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ABSTRACT: As the number of determined and predicted protein
structures and the size of druglike ‘make-on-demand’ libraries soar, the
time-consuming nature of structure-based computer-aided drug design
calls for innovative computational algorithms. De novo drug design
introduces in silico heuristics to accelerate searching in the vast chemical
space. This review focuses on recent advances in structure-based de novo
drug design, ranging from conventional fragment-based methods,
evolutionary algorithms, and Metropolis Monte Carlo methods to
deep generative models. Due to the historical limitation of de novo drug
design generating readily available drug-like molecules, we highlight the
synthetic accessibility efforts in each category and the benchmarking strategies taken to validate the proposed framework.
KEYWORDS: Computer-aided drug design, Structure-based drug design, De novo drug design, Artificial intelligence, Machine learning,
Genetic algorithm, Evolutionary algorithm, Fragment-based ligand design, Fragment growing, Synthetic accessibility

1. INTRODUCTION
Computer-aided drug design (CADD) methods have become
more powerful as better hardware and novel methods like
machine learning improve the performance of traditional
tools.1 Structure-based (SB) methods such as docking and
molecular dynamics play a crucial role in CADD, enhancing
our understanding of how small molecules bind to the protein
target.2 As more and more experimentally determined
structures of therapeutic targets become available via X-ray
crystallography, nuclear magnetic resonance (NMR) spectros-
copy, or cryo-electron microscopy (cryo-EM), SB-CADD
methods have sped up numerous drug discovery campaigns.
The influence of SB-CADD methods expanded even more as
homology modeling bridges the gap between similar protein
sequences and determined structures.3,4 The recent success of
AlphaFold in the 14th Critical Assessment of Protein Structure
Prediction (CASP) showed the feasibility of highly accurate
large-scale structure prediction, leading to the extensive
AlphaFold Protein Structure Database filled with more than
200 million structures.5,6 Despite the improvement in
computer hardware, the computational cost for evaluating a
protein−ligand complex is still high, limiting the scope of
assessment during hit searching. SB-CADD virtual screening
campaigns can now screen ultralarge make-on-demand libraries
containing millions of molecules, but this covers only a small
proportion of the vast drug-like chemical space which is
estimated to be up to 1060 molecules.7 For a search problem of
this scale, exhaustive search is infeasible. The situation calls for
more efficient ways of exploration.

De novo drug design refers to a subset of methods that aim
to design novel molecules with pharmacological properties
from scratch.8 Compared with SB-CADD virtual screening, de
novo design can explore a wider chemical space in a time-
efficient manner. Similar to SB-CADD virtual screening, the
molecules proposed from de novo design are usually still far
from a final drug, but they serve as good starting points for
medicinal chemistry to develop. A de novo drug design
workflow generally consists of candidate sampling and
property evaluation, usually in an iterative fashion. Ligand
property evaluation is generally performed through various
scoring functions and pharmacological filters. The sampling
method, or molecular construction, is usually the main
difference between design approaches.9

Various sampling methods have evolved significantly over
the past years. The first SB-CADD de novo design method,
LEGEND (1991), employed an atom-based sampling method,
placing atoms and bonds successively in the receptor pocket to
explore the chemical space.10 However, the combinatorial
explosion associated with atom-based methods soon drove the
field toward fragment-based methods and computing heu-
ristics. Conventional fragment-based sampling methods
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employ three major strategies: growing, linking, and merging
to develop binding fragments into complete drug mole-
cules.11,12 Evolutionary algorithms are a class of methods
extensively used in de novo drug design. Mechanisms inspired
by biological evolution are applied in these methods to
optimize ligand population generation by generation.13,14

Monte Carlo Metropolis (MCM) is another sophisticated
heuristic for sampling in high-dimensional space. Such
methods have been applied in drug discovery to search step-
by-step in the chemical space for drug candidates.15 Recent
advancements in machine learning (ML) have brought
numerous deep generative models into drug discovery,
combining and redefining the tasks in a de novo drug design
workflow.16 This review introduces recent sampling methods
ranging from conventional fragment-based methods and
evolutionary methods to emerging ML methods (Figure 1).
The scoring task in SB-CADD de novo design requires a

balance between accuracy and computing time to accomplish
iterative searching in a vast library within a reasonable time.
Major scoring functions include physics-based force fields,
empirical potentials, and knowledge-based scoring functions.
Compared with quantum-level calculations, these scoring
functions are not only less accurate but also more lightweight

in computing resources. Newly developed scoring functions are
regularly assessed by their scoring and ranking power, as well
as docking and screening power, as in the comparative
assessment of scoring functions benchmark.17 Besides conven-
tional scoring functions, ML scoring functions have emerged
over the years, though the scoring performance has been
questioned to be dependent on training sets.18

While predicted binding affinity is the most commonly used
evaluation strategy, other metrics including structural similarity
to known binders, binding mode, validity, novelty, diversity,
and drug-likeness are also frequently employed during or after
the design. Another important property for evaluation is
synthetic accessibility (SA). SA has been a consistent challenge
for the field since its inception. Though a number of methods
in the past decade have discovered chemical entities that
eventually proceeded to experimental validation, manual
alteration to proposed designs prior to actual synthesis is still
a frequent occurrence.19 Many recent approaches have tried to
resolve the SA issue, and their efforts will be discussed in this
review.
This review will also examine how recent approaches have

benchmarked and validated their methods. Although exper-
imental validation is widely agreed to be more convincing than

Figure 1. Schematic illustration of ligand sampling methods in structure-based de novo design. (a) Fragment-based growing, linking, and merging.
(b) Evolutionary algorithms. (c) Monte Carlo Metropolis methods. (d) Deep generative neural networks.

Table 1. Recent Fragment-Based Ligand Design Packages

Method Ligand Construction Synthetic Accessibility Validation (method; target)

LigBuilder V320 Growing/Linking/
Genetic Algorithm

Retrosynthesis analysis (Prototype) in vitro; COX2/LTA4H
(Full protocol) in silico MM/GBSA method; HIV-1 protease/reverse
transcriptase

NAOMInext21 Growing Reaction-rule based In silico docking/alignment; aurora A kinase, carbonic anhydrase II,
acetylcholine-binding protein, protease factor VIIa

PINGUI22 Merging Reaction-rule based In vitro/In silico docking; β2AR
de novo DOCK23 Growing Torsion environment from

synthesizable database
In silico docking; HIVgp41

AutoT&T 224 Merging Real molecule reference library In silico; angiotesin converting enzyme, VEGFR2, β-lactamase
OpenGrowth25 Growing Fragment connection probability

based on drug library
In silico MD; HIV-1 protease
In vitro/In vivo; PDE3A-SLFN12 complex26

Frag4Lead27 Growing Commercially available fragment
database

In vitro/In silico docking; aspartyl protease endothiapepsin

LeadOp+R28 Growing Reaction-rule based In silico MD; Tie-2 kinase, human 5-lipoxygenase
AutoCouple29 Growing Reaction-rule based In vitro/In silico MD; CBP bromodomain
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in silico evaluation, few protocols have validated their designs in
vitro or in vivo, mostly because of SA concerns. Instead, in silico
validation frequently relies on docking studies and molecular
dynamics (MD) simulation. Methods differ in the selection of
evaluation metrics for benchmarking, as well as their choice of
protein targets. These differences will be outlined for each
method to compare similar protocols in parallel.

2. GROWING, LINKING, AND MERGING
Fragment-based drug discovery usually begins with a screen of
diverse fragments, often by computational virtual screening,
but sometimes with in vitro methods. Compared with larger
and more complex molecules that are less likely to bind,
fragments bind less tightly but more reliably.11,12 These
fragments are selected to form a library for further expansion
into larger optimized molecules. Common fragment expansion
strategies are growing, linking, and merging. Growing is the
most commonly used strategy. Growing starts with a single
core in the pocket, and subsequent additions of fragments then
aim to extend the ligand into the rest of the pocket with
improved affinity. Linking starts with two fragments occupying
different nonoverlapping portions of the pocket, and the goal is
to find a linker with suitable flexibility to maintain the original
fragments’ binding modes. Merging combines the two
fragments in different but overlapping parts of the pocket,
with the common structure forming the core. Table 1
summarizes the program packages in the past eight years
that adopted one or more of the fragment-based strategies.
2.1. Ligand Construction. Fragment-based ligand con-

struction usually begins with the selection and placement of
anchors or growing centers. Most methods take a docked or
cocrystallized ligand directly as the starting point21,22,24,25,28 or
as the reference to lookup analog anchors from a given
fragment library.27,29 LigBuilder V3 has a de novo design mode
called Chemical Space Exploring Algorithm, which performs
iterative growing and fragment extraction operations on a pool
of seed structures derived from a single sp3 carbon, hence
avoiding preassigned seed structures and allowing broader
exploration in the chemical space.20 De novo DOCK generates
building block libraries including anchors from ZINC, breaking
the molecules at each rotatable bond into rigid fragments,
which are then oriented to the binding site via a graph
matching algorithm.23 In some methods, the user also needs to
specify the sites of optimization on an anchor.28 For most
reaction-rule based methods, this step is unnecessary, since the
reaction patterns automatically define the sites.
Building block sampling is a 2-fold problem: chemical space

and conformational space sampling. Some fragment-based
approaches therefore require docking of the fragment library to

filter out undesired structures before ligand construction.22,24

Fragment sampling for reaction-rule based methods is
straightforward since candidates are restricted to reagents
compatible with the reaction. Methods that are not reaction-
rule based derive fragment connection probabilities from real
molecules and use these to guide ligand construction.23,30

AutoT&T2 limits the search space by searching for matched
bonds between the reference library and the input lead
molecule and carrying out a systematic crossover for all
matches.24 Frag4Lead collects hit analogs from commercial
databases, with the common substructure aligned to the input
hit.27 Conformational sampling is typically through docking
and in-site optimization of the product before the next
iteration. NAOMInext generates conformations on the fly with
a dynamic strategy that switches between breath-first-search
and depth-first-search.21

Besides ligand flexibility, protein conformation is another
factor to consider during design, though most methods only
sample side-chain flexibility. OpenGrowth simultaneously
grows ligands in several conformations of the protein, together
with a rotamer search and geometry optimization on the
chosen fragment, taking both protein and ligand flexibility into
account.25 LigBuilder V3 allows multitarget design, targeting
multiple binding sites or multiple conformations of a protein.
Specifically, the multitarget growing mode synchronously
grows identical fragments at the same growing site to maintain
2D structure consistency, while 3D conformations are
independently optimized in corresponding targets. The
ensemble linking mode grows each fragment independently
and flexibly before attempting to link among suitable ones.20

2.2. Synthetic Accessibility. SA concerns in fragment-
based methods usually arise at two stages: fragment source and
fragment connection. The first is addressed through using a
commercially available fragment library27 or, at the very least,
having a real molecule/drug library as reference.23−25 The
second is addressed in some approaches by ensuring
connection validity with reaction rules and reaction-based
fragment libraries.21,22,28,29 Fragment-based methods today are
mostly iterative. The absence of SA supervision during
fragment connection can lead to synthetically inaccessible
molecules, especially at later iterations. Reaction-rule based
approaches are therefore a general trend, particularly given the
increasing number of reaction databases in recent years.31

Moving ahead, the concept of make-on-demand libraries
presents promising prospects for the advancement of fragment-
based methods. Enamine has generated a combinatorial library
containing an impressive 36 billion readily accessible molecules
through the enumeration of products from their existing
compounds and reactions.32 This strategy significantly

Figure 2. Levels of confidence for drug design validation.
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mitigates SA concerns at both the fragment source and
fragment connection stages. These vast and dynamic libraries
are anticipated to be instrumental in future fragment-based
methods.
2.3. Validation. Methods reviewed here were validated at

different levels (Figure 2). At the very least, the methods were
tested to see if the known binders or analogs could be
reconstructed from a set of precursors or seed structures. The
successfully recovered molecules from these methods also
adopted poses within 2.0 Å root-mean-square deviation
(RMSD) to native structures.21,23 However, such validation
cannot test a method’s ability to generate novel molecules or to
extract good ligands from a larger chemical space. Therefore, a
majority of methods estimate the binding affinity of the
compounds designed with generic databases, through docking
or MD simulation. The reported methods mostly have top
molecules estimated to be as potent or more potent than
known binders or FDA-approved drugs.20,25,28

A few methods verified their designed ligands in vitro. A
prototype of LigBuilder V3 has been experimentally validated
by designing a COX2/LTA4H dual-functional inhibitor and
yielded a ligand binding to COX2 and LTA4H with an IC50 of
7.1 and 7.0 μM, respectively.33 PINGUI found four ligands
targeting the β2-adrenergic receptor (β2AR) with improved
binding affinity over the core fragments used as growing
centers.22 Frag4Lead proposed ten binders targeting aspartyl
protease endothiapepsin that have been confirmed by X-ray
crystallography, with the best-proposed molecule improving
affinity over its reference by 266-fold and two compounds
having affinities below 10 μM.27 Five molecules targeting CBP
bromodomain and proposed by AutoCouple have been
confirmed as nanomolar binders with the best one having a
10-fold increase in Kd compared with the known binder. The
authors of AutoCouple then completed a series of
optimizations to the proposed molecules to identify a hybrid
molecule with good binding affinity and selectivity confirmed
in vivo.29 OpenGrowth was applied to generate anagrelide
analogs as potential molecular glues between phosphodiester-
ase 3A (PDE3A) and Schlafen 12 protein (SLFN12). The in
vitro apoptosis induction activities of 14 synthesized analogs
increased significantly with the best one having an IC50 of 0.3
nM. Further in vivo testing of the best compound also showed
better tumor growth inhibition than the known drug
anagrelide.26

For reaction-rule based methods, it is also important to
confirm the validity or viability of the proposed synthetic
routes. While molecules tested in vitro automatically prove
their SA, methods lacking experimental validation have sought
verification from the literature. For example, the synthetic
routes suggested by LeadOp+R match past experimental

studies in the literature, and nine of their proposed molecules
for Tie-2 kinase were found to have been synthesized before.28

However, such validation cannot prove the SA of novel
molecules that have not been synthesized.

3. EVOLUTIONARY ALGORITHMS
Evolutionary algorithms (EAs) are powerful approaches for
solving search and optimization problems that involve
multiple, conflicting objectives. They mimic the concept of
Darwinian evolution in that the fittest molecules are selected
generation by generation. The genetic algorithm (GA) is the
most commonly used type of EA.34 Other types include
genetic programming, evolutionary strategy, and evolutionary
programming.
An EA starts with an initial parent population (often

randomly chosen). In the case of drug design, the initial
population is usually a set of chemical compounds. Random,
biological evolution-inspired operations such as reproduction,
mutation, selection, and crossover are applied to individuals in
the parent population to produce the “children”. Mutation
introduces new information into the population, and crossover
combines information from existing individuals to generate
new populations. GA also employs the replication (or elitism)
operator to carry the fittest molecules unchanged into the next
generation. All “children” structures in the new population not
only will be evaluated with a fitness function, usually in some
form of the binding affinity, but can also involve properties
such as drug-likeness, toxicity, and similarity to known actives.
Various selection strategies involving the “Roulette wheel”,

“Tournament”, and “Ranking” are employed in each round to
select a diverse set of fit molecules to function as the parent
population in the next round. “Roulette” assigns an area
weighted by fitness to each proposal on a metaphorical
roulette. By giving each proposal a chance, roulette introduces
randomness into each generation, and the exploration is less
likely to be trapped in a local minimum. “Tournament”
randomly samples a subgroup from the proposals and picks the
fittest ones. “Ranking” directly chooses the best-scoring
proposals but has the risk of selecting low diversity compounds
at later generations with high convergence.35 While each
strategy has its pros and cons, many EA methods incorporate
more than one strategy to balance randomness, fitness, and
diversity.
The iteration of offspring generation, evaluation, and

selection continues until a user-set termination criterion is
met, at which point the molecules will have converged to a set
of locally optimized “fittest” compounds, substantially better
than the initial pool. With independent runs of the EA starting
from different sets of initial populations, the vast chemical
space can be efficiently explored. EAs have been widely used in

Table 2. Recent De Novo Drug Design Methods Using Evolutionary Algorithms

Method Ligand Construction Synthetic Accessibility Validation (method; target)

Dock_GA36 GA Torsion environment from
synthesizable database

In silico docking; protein ligand complexes from SB2012 testset,
SAR-CoV-2 Mpro

SECSE37 Rule-based/GA Retro-synthesis module In silico docking; phosphoglycerate dehydrogenase
EMGA38 Evolutionary Strategy/Transformer

ANN
SA scores In silico MD; SAR-CoV-2 Mpro

Steinmann et
al.39

Graph-based GA SA scores and filers In silico docking; chorismate mutase, β2AR, DDR1, β-
cyclodextrin

In vitro; SAR-CoV-2 Mpro

AutoGrow435 GA Reaction-based mutation In silico docking; poly(ADP-ribose) polymerase 1
MoleGear40 Graph-based EA None In silico docking/alignment; HIV-1 protease

Journal of Chemical Information and Modeling pubs.acs.org/jcim Review

https://doi.org/10.1021/acs.jcim.4c00247
J. Chem. Inf. Model. 2024, 64, 1794−1805

1797

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00247?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


de novo drug design over the past two decades. Here, we
summarize some recent EA methods to complement existing
reviews9,13,14 on this topic (Table 2).
3.1. Ligand Construction. A distinguishing aspect

between methods is molecular representation. The structure
of chemical entities resembles graphs in computer science,
naturally leading to a molecular graph representation, where
atoms and bonds correspond to nodes and edges. In contrast,
the simplified molecular input line entry specification
(SMILES) is a linear string representation that is derived
from the molecular graphs.41 The difference in molecular
representation is reflected in EA molecular construction
operations: Graph-based methods alter a graph representation
of the molecule,39,40 while SMILES-based methods modify a
string representation.35,37,38 An advantage of using SMILES
representation is rapid reaction-rule based modification
through SMILES arbitrary target specification (SMARTS), as
exemplified by Systemic Evolutionary Chemical Space Explorer
(SECSE)37 and AutoGrow4.35

The initial population is often randomly drawn from drug-
like libraries such as ZINC.35,39 Elend et al. trained a neural
language model on a subset of the ZINC database to generate
initial SMILES strings character by character.38 Dock_GA,
SECSE, and MoleGear are fragment-based methods. Dock_-
GA generates a fragment library with the same infrastructure as
de novo DOCK.23,36 SECSE proposed a fragment generation
algorithm that can enumerate up to twelve heavy atom
fragments and build up a collection containing 121 million
fragments as the starting point of the workflow.37 MoleGear
uses a fragment library generated from 1990 compounds
selected from the National Cancer Institute diversity set.40,42

Structural operators vary slightly between the methods.
Mutation is the most common operator that performs
structural transformations like ring-open, ring-closing, atom
insertion, or deletion, etc. In the Evolutionary Molecular
Generation Algorithm (EMGA) proposed by Elend et al., the
neural language model also serves as a mutation operator, and
it randomly deletes, adds, and replaces atoms in a SMILES.38

AutoGrow4 has a reaction-rule based mutation operator using
36 click-chemistry reactions from AutoClickChem,43 58
reactions published by Hartenfeller et al.,44 and any user-
defined sets.35 In comparison, SECSE has both a classical
mutation operator and a reaction operator. Elitism, as a feature
of GA, is also common among the methods. SECSE
introduced a graph-based deep learning module trained with
docked samples of the population and can subsequently assess
the quality of the rest of the population, speeding up the elite
selection.37 The fragment-based methods also have a growing
operator, similar to conventional fragment-based growing.
Crossover is not as frequently employed, possibly due to its
higher computational cost than other operators. Dock_GA has
a 3D crossover operator that constructs molecules in the
binding site environment.36 Besides the typical operators,
SECSE also has a bioisostere operator that allows the
interconversion of classical or nonclassical bioisosteric replace-
ments.37

Fitness assessment for SB-CADD EA methods need to be
fast since a large pool of molecules is proposed with every new
population. Besides docking, similarity and diversity scores are
also common fitness metrics. AutoGrow4 includes a diversity
score that measures a molecule’s uniqueness relative to the
others in the generation as an optional secondary metric.35

SECSE and MoleGear use similarity to reference known

binders as the fitness metric in a mode parallel to the docking
evaluation, therefore enabling ligand-based drug design as an
option.37,40 SA metrics are also sometimes included in addition
to the primary docking fitness score. SECSE includes a
retrosynthesis module in its fitness evaluation,37 while Elend et
al. and Steinmann et al. have an SA score component in their
fitness functions.38,39 Other properties like drug-likeness are
usually set as filters before docking,35,37 but there are
exceptions such as Elend et al. which includes the drug-
likeness and toxicity as weighted score terms in its fitness
function.38

3.2. Synthetic Accessibility. Because of the nature of EA,
it is harder to keep track of SA compared with other fragment-
based growing or merging methods. The mutation and the
crossover operators introduce complexity into the formation of
new ligands, making reaction-rule based solutions hard to
apply. Nevertheless, existing methods have incorporated
reaction rules into the mutation operator35 or as a separate
operator.37 Iterations of operations on a population also
require the SA consideration to be fast since numerous
molecules are assessed in the process. As a result, several
approaches make use of SA scores as the solution.38,39 SA
scores are metrics that measure the molecular complexity and
are able to rank or filter large collections of molecules in a
mere time.45,46 Retrosynthesis analysis is a more resource-
intensive way to evaluate SA and is often utilized in
postgeneration inspection.37 Although recent EA methods
consider SA in one or more of the above directions, it is not
uncommon to obtain ligands with poor SA scores or lengthy
synthetic routes, as brought up in several methods. Top
molecules proposed by SECSE, for example, were predicted to
be synthesizable within 15 steps.37 Such concerns directly
hinder the in vitro validation of the proposed molecules and
limit the methods’ applicability.
3.3. Validation. Molecular docking was extensively used in

the reviewed EA methods to report both the predicted binding
pose and the predicted binding energy of the proposed
molecules compared to a reference compound. The majority of
the methods was able to propose molecules with similar
predicted pose to the reference and better predicted binding
energies. Steinmann et al. also compared the method’s
performance to conventional high-throughput SBVS. All
molecules in the ZINC subset where the initial population
was sampled from were docked, and the top scores are
compared to that of the generated molecules. For the case of
DDR1 and β2AR, the reported methods found 1.9 times as
many molecules with a good docking score (<−9.0) relative to
known binders (−6.8/−6.9) by docking only 1.6 times as
many molecules compared to SBVS.39 Besides docking, some
methods also used MD simulation on a filtered list of top
molecules to predict the binding energies, which is computa-
tionally more demanding.38

In vitro validation of the proposed molecules is generally
lacking in these papers, most likely due to SA concerns. An
early version of the method by Steinmann et al. was applied to
SARS-CoV-2 Mpro in the COVID Moonshot project in 2020.47

One out of 10 submitted molecules proceeded to experimental
validation but was later shown to have low inhibition.39

4. MONTE CARLO METROPOLIS
Monte Carlo methods are a class of computational algorithms
that solve problems through iterative random sampling. It has
been extensively used in many optimization problems and
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sampling from probability distributions. The Metropolis
criterion, which decides if the new state of each iteration is
accepted or rejected, is often combined with the sampling.
Monte Carlo Metropolis (MCM) methods are far from
uncommon in CADD, with their utilization in fields ranging
from molecular docking to small molecule drug discovery. For
example, RosettaLigand has been a very successful example of
applying MCM to flexible ligand docking.48,49 The employ-
ment of MC methods in de novo drug design can be traced
back to 1991 in LEGEND,10 and the MCM concept has since
been incorporated into the drug design workflows repeatedly
during the 1990s.50 Yet at the time, most of these workflows
adopted an atom-based ligand construction model, which
suffered from exploding combinatorial search space con-
cerns.9,15 For two decades, as fragment-based methods become
more common and complement the shortcomings of early
atom-based approaches, MCM methods have been silent in de
novo drug design until recently.
In 2017, Oglic et al. designed a Metropolis-Hastings Markov

Chain MC (MCMC) method which is then updated in the
following year to perform active search in the chemical
space.15,51 With a moderately active parent compound,
candidates represented using vertex-labeled graphs are
generated by substitutions at specific sites. The proposal
generator includes various filters such as Lipinski’s rule and
prohibition of specific synthetically inaccessible substitutions.
The evaluation oracle performs rigid docking of a large number
of ligand conformations. Binary feedback is returned based on
a docking score threshold, and this feedback is incorporated in
the Metropolis-Hastings criteria. The method was tested
against integrin receptors that are important in idiopathic
pulmonary fibrosis. A known inhibitor was used as the parent
compound and, with constraints, defined the design space to
around 185,000 compounds. The method was able to recover
19 out of 26 known actives with predicted binding affinity
more favored than the parent compound. Although the result
is encouraging, the SA considerations during molecular
generation are weakly implemented, and the authors plan to
incorporate actual reaction information into the algorithm in
the future.
Xie et al. published an LB approach in 2021 that employs

Metropolis-Hastings MCMC and graph neural network

(GNN) to perform multiobjective drug discovery.52 Though
being a novel attempt to combine conventional algorithms
with machine learning tools, this approach named Markov
Molecular Sampling is however beyond the discussion of the
current review which focuses primarily on SB-CADD de novo
design methods.

5. MACHINE LEARNING
Deep learning (DL) is a subclass of ML that incorporates
multilayers of artificial neural networks (ANNs) to represent
data in a rather complex latent space. Like other de novo design
methods, DL methods need to solve the problems of molecular
generation, property prediction, and molecular optimization,
which are also the key differences between different DL
methods.53 The success of deep generative models in other
fields including natural language processing and computer
vision has inspired the utilization of these sophisticated models
in de novo drug design.
Molecular representation is an important aspect of DL de

novo design methods, as it decides how a molecule is
interpreted by the generative model. SMILES and graphs
account for most of the two-dimensional (2D) representations
used in the deep generative models in de novo drug design. Yet
incorporating protein−ligand interactions with 2D representa-
tions is challenging, and years of efforts have mostly been LB,
learning information primarily from known actives. Recently,
several SB-CADD DL methods have been published to take
advantage of the protein structures and build models trained
on generic or target-specific databases to learn the intrinsic
rules of protein−ligand interactions. Although some of these
SB-CADD methods still employ the 2D representations with
conformation generation processes to sample in the three-
dimensional (3D) space, others adopt a 3D generative model
where the configuration and conformation of a molecule are
sampled simultaneously inside a protein pocket. These 3D
generative models often need a 3D featurization for both the
ligand and the protein. Such featurization includes cubic grid-
based, Euclidean distance matrix (EDM)-based, and Cartesian
coordinate-based, which have been reviewed in detail before.16

Over the past decade, there has been an increasing interest
in DL methods, which can be seen by the soaring number of
papers. There has been plenty of discussion on DL de novo

Table 3. Recent Structure-Based Deep Learning De Novo Drug Design Approaches

Method
Ligand

Representation Molecular Generation Validation (method; target)

DiffSBDD54 3D coordinates Diffusion In silico docking; 100 proteins from CrossDocked2020 and 130 complexes from Binding
MOAD

RELATION55 3D property grids VAE/AAE In silico docking; protein kinase B alpha, CDK2
Ragoza et al.56 3D property grids VAE In silico docking; 10 random proteins from

CrossDocked2020 Mutation study, Shikimate kinase
DeepLigBuilder57 3D coordinates MPNN In silico docking; SARS-CoV-2 Mpro

SBMolGen58 SMILES RNN In silico FMO and MD; CDK2, EGFR, AA2AR, ADRB2
MolAICal59 SMILES/graphs Sequence-based/

GNN
In silico MD; glucagon receptor, SARS-CoV-2 Mpro

Xu et al.60 SMILES RNN In silico docking; mitogen-activated protein kinase 14
DEVELOP61 Graphs GNN, CNN In silico docking; menin-MLL
LiGANN62 3D property grids BicycleGAN In silico docking; delta opioid 7TM receptor, CHK1, TNNI3K, and IRAK-4 kinase
Armstrong et al.63 Graphs GCN, VAE In silico docking; protein−ligand complexes from scPDB
Grechishnikova et
al.64

SMILES Transformer In silico docking; Insulin-like growth factor 1 receptor, VEGFR2

cMolGPT65 SMILES Transformer In silico QSAR prediction; EGFR, HTR1A, S1PR1
Luo et al.66 3D coordinates GNN In silico Docking; 100 proteins from CrossDocked2020
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drug design in recent reviews, both LB and SB.9,16,53 For this
review, we focus specifically on the SB-CADD DL methods
(Table 3).
5.1. Ligand Construction. The methods summarized here

employ a variety of ANNs to generate ligands. The underlying
difference is ligand representation (Figure 3a). SMILES-based
methods generate strings character by character within a
chemical context. Recurrent neural network (RNN), a
sequence-based model commonly used in text generation
tasks, serves this purpose well and for many years has been
employed as the generative model in SMILES-based
methods.58,60 More recently, transformer-based approaches
have achieved success in many sequence processing tasks. The
self-attention mechanism of transformer allows long-range
dependencies, while also being faster than recurrent net-
works.67 Several groups have incorporated the transformer
model into structure-based drug design.64,65 Graph-based
methods represent atoms and bonds in nodes and edges,
intuitively leading to the utilization of graph neural networks
(GNNs) that process graph data.59,61,63 3D-based methods are
mostly cube grid-based, where the molecules are translated
into property grids such as elements, aromaticity, hydrogen
bond donors and acceptors, formal charge, etc. In these cases, a
variational autoencoder (VAE)55,56 or a generative adversarial
network (GAN)62 can perform the feature extraction and
generate latent vectors that correspond to 3D druglike
molecules. Then a decoder, usually a long short-term memory
network, is required to transform these vectors into readable
formats such as SMILES.55,62 For the same decoding problem,
Ragoza et al. implemented an atom fitting algorithm that
combines iterative atom detection with gradient descent to
deduce a 3D molecular structure from a density grid.56 Besides
grid-based featurization, other 3D-based methods adopt
Cartesian coordinate-based representation, which generates
rotationally and translationally invariant 3D embeddings that
lead to full and unambiguous 3D structures.54,57,66 DiffSBDD
implemented a diffusion model together with molecule
inpainting to generate structures within the molecular
context.54 DeepLigBuilder introduced a novel graph generative
model, consisting of a state encoder with Message Passing

Neural Network (MPNN) architecture and a policy network,
to iteratively generate valid 3D druglike structures.57 Luo et al.
used an autoregressive algorithm to sample atoms sequentially
from a changing probability density, leading to unambiguous
and multimodal ligand outputs.66

A significant difference between the methods is how the
protein information is incorporated into ligand generation, as
per the definition of SB. The methods reviewed here lie within
one of the two categories: generation conditioned on target
receptor and docking score backpropagation (Figure 3b). In
the first type, the receptor is transformed into constraints or
additional variables and integrated into the ligand generation
model. How the receptor is represented or interpreted differs
between methods, but a majority adopt a similar representation
as the ligand representations mentioned above, and several
methods encode the protein into constraint vectors via a
convolution neural network (CNN).56,60−62 DiffSBDD used
two strategies for protein conditioning: One considers the
protein as a fixed 3D context during denoising of the diffusion
model; the other learns the joint distribution of protein−ligand
complexes.54 RELATION extracted pharmacophore features
from crystal structures and the constraints were based on the
root-mean-square of the matched feature pair distance and the
number of matched pairs.55 Xu et al. transformed the binding
site with a coarse-grained strategy using the sorted eigenvalues
of the Coulomb matrix descriptor.60 Armstrong et al.
represented the binding site in a graph-theoretic manner and
trained their graph convolutional network (GCN) with EDM-
based representation.63 The second type of method utilizes a
common concept in DL called backpropagation to bias the
ligand generation through a docking-based reward function. A
Monte Carlo tree search (MCTS) can be combined into the
molecular generation to optimize any intermediate state while
guided by docking score, as done by DeepLigBuilder57 and
SBMolGen.58 Apart from the two categories, MolAICal’s
generative model involves no protein information and outputs
fragments which then undergo classical SB-GA to generate
complete ligands.59 The transformer proposed by Grechishni-
kova et al. considers the drug design problem as a translation

Figure 3. (a) Common molecular representations and deep learning models utilized in structure-based deep learning de novo design approaches.
(b) Protein information can be included in ligand generation in two ways: conditioned generation and docking-based backpropagation.
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from the amino acid sequence to SMILES and therefore needs
only the protein sequence as the input.64

DL methods generate molecules through sampling in the
latent space learned by the model. Unlike the real chemical
space which is discrete, the latent space contains infinite
points. DL generative models therefore can output an
enormous number of molecules after training. These outputs
need to be filtered and evaluated in a fast manner. Validity is a
common metric to check in DL methods due to the
continuous nature of the latent space, usually with
cheminformatic toolkits like RDKit. Today most models can
reach 80−90% validity by training on large chemical databases.
Other filters and metrics include novelty, uniqueness, drug-
likeness, and SA, as in conventional de novo design methods.
Affinity prediction after molecular docking of the filtered
molecules can be done with DL-based scoring functions
trained with generic protein complex databases, as seen in
several methods.56,59,63 To facilitate sampling and improve the
quality of final outputs, RELATION employed Bayesian
optimization with docking scores or quantitative structure−
activity relationship (QSAR) scores and greatly improved the
performance.55

5.2. Synthetic Accessibility. Despite the popularity, DL
methods still face SA challenges. In fact, few DL methods
consider SA in their protocol design and validation. It is
somewhat understandable since layers of neural networks form
a “black box” that makes it hard to incorporate SA measures.
Some methods apply SA scores as a filter or metric to optimize
during molecular generation.58,63 Most methods set the
training data set to real molecules or drugs, expecting that
SA can be a feature inherently learned. Another potential
solution is multiobjective optimization. For most current deep
generative models, predicted binding affinity is the primary and
only objective to optimize during molecular generation. A
multiobjective model would be able to optimize molecules
based on several metrics other than predicted binding affinity,
for example, drug-likeness and SA scores. Such multiobjective
models have been realized by Armstrong et al. and also
mentioned in the future work of several other methods.55,58,63

5.3. Validation. DL methods are black boxes. It is
therefore important to test how each part of the model
contributes to the overall performance during benchmarking.
In SB-CADD de novo design, protein structural information is
incorporated in many ways as discussed above. How much did
the protein participate in molecular generation and did it bias
the process as anticipated? This was investigated by several
methods, especially those with a model conditioned on
receptors. These methods built uncontrolled models that do
not have access to protein information and compared the
performance to the controlled models, usually by looking at
recovery rate or similarity to known binders.60,61 Ragoza et al.
answered these questions by evaluating the effect of mutation
at the pocket on the outputs. For this purpose, shikimate
kinase was mutated at interacting and noninteracting residues.
The generative model responded to the pocket variants and
generated molecules with corresponding changes.56 Methods
that used docking-based MCTS molecular optimization
compared the performance with and without MCTS.57,58

Some methods also looked at the effect of including known
binders, either during training or as part of the input, where the
generation process is much like lead optimization.57,60 Ragoza
et al. designed a bias-toward-reference factor in their method
that switches the mode between de novo design and lead

optimization. In their benchmark, the latent space was
interpolated by varying the bias factor during sampling,
producing a series of ligands from novel ones to analogs.56

Further evaluation of DL methods proceeds analogously to
conventional methods. In some cases where a 3D conformer
can be directly generated, the quality of the generated pose can
be compared with a docked pose. Ragoza et al., for example,
compared the poses before and after minimization, and less
than 20% of the generated molecules moved more than 2 Å
RMSD, indicating that the majority of the molecules has a
stable conformation in the pocket even before minimization.56

Pharmacophore recapture is also a common evaluation,
especially for the cubic grid-based methods where properties
are specifically encoded into molecular generation.55,57,61

Affinity prediction is typically done by molecular docking or
MD simulation. The baseline performance is usually random
decoys from the training database, and known binders are the
next level of comparison. Most methods are able to generate
molecules predicted to be as potent as known binders, and
some are able to propose even better molecules. More than
15% of the generated molecules by Ragoza et al. have better
predicted affinity than the reference molecules.56 SBMolGen
was able to generate molecules with better predicted binding
affinity than known actives for cyclin-dependent kinases 2
(CDK2), epidermal growth factor receptor erbB1 (EGFR),
adenosine A2a receptor (AA2AR), and beta-2 adrenergic
receptor (ADRB2).58 One-third of the molecules generated by
DEVELOP and targeting menin and mixed lineage leukemia
(MLL) fusion proteins have a predicted binding affinity greater
or equal to the ground truth molecules.61 The method
proposed by Luo et al. generated on average more than 29% of
molecules with higher predicted affinity than reference ligands
over 100 proteins from the CrossDock202068 data set. Their
method was also successful in linker prediction, recovering
48% of the test molecules.66

6. CONCLUSION
Since the rise of computer-based de novo design in the 1990s,
methods in the field have evolved rapidly. De novo design has
revolutionized drug discovery by developing in silico heuristics
to speed up searching in the vast chemical space.50 The
advantages of de novo design become more obvious when
fragment-based libraries further speed up search. The relevance
of SB-CADD de novo design is increasing as more and more
crystal structures and homology models are available. The
direct inclusion of target information in the search process
makes the proposed molecules and their predicted interactions
more exact and specific. As docking methods and computer
power continue to improve, protein flexibility is not as
obstructive as it once was, and new methods in the field all are
able to address this. By providing novel scaffolds and
constructive structural ideas, de novo design has aided
medicinal chemists in developing patentable leads with desired
properties.19 A great example of application is COVID-19,
where de novo drug design methods made a rapid response to
the newly discovered disease, yielding numerous novel drug
molecules and reducing the time of development for treatment.
This topic has been extensively reviewed elsewhere,69 and
some of the methods that targeted COVID-19 are also
included in this review.36,38,39,57,59

Despite the advances in the field, there are still challenges
yet to be solved. Scoring remains a limiting factor for SB-
CADD methods, with SB-CADD de novo design relying heavily
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on the performance of scoring functions. Conventional scoring
methods behave poorly in screening, giving a low hit rate and
many false positives.17,70 ML scoring functions are limited by
the scope of their training sets, making scoring novel targets
with few known binders unreliable.18 Quantitatively assessing
the protein−ligand interactions in an accurate and fast manner
is critical for the success of these methods. Iterative searching,
scoring, and optimization in a vast library require a balance
between accuracy and computing time. It can thus be foreseen
that future advances in scoring functions will effectively
improve the performance of SB-CADD de novo design
methods.
SA is another common issue. Fragment-based methods try

to overcome the problem by using druglike fragments and
reaction-rule based molecular generation, but the SA
diminishes during the process of iterative optimization.
Other methods employ some sort of SA scores, sometimes
as metrics to optimize and most times as filters. These scores
measure the molecular complexity, usually calculated from a
fixed set of molecules, and hardly agree with each other or the
medicinal chemists. DL methods have even more concerns
about SA, despite their popularity. The synthesizability of the
training data set restricts the SA of the output molecules from
the generative models, and SA is usually not an objective
during training.71 This also calls for multiobjective optimiza-
tion in the next stage of DL methods, where binding affinity is
not the only metric to optimize, and more properties bias the
molecular generation toward more druglike and synthetically
accessible molecules.

From the reviewed methods, we also observed a lack of
standardized benchmark workflow. A de novo design method
should validate its proposed molecules experimentally, but
such validation is rarely performed in these methods, partly
because of the SA concerns mentioned above. Even in silico,
there is no unified benchmark strategy in the field. Common
evaluation strategies include structural and binding mode
similarity to known binders, predicted binding affinities
compared to known binders or random decoys, novelty and
diversity (and validity for DL methods), and various drug-
likeness metrics. The reviewed methods adopt one or more of
these strategies, validating their proposed framework at
different levels, making it difficult to compare the performance
of different methods. With the rapid advance in the field and
the emergence of numerous novel approaches, future methods
should have more comprehensive benchmarks to convince the
scientific public. Alternatively, public benchmarking exercises
like Critical Assessment of Computational Hit-finding Experi-
ments (CACHE) provide the community with opportunities
to test the computational methods experimentally and under a
standardized setting.72 Results from these exercises will be
collected and released to the public, serving as valuable
resources to guide further advancement. As the community
grows with the abundance of available structures, we hope
more SB-CADD de novo design methods can be adopted to
facilitate future drug development.
Table 4 contains data and software availability.

Table 4. Data and Software Availability

Method License Source

LigBuilder V320 Free for all http://repharma.pku.edu.cn/ligbuilder3/
NAOMInext21 Free for academic http://uhh.de/naomi
PINGUI22 Web application www.kolblab.org/scubidoo/pingui
de novo DOCK23 Free for academic https://dock.compbio.ucsf.edu/
AutoT&T 224 300 USD for academic; http://www.sioc-ccbg.ac.cn/software/att2/

3000 USD for industrial
OpenGrowth25 Free for all http://opengrowth.sourceforge.net/
Frag4Lead27 Not public N/A
LeadOp+R28 Not public N/A
AutoCouple29 Unknown Scripts available at https://github.com/Caflisch-Group/AutoCouple_Python-based
Dock_GA36 Free for academic https://dock.compbio.ucsf.edu/
SECSE37 Open source https://github.com/KeenThera/SECSE
EMGA38 Not public N/A
Steinmann et al.39 Open source https://github.com/cstein/GB-GA/tree/feature-glide_docking
AutoGrow435 Open source https://durrantlab.pitt.edu/autogrow4/
MoleGear40 Not public N/A
Oglic et al.15 Not public N/A
DiffSBDD54 Open source https://github.com/arneschneuing/DiffSBDD
RELATION55 Unknown https://github.com/micahwang/RELATION
Ragoza et al.56 Open source https://github.com/mattragoza/liGAN
DeepLigBuilder57 Not public N/A
SBMolGen58 Open source https://github.com/clinfo/SBMolGen
MolAICal59 Free for academic https://molaical.github.io/
Xu et al.60 Not public N/A
DEVELOP61 Open source https://github.com/oxpig/DEVELOP
LiGANN62 Web application https://playmolecule.com/LiGANN/
Armstrong et al.63 Not public N/A
Grechishnikova et al.64 Unknown https://github.com/dariagrechishnikova/molecule_structure_generation
cMolGPT65 Unknown https://github.com/VV123/cMolGPT
Luo et al.66 Open source https://github.com/luost26/3D-Generative-SBDD
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