers. Following each convolution 3D layer, a dropout layer 
with a rate of 0.2 is implemented to mitigate the risk of overfitting. The 
output of each block is processed using a batch normalization layer, 
followed by an activation layer. Except for the first block, the input to 
each subsequent block was a reduced output from the preceding block, 
which was achieved using an average pooling 3D layer. In the final 
segment of the network, a global max-pooling 3D layer is used to 
transform the 3D features into a 1D feature vector, which is subse-
quently fed into a fully connected dense layer, culminating in the pre-
diction of the two classes. A softmax activation function was utilized, 
which allowed the output to be interpreted as a probability distribution.  
Fig. 4 shows a diagram of the network architecture. The model consisted 
of 633,962 trainable parameters. During the training process, the initial 
learning rate was set to 10-5, with a regularization strategy involving 
weight decay, set to 10-4. The order of the training dataset was shuffled 
at the end of each epoch to enhance the training process diversity. The 
entire training regimen spanned 40 epochs, with a batch size of 32. 
Finally, the output of the entire network is a 2-length array, representing 

the probabilities of the input data being positive and negative. For the 
loss function, positive data were labeled as [0,1] and negative data as [0, 
1], whereas the weights were updated by calculating the categorical 
cross-entropy between the predicted results and labels. 

2.5. Evaluation methods 

To evaluate the model performance, the dataset was randomly 
segmented into five non-overlapping subsets. During dataset partition-
ing, clustering of proteins was performed using MMseqs2 ‘easy-cluster’ 
[67] to ensure that similar proteins always appear within the same 
subset. Moreover, the five AlphaFold Multimer-predicted models 
generated for each protein pair were divided into the same subset to 
ensure that there was no data overlap between different subsets. In this 
study, the evaluation of the model is based on 5-fold cross-validation. 
Within each cross-validation fold, four of these subsets constituted the 
training set, and the resting subset functioned as the test set. Addition-
ally, for each subset, when serving as training data, the five predicted 
models from the AlphaFold Multimer for each protein pair utilized for 
training purposes. Conversely, when a subset was designated as test 
data, only the first model for each protein pair was used for testing. A 
comprehensive prediction of the dataset was generated by aggregating 
the predictions made on the test set over five folds. This process ensured 
a robust and thorough assessment of the predictive capabilities of the 
model across the entire dataset. 

The Rosetta docking score [68] is introduced to evaluate the per-
formance of AlphaFold-predicted models. The Rosetta docking score 
incorporates several components, including van der Waals forces, elec-
trostatic interactions, hydrogen bonding, solvation energy, and entropy 
loss upon binding. This score is crucial for identifying the most stable or 
likely conformation of a protein complex formed when two or more 
proteins interact. The lower the docking score, the more favorable the 

Fig. 4. Detailed description of the SpatialPPI network structure. (a) Structure of 3D Residual Blocks. In each residual block, the input data is directly accumulated 
into the output layer through a shortcut. (b) Structure of 3D Dense Blocks. For dense blocks, the input data and the output data of each layer of the convolutional 
network except the last layer are passed backward using a shortcut. (c) Architecture of the neural network. Multiple backbone blocks are gradually reduced in size 
after being connected using transition blocks, and finally, dense layers conclude and output the prediction. 
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predicted interaction is considered to be, implying a higher likelihood of 
biological relevance and stability of the complex. The Rosetta docking 
score was calculated using the Release software v3.13. 

3. Results and discussion 

Multiple sets of tests were conducted to evaluate the model perfor-
mance. These tests encompassed various experiments involving the 
comparison of different backbone architectures and tensorization 
methods, a comparative analysis against other state-of-the-art PPI pre-
diction methods, and a completely independent supplementary test 
dataset that was also used to validate the results. Regarding the evalu-
ation criteria, binary accuracy (ACC), area under curve (AUC), preci-
sion, and recall were used for the model evaluation. The model 
performance was visually represented by generating receiver operating 
characteristic (ROC) curves. 

3.1. Evaluations between different backbone and tensorization methods 

SpatialPPI performed 5-fold cross-validation on the dataset using the 
DenseNet3D backbone with distance, one-hot, and volume encoding, 
whereas a Resnet3D backbone with distance encoding was also used. 
The test results are presented in Table 2 and Fig. 5. 

The utilization of DensetNet3D as the backbone architecture, along 
with the distance tensorization method, yielded the best performance 
across all metrics. Conversely, the performance of the one-hot encoding 
method was the least satisfactory. This result confirms that distance 
encoding provides a practical reference for the attention of the neural 
network to interatomic distances. It also demonstrates spatially dense 
characteristics, which enable more comprehensive updates of the neural 
unit weights. Notably, the model using ResNet3D as the backbone ar-
chitecture had a precision similar to that of the DensetNet3D model. 
However, the recall of the ResNet3D model might be more satisfactory. 
This implies that the ResNet3D model can effectively identify true 
negative data with relatively reasonable accuracy but struggles to detect 
true positive data. In other words, the structure of the DenseNet3D al-
lows the network to retain some distance information in the input data 
during transmission, thereby improving its performance. Consequently, 
the combination of distance encoding and DensetNet3D backbone was 
selected as the top-performing configuration to represent the perfor-
mance of SpatialPPI for further analyses and evaluations. 

By calculating the proportion of valid values in the input data, we 
defined the fill rate of the input neural network data as the number of 

non-zero values in the input tensor divided by the input size. For the 
three tensorization methods used in this study, the average fill rates in 
the central area were 3% for one-hot encoding, 20% for volume 
encoding, and 95% for distance encoding. Other studies have applied 
Gaussian blurring to one-hot encoding [30]. This method has a fill rate 
similar to that of volume encoding; however, it lacks the spatial distri-
bution information of atoms that is provided through volume encoding. 
The distance-based encoding method can fill the spatial sparsity in 
protein structures, enabling a more comprehensive update of neurons in 
convolutional neural networks, thereby improving the model 
performance. 

3.2. Comparison with the existing PPI prediction method 

In this study, four state-of-the-art PPI prediction methods were used 
as comparison objects to evaluate the performance of the model. These 
methods include D-script, DeepTrio, PEPPI, and SpeedPPI. Currently, 
two pre-trained models of D-script are available, the Human D-script 
model (from the original D-script paper) and the Human Topsy-Turvy 
model [69] (recommended by developers). Both models were evalu-
ated. Otherwise, the predictive results of DeepTrio were obtained using 
a 5-fold validation of the dataset. 

Table 3 and Fig. 6 present the predicted results for each method and 
SpatialPPI. Overall, SpatialPPI exhibited outstanding performance 
compared to other similar methods. SpatialPPI achieved the highest 
accuracy, area under the curve, and recall of all methods. Although 
PEPPI and the original D-script model display high precision, their 
ability to detect true positives is less satisfactory. We hypothesize that 
the training process of the network using conjoint triad features in 
PEPPI, which shares data sources with the negative dataset in this study, 
and the inclusion of all proteins in both the negative and positive 
datasets used in this study may have led to an emphasis on protein 
sequence characteristics over the analysis of protein-protein associa-
tions, resulting in such prediction outcomes. In contrast, the updated D- 
script Human Topsy-Turvy model exhibits a more balanced perfor-
mance. DeepTrio performs well overall and boasts the fastest compu-
tational speed among all methods. Similar to PEPPI and D-script with 
human weights, it had a relatively lower but acceptable recall. The 
protein complexes predicted by the AlphaFold Multimer in the Spa-
tialPPI pipeline were used for the SpeedPPI analysis. The performance of 
SpeedPPI relies entirely on the pLDDT scores of the predicted interaction 
residues obtained from AlphaFold by employing a sigmoidal projection. 
Additionally, SpeedPPI may be influenced since it does not specifically 

Table 2 
Comparison of accuracy (ACC), area under curve (AUC), precision, and recall for 
different encoding methods and network backbones based on the 5-fold cross- 
validation result of the dataset. “Average Deviation” refers to the average de-
viation of accuracy across five models during the 5-fold cross-validation, while 
“Standard Deviation” denotes the standard deviation of the accuracy measure-
ments for these models. These metrics provide insights into the overall perfor-
mance of the models and the consistency of their accuracy.  

Backbone DenseNet3D DenseNet3D DenseNet3D Resnet3D 

Tensorization Distance 
Encoding 

One-Hot 
Encoding 

Volume 
Encoding 

Distance 
Encoding 

ACC 0.818 0.640 0.665 0.714 
AUC 0.892 0.735 0.772 0.797 
precision 0.832 0.695 0.636 0.788 
recall 0.796 0.501 0.771 0.585 
True Positive 478 301 463 351 
False Negative 122 299 137 249 
False Positive 96 132 265 94 
True Negative 504 468 335 506 
Average 

Deviation 
0.023 0.088 0.061 0.044 

Standard 
Deviation 

0.030 0.101 0.078 0.050  

Fig. 5. Receiver operating characteristic (ROC) curve for different encoding 
methods and network backbones based on the 5-fold cross-validation result of 
the dataset. 
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handle the calculation of average pLDDT scores for long single-chain 
areas that are not structurally entangled with other proteins. 

3.3. Evaluations on additional dataset 

Experiments were conducted using an additional dataset to validate 
the network robustness. The additional dataset was a subset of the data 
utilized in the DeepTrio research [70]. Positive pairs were selected from 
human species data obtained from the BioGRID database. Negative data 
were generated by shuffling one sequence from the positive pair. Due to 
the particularities of amino acid sequences, the probability that shuffled 
proteins interact with each other is negligible. This method was 
demonstrated by Kandel et al. [71]. Specifically, 571 non-repeating 
positive pairs and their corresponding shuffled counterparts were 
selected as the negative dataset. This dataset has a maximum sequences 
identity of 25% with the standard datasets. Due to the uniqueness of the 
dataset construction process, SpatialPPI and DeepTrio are evaluated by 
performing 5-fold cross-validation on this dataset. SpeedPPI, designed 
without a training process, directly utilizes the same AlphaFold pre-
diction results as used during the SpatialPPI execution. For the execution 
of SpatialPPI, the DenseNet3D backbone and distance encoding were 
used. Furthermore, D-script (Topsy-Turvy), was also tested on the 
additional dataset. 

The predicted results are listed in Table 4. The comparison results 
indicate that SpatialPPI outperforms other methods and demonstrate 
that the ability of SpatialPPI to learn the spatial structural relationships 
of residues is also applicable to other datasets. Additionally, a significant 
difference was observed in the performance on the negative dataset 
compared to the dataset based on Negatome 2.0. Almost all methods 
showed a notable improvement in accuracy for the negative dataset. 
This suggests that the manner in which the negative dataset was 

generated, while theoretically noninteracting, exhibited substantial 
differences in sequence characteristics from naturally occurring pro-
teins. Our analysis, which is also supported by studies such as Wei et al. 
[42], indicates that negative datasets derived from actual experimen-
tation often result in lower accuracy of PPI prediction models than those 
based on theoretical constructs. The ultimate aim of PPI models is to 
address real-world experimental challenges. The purpose of PPI pre-
diction models is to facilitate the experimental process by filtering 
protein pairs that are likely to interact and that inherently possess a 
higher potential for interaction than purely random protein pairs. 
Therefore, we believe that using real experimental data offers greater 
reliability than theoretically constructed negative datasets. 

3.4. Quality assessment of the AlphaFold Multimer predictions 

To analyze the differences between the positive and negative pairs 
predicted by the AlphaFold Multimer prediction model, we calculated 
the sequence length, number of contacted residues, average interface 
pLDDT scores, and Rosetta docking score [71] of the predicted model. A 
histogram of the calculation results is presented in Fig. 7. In particular, 
the Rosetta docking score was designed to predict the strength and 
stability of PPIs in a predicted complex structure. As illustrated in Fig. 7 
(d), both negative pairs and positive pairs exhibit a notable portion in 
terms of the average interface pLDDT score. This deviation forms the 
foundational basis for SpeedPPI to distinguish true PPIs. Nevertheless, 
the intersection between negative pairs and positive pairs in their dis-
tribution is significantly larger than their difference, making it chal-
lenging to differentiate PPIs solely based on intuitive methods or 
mathematical approaches through the analysis of average interface 
pLDDT scores. However, in relation to Fig. 7(a), (b), (c), (e), and (f), no 
significant distinction between latent and positive data is observed. 
Consequently, such predictive outcomes are challenging to differentiate 
through heuristic methods. Furthermore, we calculated the RMSD be-
tween five different models predicted by the AlphaFold Multimer for the 
same protein pair, with an average value of 19 Å. This shows that there 
are distinct structural differences between the multiple models predicted 
by the AlphaFold Multimer. This helps ensure diversity in the training 
data. 

Although the AlphaFold Multimer achieves an unprecedented high 
accuracy in predicting protein complex structures, there is no evident 
difference between the models it outputs when processing positive and 
negative pairs. By exploiting this feature, we were able to generate a 
three-dimensional spatial model of the negative protein dataset, thereby 

Table 3 
Comparison of accuracy (ACC), area under curve (AUC), precision, and recall for SpatialPPI, DeepTrio, SpeedPPI, PEPPI, and D-script with 2 types of models.   

SpatialPPI DeepTrio SpeedPPI D-script (Origin) D-script (Topsy-Turvy) PEPPI 

ACC  0.818  0.765  0.773  0.631  0.736  0.680 
AUC  0.892  0.845  0.817  0.679  0.741  0.762 
precision  0.832  0.830  0.807  0.852  0.755  0.906 
recall  0.796  0.667  0.718  0.317  0.698  0.402 
True Positive  478  400  431  190  419  241 
False Negative  122  200  169  410  181  359 
False Positive  96  82  103  33  136  25 
True Negative  504  518  497  567  464  575  

Fig. 6. Receiver operating characteristic (ROC) curve for SpatialPPI, DeepTrio, 
SpeedPPI, PEPPI, and D-script with 2 types of models. 

Table 4 
Comparison of accuracy (ACC), area under curve (AUC), precision, and recall for 
SpatialPPI, DeepTrio, SpeedPPI, and D-script using the Topsy-Turvy model, 
performed on the additional dataset.   

SpatialPPI DeepTrio SpeedPPI D-script (Topsy-Turvy) 

acc  0.835  0.833  0.799  0.806 
auc  0.920  0.884  0.911  0.879 
precision  0.845  0.936  0.925  0.869 
recall  0.828  0.714  0.650  0.720  
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providing structural data for the neural network analysis of protein in-
teractions. Alternatively, SpatialPPI can use protein structural infor-
mation to predict protein interactions, even for proteins whose 3D 
structures have not been experimentally determined. However, because 
intrinsically disordered regions in proteins are represented by a ribbon- 
like appearance, which should be interpreted as a prediction of a 
disordered state and not as structural information, their spatial contact 
with another protein should be ignored. By introducing a process that 
removes disordered areas, SpatialPPI can correctly distinguish protein 
interactions without interference from entangled disordered areas, 
which is critical to the classification capabilities of SpatialPPI. 

Some specific predicted structures of the AlphaFold Multimer are 
shown in Fig. 8. These models were correctly classified using SpatialPPI. 
Fig. 8(a) and (b) show a model containing intertwined disordered areas, 
which form additional contact areas. Fig. 8(c) and (d) and (e) and (f) 
show two models with high pLDDT scores, which also have very high 
pLDDT scores in the interface. All three models were derived from 
negative protein pairs. The models shown in Fig. 8(g) and (h) were 
derived from positive protein pairs; however, they were relatively 
separated in space, and only some disordered areas interacted with each 
other. 

In addition, we verified the performance of the AlphaFold Multimer 
and SpatialPPI on the protein data from CASP14. The test data were 
obtained from the FoldDock GitLab [29]. Due to the overlap between the 
CASP14 dataset and the standard datasets, the model used in this testing 
was trained on the standard dataset by removing records with sequence 
identities greater than 40% of the sequences in the CASP14 dataset.  
Table 5 shows the comparative effectiveness of accurate AlphaFold 
Multimer predictions and correct SpatialPPI predictions. It is note-
worthy that the table categorizes predictions based on the RMSD values, 
with a threshold of 5 Å serving as a demarcation point. 

This table illustrates that the predictive capabilities of SpatialPPI are 
not solely dependent on the proximity of residues, as determined by the 

AlphaFold Multimer model. Instead, SpatialPPI appears to be more 
attuned to the spatial data composition characteristics of the proteins. 
For instance, in cases where RMSD values were less than 5 Å, SpatialPPI 
accurately predicted protein interactions 11 out of 13 times, indicating 
its ability to discern subtle spatial nuances. However, even with RMSD 
values greater than 5 Å, SpatialPPI correctly identified 2 out of 4 cases. 
This indicates that even AlphaFold predicted models with higher RMSD 
values can capture essential structural features and correct interactions 
crucial for PPI prediction. These models may retain significant aspects of 
the protein’s overall shape or key interaction sites, sufficient for accu-
rate PPI identification. And it also states the robustness of SpatialPPI. It 
underscores the potential to extract valuable insights from imperfect 
structural models, which remain reliable even in less accurate models. 

4. Conclusion 

In conclusion, SpatialPPI is a pipeline for predicting PPIs that utilizes 
protein complex structures predicted using the AlphaFold Multimer. By 
testing and evaluating three strategies for rendering protein structure 
information into spatial tensors and two commonly used backbones for 
image recognition and video classification, this study provides a refer-
ence for analyzing protein 3D structures using neural networks. Addi-
tionally, this highlights that both protein structure data and image data 
are fundamentally based on spatially distributed information. This 
commonality in their feature characteristics enables their capture and 
classification by similar CNN architectures. Furthermore, the necessity 
of using experimentally validated negative datasets was demonstrated 
by testing them on two independent datasets. With advancements in 
computational capabilities, we hope that this analytical approach will 
further develop and contribute to the understanding of the principles 
underlying PPIs. 

SpatialPPI could enable the detailed elucidation of molecular ar-
chitectures and the intricate networks they form; thus, facilitating 

Fig. 7. Quality assessment of the AlphaFold Multimer predictions on the dataset. The threshold used to measure residue contacts was 8 Å. (a) Sequence length 
distribution of negative pairs (Red) and positive pairs (Blue). (b) The distribution of the number of contacted residues of negative pairs (Red) and positive pairs 
(Blue). (c) The distribution of radius of gyration for the interfaces between negative pairs (Red) and positive pairs (Blue). (d) The distribution of average interface 
pLDDT scores for negative pairs (Red) and positive pairs (Blue). (e) The distribution of Rosetta docking scores for negative pairs (Red) and positive pairs (Blue). (f) 
The scatter plot of Rosetta docking scores versus sequence length between negative pairs (Red) and positive pairs (Blue). 
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groundbreaking insights into cellular mechanisms. Accurate PPI pre-
dictions are pivotal for advancing drug discovery as they allow the 
identification of novel therapeutic targets and the development of effi-
cacious drugs with fewer off-target effects. Furthermore, these ap-
proaches aid in the engineering of proteins with bespoke functions, 
thereby bolstering innovations in biotechnology and synthetic biology. 
This innovative methodology not only contributes to the clarification of 
protein interaction networks but also provides a metric for evaluating 
predictive models of protein complexes. When addressing unknown 
protein sequences, SpatialPPI can circumvent model generation using 
predictive methods that falsely suggest non-interacting sequences. 
Conversely, if there is a high likelihood of interaction between se-
quences in a model, the predictive model yields two isolated structures, 
and SpatialPPI can serve as a benchmark for refining the predictive al-
gorithm. This dual functionality enhances predictive accuracy, ensuring 
that the resulting models reliably reflect the true interaction potential of 
protein sequences within a complex. 
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Fig. 8. Examples of structures predicted by the AlphaFold Multimer. (a)(c)(e)(g) pLDDT scores of predicted structures, where colors stand for the value of the pLDDT 
score. Blue: Very high (pLDDT > 90); Cyan-blue: High (90 > pLDDT > 70); Yellow: Low (70 > pLDDT > 50); and Orange: Very low (pLDDT < 50). The average plddt 
score of each protein complex and their average plddt score of the interface are labeled in the figure. (b)(d)(f)(h) Interface between two chains. The blue and yellow 
parts represent two chains respectively, and the red area represents interface residues whose distance to each other is less than 8 Å. Among the models, (a, b) P18847- 
Q9NQX6, (c, d) P06703-P23297, and (e, f) P63244-P63096 are experimentally determined pairs of proteins that cannot interact. (g, h) Experimentally determined 
interacting pair. 

Table 5 
Comparison of accurate AlphaFold Multimer prediction and correct SpatialPPI 
prediction.   

Correct Prediction False Prediction Total 

RMSD < 5 Å  11  2  13 
RMSD > 5 Å  2  2  4 
Total  13  4  17  
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