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SUMMARY Acidocalcisomes are organelles conserved during evolution and closely 
related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-
like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All 
these organelles have in common their acidity and high content of polyphosphate and 
calcium. They are characterized by a variety of functions from storage of phosphorus and 
calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. 
They interact with other organelles through membrane contact sites or by fusion, and 
have several enzymes, pumps, transporters, and channels.

KEYWORDS acidocalcisome, blood clotting, calcium, dense granules, polyphosphate

INTRODUCTION

A cidocalcisomes (ACs) are specialized organelles found in a variety of organisms and 
characterized by their acidic pH and high concentrations of calcium and polyphos­

phate (polyP). Initially identified in trypanosomatids, they have been related to the 
metachromatic or volutin granules, first reported in bacteria (1), and to the lysosome-
related organelles (LROs) present in animal cells (2). These connections suggest that 
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storage of polyP and calcium in acidocalcisomes or acidocalcisome-like organelles is a 
conserved property of both prokaryotes and eukaryotes.

A combination of microscopy techniques and biochemical analyses was initially 
used to identify and characterize these organelles in trypanosomatid parasites (3, 4). 
These were found to have a low pH sustained by a bafilomycin-sensitive proton pump 
(V-H+-ATPase), and high calcium, which was taken up by a P-type Ca2+-ATPase (4). 
X-ray microanalyses (5) showed that the organelles corresponded to the “inclusion 
vacuoles” (6) or “dense granules” (7, 8), previously identified to possess large quanti­
ties of phosphorus and cations in different trypanosomatids. Later work found that 
another proton pump, a vacuolar proton pyrophosphatase, V-H+-PPase, was also present 
in these trypanosomatid organelles (9) and could be used as a suitable marker for 
their isolation (10). 31P nuclear magnetic resonance (NMR) (11, 12) and biochemical 
analyses (13) uncovered the presence of large amounts of polyP. In the meantime, 
investigation of other cells known to possess dense granules or a V-H+-PPase led to the 
discovery of similar organelles in other eukaryotic supergroups besides those belonging 
to the Discoba (trypanosomatids) (14–16), like Amoebozoa (Dictyostellium discoideum) 
(17), Archaeplastida (Chlamydomonas reinardtii) (18), Stramenopila-Alveolata-Rizaria [like 
Toxoplasma gondii (19), Plasmodium spp. (20), and Eimeria spp. (21)], and Opisthokonta 
{including sea urchins (22), insects (23), and humans [platelets (24) and mast cells (25)]}.

Finally, proteomic analyses of trypanosomatid acidocalcisomes allowed for the 
identification of numerous transporters, pumps and channels, and some enzymes that 
made these organelles so peculiar, and defined the mechanisms they use for Ca2+ 

signaling, synthesis, and degradation of polyP, phosphate (Pi) release, and accumulation 
of organic and inorganic cations (26). As expected, it was found that acidocalcisomes and 
acidocalcisome-like organelles of different species have distinct biochemical composi­
tions, but all have in common the storage of polyP and calcium. The organelle is 
probably the earliest acidic calcium store that appeared during evolution (27). The study 
of acidocalcisomes by different groups has shed light on the important roles that these 
organelles play in cellular processes (28), and these will be the subject of this review.

PHYLOGENETIC DISTRIBUTION OF ACIDOCALCISOMES

The calcium and polyP storage capacity of acidocalcisomes is also present in the 
prokaryotic subcellular compartments known as polyP granules. These granules were 
reported by the end of the 19th century and named metachromatic (1) or volutin 
(29) granules. These names represented their property of staining red or purple when 
treated with toluidine blue (metachromatic granules) and the fact that they were first 
detected in Spirillum volutans (volutin granules). Staining with toluidine blue was applied 
to numerous protists that were then reported to have volutin granules, like yeasts (30, 
31) and trypanosomatids (32). The finding that the number of granules within the yeast 
vacuoles increased when polyP increased led to a change in their name to polyP granules 
(30). Both bacteria (1, 29) and archaea (33, 34) possess polyP granules.

Early reports suggested that bacterial polyP granules were surrounded by a limiting 
membrane (35), but a membrane was not detected in other bacteria with current 
microscopy techniques, and it has been suggested that they resemble membrane-less 
compartments arising by liquid-liquid phase separation (36, 37). In this regard, polyP 
has been shown to induce liquid phase separation of proteins (38). However, some 
bacteria, like Agrobacterium tumefaciens (39) and Rhodospirillum rubrum (40), have 
internal membrane-bound vesicles as detected by electron microscopy (EM) of intact 
bacteria and subcellular fractions. Vesicles were also found in A. tumefaciens after they 
were snap frozen in living cells and then fractured and etched (QFDEEM) (41). Some 
of these vesicles, which are also detected by staining with dyes that accumulate in 
acidic compartments (cycloprodigiosin, lysosensor DND 167), are labeled with antibodies 
against the V-H+-PPase, as determined by immunofluorescence and electron microscopy 
analyses (39, 40). Subcellular fractionation found co-localization of the V-H+-PPase 
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activity with polyP as determined by biochemical methods, suggesting that they were 
acidocalcisome-like organelles (39, 40).

More recent work in A. tumefaciens during different phases of growth proposed that 
acidocalcisomes and polyP granules are different subcellular structures (42). However, 
some contradictions were reported. Globular dark structures, detected by bright 
field microscopy, were shown to co-localize with either 4′,6-diamidino-2-phenylindole 
(DAPI)-fluorescent foci (polyP granules) [Fig. 4 of reference (42)] or the cell pole-located 
V-H+-PPase-GFP fluorescence [Fig. 5D and E of reference (42)], or with MitoTracker [Fig. 
5B of reference (42)], used to detect acidocalcisomes, supporting that they represent the 
same structures. When the co-localization of DAPI and tagged V-H+-PPase was investiga­
ted, the authors found higher expression of the V-H+-PPase tagged with GFP in vesicles 
during the late stationary phase when DAPI-stainable polyP was rarely present. In the 
rare cases when both were detected, they were located closely together (42). DAPI 
cannot stain very short polyP (43, 44), and some acidocalcisomes are known to be rich 
in this type of polyP [tripolyphosphate (polyP3), polyP4, and polyP5] (11), which could 
explain the lack of detection of DAPI-positive vesicles in late stationary phase. It would 
be interesting to investigate whether this could be the reason for the apparent lack of 
detection of co-localization of both the V-H+-PPase and polyP in some cases.

Interestingly, sulfide-oxidizing bacteria of the genus Beggiatoa accumulate polyP and 
calcium in acidocalcisome-like inclusions surrounded by a lipid layer, although they are 
not notably acidic (45).

Acidocalcisomes with characteristics similar to those found initially in Trypanosoma 
brucei (4) and Trypanosoma cruzi (3) were identified in all trypanosomatids investigated, 
including digenetic Leishmania mexicana, Leishmania donovani (46, 47), Trypanosoma 
evansi (48), and Phytomonas francai (16), as well as in monogenetic trypanosomatids (49) 
and Naegleria gruberi (41), which also belong to the Discoba “supergroup” of eukaryotes.

Most other major supergroups of eukaryotes have species containing acidocalci­
somes. One of the first organisms investigated was Toxoplasma gondii (19), which 
belongs to the Stramenopila-Alveolata-Rizaria supergroup. These acidic Ca2+ stores 
were biochemically characterized (19). A V-H+-PPase was identified (50) and shown 
to co-localize with a Ca2+-ATPase (51). The V-H+-PPase was needed for polyP storage 
(52). The organelles were isolated (53) and were shown to transport Ca2+ and protons 
(54). Other Alveolata members such Plasmodium falciparum, (55), Plasmodium berghei 
(20), and Eimeria spp. (21) also possess acidocalcisomes. The presence of polyP in the 
acidocalcisome-like organelles of ciliates has not been investigated (56, 57).

Within Archaeplastida, which includes algae and plants, the green alga Chlamydo­
monas reinhardtii was known to possess polyP granules within “acidic vacuoles” (58) 
and a protein that reacted with antibodies against a plant V-H+-PPase and localized 
to contractile vacuoles, the Golgi complex, and “intermediate-sized vesicles” (59). The 
measurement of V-H+-PPase activity, which co-localized with a V-H+-ATPase in vacuoles 
containing polyP determined that these acidic vacuoles or intermediate-sized vesicles 
were acidocalcisomes (18). Interestingly, although the vacuoles of higher plants also 
possess a V-H+-PPase and a V-H+-ATPase and several transporters with orthologs present 
in acidocalcisomes of several species, efforts to find polyP in higher plants have been 
unsuccessful (60). Other species of Chlamydomonas (41) and the green algae Dunaliella 
salina (61) and Desmodesmus sp. (62) possess polyP in acidic vacuoles compatible with 
acidocalcisomes. The red alga Cyanidioschyzon merolae was found to possess polyP in 
vacuoles with morphology similar to that of acidocalcisomes (63). These were isolated 
using iodixanol gradient centrifugation and shown to contain several pumps (V-H+-
ATPase and V-H+-PPase) and transporters (for Zn2+ and for Fe2+/Mn2+) also present in 
trypanosomatid acidocalcisomes (63).

The supergroup Amoebozoa includes Dictyostelium discoideum, which was known to 
possess “mass-dense granules” rich in phosphorus and calcium (64, 65). Mass-dense 
granules have polyP, a V-H+-ATPase, and a Ca2+-ATPase (Pat1), as occurs with other 
acidocalcisomes, and a pyrophosphatase with similarities to the V-H+-PPase (17). In 
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addition, a membrane-bound pyrophosphatase had been described before in D. 
discoideum (66). A protein was detected with heterologous antibodies against the 
plant V-H+-PPase. However, the pyrophosphatase activity was not completely inhibited 
by the inhibitors aminomethylenediphosphonate (AMDP) and imidodiphosphate (IDP), 
and no PPi-driven proton transport was reported (17), suggesting that this was not a 
typical V-H+-PPase, in agreement with genetic evidence of the absence of the gene in 
the genome of D. discoideum (41). Another amoebozoan, Entamoeba histolytica, also 
possesses electron-dense granules rich in Pi, PPi, and cations (Na+, Mg2+, K+, Ca2+, and 
Fe2+) (67), but the presence of polyP in these acidocalcisome-like organelles has not been 
investigated.

The supergroup Opisthokonta includes fungi and animals and has species possessing 
acidocalcisome-like organelles. The yeast vacuole has been proposed as an acidocalci­
some-like organelle (68) as it is acidic (it has a V-H+-ATPase but not a V-H+-PPase), rich 
in polyP and cations, and has several transporters in common with those of trypanoso­
matid acidocalcisomes. Other fungi, such as Candida spp. (69, 70), Neurospora crassa 
(71), and arbuscular mycorrhizal fungi (72, 73), have a vacuolar compartment in the 
form of small vesicles or tubules rich in polyP and with similarities to acidocalcisomes. 
Acidocalcisome-like vacuoles were also found in the yolk of insect (23) and chicken (74) 
eggs and in sea urchin eggs (22). In all these cases, these vacuoles are acidic and rich in 
polyP and calcium. In humans, it was found that some lysosome-related organelles such 
as platelet-dense granules (24) and mast cell granules (25) are acidic, rich in Pi, PPi, polyP, 
and calcium and similar to acidocalcisomes.

The evidence reported indicates that acidocalcisomes and acidocalcisome-like 
vacuoles are widely distributed and reveals the importance of polyP during evolution.

STRUCTURAL CHARACTERISTICS OF ACIDOCALCISOMES

Acidocalcisomes were first identified in trypanosomes by their staining with acridine 
orange that was prevented by the V-H+-ATPase inhibitor bafilomycin A1 or the K+/H+ 

exchanger nigericin (3, 4). Later work (5, 14) demonstrated that the acidic vacuoles of 
Trypanosoma cruzi and T. brucei corresponded to the electron-dense vacuoles detected 
by electron microscopy (Fig. 1A through C) that, when analyzed by X-ray microanalyses, 
were found to be rich in cations (Ca2+, Mg2+, K+, Zn2+, and Fe2+), oxygen, and phospho­
rus (7) (Fig. 1D). Similar electron-dense compartments had been described before in 
Trypanosoma cyclops (8) and Leishmania major (6).

The use of electron microscopy led to the identification of the acidocalcisomes by 
conventional electron microscopy as “empty” vacuoles sometimes surrounded by a 
peripheral dense region or showing interior electron-dense granules (75) (Fig. 1A and B). 
The appearance of empty vacuoles is due to the procedure applied for electron micro­
scopy preparation that depletes their content. By cryo-electron microscopy, however, 
acidocalcisomes appear as electron-dense spheres (5). Depositing these protists on a 
grid, letting them dry, and observing them by EM also allow their detection in intact form 
as electron dense spheres (5) (Fig. 1C). Their size has been measured in different trypano­
somatids (16, 49, 75) and varies from ~50 to ~250 nm in diameter reaching values 
of ~600 nm in diameter in Leishmania spp. (76). They occupy ~2% of the total cell volume 
(49). Some acidocalcisomes are elongated, like in Phytomonas spp. (16, 49), or pleomor­
phic, such as those in Leishmania mexicana amazonensis, grown in a deficient culture 
medium (76). There is no apparent specific distribution in the cells and their numbers are 
variable. In T. brucei bloodstream forms, there are about 40 acidocalcisomes per cell at 
the start of the cell cycle and their numbers increase to ~56 prior to cell division (77).

The ultrastructural analysis of acidocalcisomes of the alga Chlamydomonas reinhardtii 
and other protists was undertaken using living cells snap-frozen at liquid helium 
temperatures, subjected to freeze-fracture, deep etching, and platinum rotary-replica­
tion, and observed by transmission electron microscopy (41). This technique allowed the 
identification of a large population of intramembranous particles in the P-fracture 
concave face of the membrane (contiguous to the cytoplasm) and attributed them to 
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intramembrane proteins (Fig. 2). The convex E-fracture face (contiguous to the lumen) 
was smooth or rugose, depending on its exposure to etching. An interior granule, 
attributed to polyP in a gel configuration, was detected in stationary phase cells or in 
those submitted to nitrogen (N)-starvation (41) (Fig. 2). The authors also investigated the 
distribution of V-H+-PPase-encoding genes in eukaryotes, finding three clades and that 
clade-1 proteins (K+-stimulated) are acidocalcisome associated (41).

Acidocalcisomes have also been analyzed by cryofixation of cells and scanning 
transmission electron microscopy tomography combined with elemental mapping 
using a high-performance setup of X-ray detectors (78). The work reported that the 
elemental distribution was not homogenous but rather organized in nanodomains 
within the organelles with cationic elements displaying a self-excluding pattern (78).

In summary, the structural characteristics of acidocalcisomes are quite peculiar and 
different from any other organelle.

FIG 1 Ultrastructure of acidocalcisomes. (A and B) Thin sections of Leishmania amazonensis (A) and Herpetomonas anglusteri (B) submitted to conventional 

transmission electron microscopy. Acidocalcisomes are partially filled with electron-dense material (“granule”) (arrows) or appear empty or with an electron-

dense periphery (arrowheads). Bars are 280 nm (A) or 130 nm (B). (C) transmission electron microscopy of whole bloodstream trypomastigotes of T. brucei. The 

arrowheads indicate acidocalcisomes. Bar, 2 µm. (D) X-ray microanalysis spectrum of dense organelles in whole bloodstream trypomastigotes. (Panels A and B 

were reproduced from reference 49 with permission from Elsevier; panels C and D were reproduced from reference 14 with permission from Taylor & Francis 

Informa UK Ltd.) ER, endoplasmic reticulum; G, glycosome; M, mitochondrion.
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CHEMICAL COMPOSITION OF ACIDOCALCISOMES

The acidocalcisome matrix is rich in Pi, PPi, and polyP complexed with organic and 
inorganic cations and has a few enzymes. The phosphorus compounds have been 
identified by 31P NMR of isolated organelles from different trypanosomatids (11), and 
apicomplexan (79) parasites, or by labeling some of these cells with 32Pi (13). Very 
short-chain polyP (polyP3, PolyP4, and polyP5) was detected by 31P NMR in trypanoso­
matids (11). The results suggested that the average chain length of polyP is of ~3.2 
phosphates. Longer-chain polyP was more difficult to identify. However, using polyacry­
lamide gel electrophoresis analyses of isolated acidocalcisomes from T. brucei it was 
possible to also identify the presence of short-chain (<300 mer) and long-chain (>300–
1,000 mer) polyP (80).

The presence of organic cations, mainly basic amino acids like arginine, lysine, and 
ornithine, was demonstrated in acidocalcisomes from T. cruzi epimastigotes, where 
they represent about 90% of the total amino acid pool (81). Although the presence 
of polyamines has not been reported in acidocalcisomes of trypanosomatids, they 

FIG 2 Cross-fractured acidocalcisomes. Two acidocalcisomes contiguous to one another from log phase C. reinhardtii N-starved for 24 h. The fracture plane 

exposed the P-face of the right organelle and the E-face of the left organelle. A large population of intramembranous particles is in the P-face of the membrane. 

The convex E-fracture face is rugose. “Rim” denotes the outer edge. Bar, 100 nm. P, P-fracture; E, E-fracture; g, polyphosphate granule. (Reproduced from reference 

41 with permission from Elsevier.)
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possess polyamine transporters (26) as the acidocalcisome-like vacuoles of Saccharomy­
ces cerevisiae, which are rich in these cationic compounds (82, 83).

Inorganic cations (Ca2+, Mg2+, Na+, K+, and Zn2+) are also abundant in acidocalcisomes 
of most species investigated by X-ray microanalysis methods. Chlamydomonas reinhardtii 
acidocalcisomes are also rich in copper (84), manganese (85), and iron (86), while iron has 
been found in acidocalcisomes of Phytomonas spp., T. cruzi, and other trypanosomatids 
(16, 49, 75, 76). Some metals, like manganese, iron, and copper, could be present in 
smaller amounts in some organisms, below the detection limit of X-ray microanalysis, 
as these cells possess transporters for them. Liquid chromatography (LC) studies of 
the acidocalcisome-like vacuoles of yeast have demonstrated that most of the iron, 
zinc, and manganese (and some copper) are coordinated to polyP chains (87). The 
results indicated that these metals are present in vacuoles in low-molecular-mass forms 
that migrate according to masses ranging from 500 to 10,000 Da. The observed LC 
peaks comigrated with phosphorus, supporting the presence of metal-polyP complexes. 
Treatment with polyphosphatase disrupted these complexes. In some cases, the metals 
comigrated with each other, suggesting that multiple metals either bind to the same 
chain or to different chains of about the same length. The length distribution of polyP 
chains in the samples was of chains of 6–20 units long, suggesting that these lengths 
were either especially stable or produced at especially high rates. The authors suggested 
that these preferences must reflect the steady-state distribution resulting from opposing 
polyP synthesis and degradation processes or that metals may also preferentially bind to 
and/or stabilize chains of specific lengths (87).

Isolated acidocalcisomes from different trypanosomatids (T. brucei, T. cruzi, and 
Leishmania major) were also studied by magic-angle spinning 31P NMR spectroscopy 
and resulted in the detection of condensed phosphates with the dominant presence of 
polyP3 and low abundance of long-chain polyP (12).

Lipid analysis of highly purified acidocalcisomes from T. cruzi (88) showed 
very low amounts of 3β-hydroxysterols. Alkylacyl phosphatidylinositol (16:0/18:2), 
diacyl phosphatidylinositol (18:0/18:2), diacyl phosphatidylcholine (16:0/18:2; 16:1/18:2; 
16:2/18:2; 18:1/18:2, and 18:2/18:2), and diacyl phosphatidylethanolamine (16:0/18:2 
and 16:1/18:2) were identified by electrospray ionization-mass spectrometry (88). A 
glycoinositolphospholipid (GIPL) was also detected with a structure apparently different 
from the GIPL found in microsomal fractions (88).

Proteomic analysis of T. brucei acidocalcisomes (26) and N-terminal or C-terminal 
tagging of proteins by the TrypTag.org project (89, 90) were able to identify more 
than 30 proteins. The acidocalcisome localization was validated for some of them by 
immunofluorescence co-localization with the V-H+-PPase (Table 1; Fig. 3). Figure 4 shows 
the scheme of a T. brucei acidocalcisome.

T. cruzi has orthologs to most acidocalcisome proteins of T. brucei, and their localiza­
tion was in part determined by proteomic analysis (103). Co-localization studies valida­
ted some of them. A few proteins with no acidocalcisome orthologs in T. brucei have also 
been found in acidocalcisomes of T. cruzi (Table 2).

Proteomic analysis of C. merolae acidocalcisomes, then called “polyP vacuoles,” 
identified several orthologs to proteins present in acidocalcisomes of T. brucei, like 
vacuolar H+-ATPase subunits, vacuolar H+-PPase (CMO102C), endopolyphosphatase 
(CMG087C), acid phosphatase (CM7279C), zinc transporter (CMF058C), vacuolar iron 
transporter (CMT466C), and vacuolar transporter chaperone 1 (CMP062C) (63). Antibod­
ies against an M13 family metallopeptidase (CMP249C) or against C-terminal HA-tagged 
o-methyltransferase (CMT369C), ABC transporter (CMS401C), and prenylated Rab 
receptor (CMJ260C) co-localized with the vacuolar H+-ATPase to these vacuoles, as 
detected by immunofluorescence analyses (63).

Early work on C. reinhardtii acidocalcisomes reported the isolation of the then called 
“polyphosphate bodies” with detection of PPi and polyP using 31P NMR, and phosphorus, 
magnesium, and calcium, using X-ray microanalysis (58). A PPase activity was also 
measured in microsomal fractions, and antibodies against the plant V-H+-PPase localized 
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TABLE 1 Acidocalcisome localization of T. brucei proteins, validated by marker co-localization

Gene Name TMDd MWe References

Tb927.11.11160 Phosphate transporter 91 (fragment) (PHO91) 8 81.451 Huang et al. (26)

Billington et al. (89)a

Tb927.9.10340 Polyamine transporter 1 11 54.065 Huang et al. (26)

Tb927.3.800 Vacuolar iron transporter 3 30.573 Huang et al. (26)

Billington et al. (89)a

Tb927.4.4960 Zn2+ transporter

(ZnT1)

5 50.697 Huang et al. (26)

Tb927.8.7460 Zn2+ transporter

(ZnT2)

5 50.823 Billington et al. (89)a

Tb927.9.5490 Cation transporter (Mg2+) 1 75.937 Billington et al. (89)a

Tb927.5.1260 Sulfate transporter 11 62.563 Billington et al. (89)a

Tb927.11.16630 Major facilitator superfamily MFS,b nodulin-like 14 74.876 Billington et al. (89)a

Tb927.11.12270 MFS, drug resistance protein 10 53.057 Billington et al. (89)a

Tb927.10.12400 Multidrug and Toxic extrusion protein 11 51.410 Billington et al. (89)a

Tb927.7.3900 Vacuolar transporter chaperone 1 3 19.768 Fang et al. (91)

Tb927.11.12220 Vacuolar transporter chaperone 4 2 91.362 Lander et al. (92)

Ulrich et al. (93)

Huang et al. (26)

Billington et al. (89)a

Tb927.11.1260 Cu-ATPase (ATP7) 8 102.336 Isah et al. (94); Paul et al. (95)

Billington et al. (89)a

Tb927.8.1160 Ca2+-ATPase (PMC1) 10 121.242 Luo et al. (96)

Tb927.4.4380 Vacuolar H+-PPase 1 16 (SP) 85.936 Rodrigues et al. (14)

Billington et al. (89)a

Tb927.8.7980 Vacuolar H+-PPase 2 16 86.004 Rodrigues et al. (14)

Billington et al. (89)a

Tb927.5.1300 Vacuolar H+-ATPase (subunit a) 6 89.631 Vercesi et al. (4)

Huang et al. (26)

Tb927.5.550 Vacuolar H+-ATPase (subunit D) – 42.849 Vercesi et al.(4)

Huang et al. (26)

Tb927.8.2310 Vacuolar H+-ATPase (subunit G) – 12.749 Vercesi et al. (4)

Billington et al. (89)a

Tb927.4.1080 Vacuolar H+-ATPase (subunit A) – 67.750 Vercesi et al. (4)

Billington et al. (89)a

Tb927.11.11690 Vacuolar H+-ATPase (subunit B) – 55.620 Vercesi et al. (4)

Billington et al. (89)a

Tb927.8.2770 Inositol trisphosphate receptor 5 342.483 Huang et al. (97)

Billington et al. (89)a

Tb927.11.12490 Potassium channel (IRK) 3 61.904 Steinmann et al. (98)

Billington et al. (89)a

Tb927.11.7080 Vacuolar soluble pyrophosphatase – 47.297 Lemercier et al. (99)

Huang et al. (26)

Tb927.10.7020 Acid phosphatase – 49.918 Huang et al. (26)

Tb927.6.4630 Kinetoplastid-specific phosphoprotein phosphatase (Ppn2) 1 39.849 Huang et al. (26)

Billington et al. (89)a

Tb927.11.10650 AP-3c β3 subunit – 100.360 Huang et al. (100)

Tb927.5.3610 AP-3 δ subunit 1 125.404 Huang et al. (100)

Tb927.10.10800 Palmitoyl acyl transferase 2 3 49.905 Huang et al. (26);

Billington et al. (89)a

Emmer et al. (101)

Tb927.10.6180 FLA1-like protein 1 54.878 Huang et al. (26)

Sun et al. (102)

(Continued on next page)
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a protein to intermediate-sized vesicles, plasma membranes, and contractile vacuoles 
(59). Later work that included 45Ca release experiments from acidic compartments, 
organelle isolation using iodixanol gradient centrifugation, X-ray microanalysis of 
isolated or in situ organelles, PPi-driven proton transport measurements, and immuno­
fluorescent analysis revealed that these intermediate-sized vesicles were acidocalci­
somes and that they possess a V-H+-PPase and a V-H+-ATPase (18). In a recent work, 
acidocalcisomes were isolated by a modified iodixanol gradient centrifugation method, 
and proteomic analysis of the fractions obtained was done (86). Two types of vacuoles 
were obtained and named lysosome-related organelles from stationary phase (stat-LROs) 
and iron-loaded lysosome related organelles (Fe-LROs) or ACs. The difference between 
these fractions is that the Fe-LROs were obtained from cells incubated at high iron 
concentration (>200 µM) for 1 day after partially starving them of iron for 5 days 
(<50 µM), while the stat-LROs were cultured for 6 days in a regular culture medium (86). 
Surprisingly, the authors considered them as different organelles. However, the stat-LRO 
appeared as acidocalcisomes surrounded by portions of cytoplasm [Fig. 1E of reference 
(86)], contained deformed mitochondria and cellular debris [Fig. S5E and D of reference 
(86)], and had autophagy markers (ATG8), suggesting that they are autophagosomes. The 
localization of four proteins [inorganic pyrophosphatase (IPPase, Cre10.g424100.t1.2), 
copper transporter (CRT1, Cre13.g570600.t1.2), V-H+-ATPase (vATPase subunit C/D, 

TABLE 1 Acidocalcisome localization of T. brucei proteins, validated by marker co-localization (Continued)

Gene Name TMDd MWe References

Billington et al. (89)a

Tb927.10.9560 Oxidoreductase – 36.100 Billington et al. (89)a

Tb927.11.1890 Serine threonine kinase-associated teceptor – 36.025 Billington et al. (89)a

Tb927.4.860 Hypothetical protein – 33.145 Billington et al. (89)a

Tb927.4.5335 Hypothetical protein – 10.705 Billington et al. (89)a

Tb927.8.6990 Hypothetical protein – 10.759 Billington et al. (89)a

Tb927.9.12070 Hypothetical protein – 109.870 Billington et al. (89)a

Tb927.10.11810 Hypothetical protein – 69.988 Billington et al. (89)a

Tb927.11.8250 Hypothetical protein 1 19.345 Billington et al. (89)a

aTentative localization based on immunofluorescence analysis of C-terminal or N-terminal tagged proteins (TrypTag project).
bMFS, major facilitator superfamily.
cAP-3, adaptor protein 3.
dTMD, transmembrane domain.
eMW, molecular weight.

TABLE 2 Validated acidocalcisome proteins present in T. Cruzia

Gene Name TMDb MWc References

TcCLB.511439.50 Zn2+ transporter 1 5 49.901 Ferella et al. (103)
TcCLB.511127.100 Vacuolar transporter 

chaperone 4
2 91.558 Ulrich et al. (93)

TcCLB.506401.170 Ca2+-ATPase (PMC1) 8 121.912 Lu et al. (104)
TcCLB.510773.20 Vacuolar H+-PPase 1 16 85.338 Scott et al. (9)
TcCLB.508257.40 Aquaporin 1 6 24.711 Montalvetti et al. (105)

Rohloff et al. (106)
TcCLB.509461.90 Inositol trisphosphate 

receptor
5 337.362 Lander et al. (107)

Chiurillo et al. (108)
TcCLB.503613.60 Vacuolar soluble 

pyrophosphatase
– 47.854 Gallizi et al. (109)

TcCLB.506311.20 Palmitoyl acyl transferase 
2

4 51.182 Batista et al. (110)

TcCLB.506247.220 Histidine ammonia-lyase – 58.055 Mantilla et al. (111)
aAquaporin and histidine-ammonia lyase are not present in T. brucei acidocalcisomes.
bTransmembrane domain (TMD).
cMolecular weight (MW).
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Cre03.g176250.t1.2), and isocitrate lyase (CL1, Cre06.g282800.t1.2)] to acidocalcisomes 
was validated by their co-localization with DAPI-stained polyP and LysoTracker (86). A 
number of potential acidocalcisome proteins with similarity to those found in T. brucei 
acidocalcisomes (metal transporters, phosphate transporters, and Ca2+-ATPases) were 
found in these fractions (86) and await validation.

In addition to the above studies, several publications have reported the finding of 
proteins homologous to those in acidocalcisomes of T. brucei (Table 1) and postulated 
their presence in acidocalcisome-like organelles. The V-H+-PPase was found in acidocalci­
somes of Leishmania donovani (47), Plasmodium falciparum (112), P. berghei (20), T. gondii 
(50), Agrobacterium tumefaciens (39), L. mexicana amazonensis (76), Rhodospirillum 
rubrum (40), Phytomonas francai (16), and Eimeria tenella (21). A Ca2+-ATPase (51) and a 
zinc transporter (113) were found in acidocalcisomes of T. gondii. A Cu-ATPase (ATP7) was 
found near acidocalcisomes of P. berghei or co-localized with the V-H+-PPase to acidocal­
cisomes and the plant-like vacuole (PLVAC) of T. gondii (114).

We can conclude that the chemical composition of acidocalcisomes is well adapted to 
their storage function of phosphorus and cations. They have a reduced number of matrix 
proteins, as compared to other organelles, and several transporters involved in their store 
function.

ACIDOCALCISOME PUMPS, TRANSPORTERS, ENZYMES, AND CHANNELS

The proton pumps

Acidocalcisomes of some protists (some trypanosomatids, apicomplexan parasites, and 
algae) possess two electrogenic proton pumps, a V-H+-PPase and a V-H+-ATPase, while 
other acidocalcisomes possess either a V-H+-PPase or a V-H+-ATPase.

The V-H+-ATPase is a multisubunit complex of about 14 subunits and 2 sectors, the 
membrane (V0) and the catalytic (V1) sectors. It was originally identified in acidocalci­
somes of T. brucei (4) and T. cruzi (3) by the proton pumping and acridine orange staining 
inhibition by bafilomycin A1 in permeabilized cells. It was also functionally identified in 

FIG 3 Immunofluorescence analysis of T. brucei. (A) TbIP3R co-localizes with the V-H+-PPase in acidocalcisomes of procyclic (PCF) trypomastigotes (Pearson’s 

correlation coefficient of 0.8399). Yellow in merge images indicates co-localization. Scale bars: 10 µm. (B) Western blot analysis of TbIP3R expressed in PCF 

trypanosomes using polyclonal anti-TbIP3R antibody. Lysate containing 30 mg of protein from PCF trypanosomes was subjected to SDS/PAGE on 4%–15% 

polyacrylamide gel and transferred to a nitrocellulose membrane. Molecular weight markers on the left and arrow shows the band corresponding to TbIP3R. 

(Reproduced from reference 26.) TbIP3R, T. brucei IP3R.

Review Microbiology and Molecular Biology Reviews

March 2024  Volume 88  Issue 1 10.1128/mmbr.00042-2310

https://doi.org/10.1128/mmbr.00042-23


acidocalcisomes of T. evansi (48), T. gondii (19, 115, 116), C. reinhardtii (18), D. discoideum 
(17), and human platelets (24). Immunofluorescence and/or immunoelectron microscopy 
studies confirmed the acidocalcisome localization of several subunits in T. brucei (Table 
1), T. cruzi (117), T. gondii (118), C. reinhardtii (18), C. merolae (63), and D. discoideum (17). 
The complex has other subcellular localizations such as the Golgi complex, the plasma 
membrane, and the endocytic pathway of T. brucei (26), the plasma membrane of T. cruzi 
(117), the plasma membrane and the PLVAC of T. gondii (116), the plasma membrane and 
the digestive vacuole of malaria parasites (119–122), and the contractile vacuoles of C. 
reinhardtii (18) and D. discoideum (17). Downregulation of the expression of some V-H+-
ATPase subunits has therefore multiple phenotypic changes that cannot be attributed 
solely to the disruption of acidocalcisome functions.

The V-H+-PPase is a single subunit H+ pump that uses PPi to establish a H+ gradient 
and it was first identified in acidocalcisomes of T. cruzi (9). Previously, this pump had been 
described only in bacteria, archaea, and plants (123). Structural studies of Vigna radiata 

FIG 4 Scheme of an acidocalcisome of T. brucei with validated transporters and channels. Uptake of Ca2+ is through a Ca2+-ATPase, and Ca2+ release is by the 

IP3 receptor. H+ is pumped in by either the V-H+-PPase or the V-H+-ATPase. A vacuolar iron transporter (VIT1) can transport either Mn2+ or Fe2+, and two Zn2+ 

transporters (ZnT1 and ZnT2, not shown) transport Zn2+. There is a PA transporter and K+ channel. A VTC complex synthesizes polyP using ATP and translocates 

it into the organelle. A Na+/Pi symporter (Pho91) releases Na+ and Pi. Within acidocalcisomes, there is a VSP with pyrophosphatase and exopolyphosphatase 

activity. Several adaptor protein 3 complex subunits localize to the acidocalcisome (not shown). PA, polyamine; VSP, vacuolar soluble pyrophosphatase; VTC, 

vacuolar transporter chaperone.
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V-H+-PPase showed that it is present as a homodimer with 16 transmembrane domains 
(124). The pump is also localized to the Golgi complex and to the plasma membrane of 
T. cruzi (3, 125), and could be heterologously expressed in yeast, which lacks the pump 
(126). Its activity is stimulated by K+, and inhibited by Na+ and pyrophosphate analogs, 
like IDP and AMDP, as occurs with the plant pump (9). As the pump is very abundant 
in acidocalcisomes, it has been used as a marker for subcellular fractionation of the 
organelle (10, 26). T. brucei possess two genes expressing very similar proteins (TbVP1 
and TbVP2) (127), both localized to acidocalcisomes (14, 89) (Table 1).

Two genes are also expressed in malaria parasites, but the encoded proteins are 
different. One corresponds to the K+-stimulated type (VP1, type 1) while the other 
has homology to the plant K+-insensitive type (VP2, type II) (128). The immunofluores-
cence localization of P. falciparum VP1 in “intracellular bright spots” (112) and “punctate 
intracellular inclusions” (128), and the localization of P. berghei VP1 in “intracellular 
vacuoles” (20) using antibodies against the plant pump, provided indirect evidence of 
a potential acidocalcisome localization. The pump was also localized to the plasma 
membrane (112, 128) and to the digestive vacuole (120) of P. falciparum. Two genes 
are also present in the scuticociliate Philasterides decentrarchi, which have homology to 
genes encoding K+-sensitive (AVP1) and K+-insensitive (AVP2) plant enzymes, the first 
protein product localized to acidocalcisome-like organelles and the second localized to 
the alveolar sacs (57).

The evidence for the acidocalcisome localization of the V-H+-PPase in T. gondii is 
stronger. Immunoelectron microscopy revealed that antibodies against the enzyme 
co-localized with antibodies against a Ca2+-ATPase to their acidocalcisomes (51). 
Acidocalcisome fractions were also shown to contain the AMDP-sensitive PPase activity 
and PPi-driven acridine orange uptake (54). Interestingly, the V-H+-PPase also localizes to 
the PLVAC of T. gondii (129), where the V-H+-ATPase is also present (118).

There is also strong evidence for the presence of a V-H+-PPase in acidocalcisomes and 
contractile vacuoles of C. reinhardtii, where it co-localizes with the V-H+-ATPase (18).

It is interesting to note that the presence of a V-H+-ATPase and a V-H+-PPase in the 
same compartment occurs in several organelles such as the plant vacuole (10, 130), the 
contractile vacuoles of C. reinardtii (18), and T. cruzi (106), the acidocalcisomes of some 
trypanosomatids (127), the digestive vacuole of malaria parasites (120), and the PLVAC of 
T. gondii (129).

The function of these proton pumps in acidocalcisomes is to acidify the organelles 
and allow secondary transporters to export H+ in exchange of different cations, or 
to export H+ together with Pi by the Pi symporter (Pho91) present in some species 
(131). The low pH also contributes to maintain the solubility of polyP. In the case of 
the V-H+-PPases, they also contribute to maintain low levels of cytosolic PPi and then 
facilitate anabolic reactions, which produce PPi (132). A third function could be the 
generation of a membrane potential that could be used to reverse the V-H+-ATPase and 
generate ATP or reverse the V-H+-PPase to generate PPi, reactions that could occur in vitro 
(133, 134) but which occurrence in vivo has not been established. In this regard, it has 
been shown that PPi can generate a membrane potential in acidocalcisomes of T. brucei 
and T. cruzi that can be reversed by FCCP or CCCP and prevented by AMDP (10, 14).

The P-type ATPases

Two P-type ATPases have been reported in acidocalcisomes of several species, a 
Ca2+ATPase and a Cu2+-ATPase.

A Ca2+-ATPase activity was initially detected in acidocalcisomes of permeabilized T. 
brucei procyclic forms by measuring ATP-driven Ca2+ transport inhibited by vanadate (4). 
The stimulation of H+ uptake (acridine orange uptake) by the Ca2+ chelator EGTA and 
its release by Ca2+ suggested their accumulation in the same compartment. In addition, 
H+ uptake was stimulated by vanadate and vanadate inhibited the release of H+ by 
Ca2+, confirming that the Ca2+-ATPase takes up Ca2+ in exchange for H+ (4). Further work 
identified a gene encoding an acidocalcisome-located pump that was named PMC1 
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(for plasma membrane calcium ATPase) because it was closely related to the family of 
plasma membrane calcium ATPases (PMCA) (96). Its functional role was demonstrated 
by its ability to complement yeast deficient in the vacuolar Ca2+-ATPase PMC1 (96). 
The T. brucei pump apparently lacks the C-terminal calmodulin (CaM)-binding domain 
present in other PMCA pumps (96). Similar Ca2+-ATPases were found in acidocalcisomes 
of T. cruzi (Tca1) (104), T. gondii (TgA1) (51), and D. discoideum (PAT1) (17, 135), and in 
vacuoles of S. cerevisiae (PMC1) (136) and E. histolytica (137). Both T. cruzi (104) and T. 
gondii (52) Ca2+-ATPases were able to complement yeasts deficient in PMC1, providing 
functional demonstration of their activity. All of them, including PAT1 (135), lack the 
C-terminal CaM-binding domain although it cannot be ruled out that they could have a 
non-canonical CaM-binding domain as it has been reported in the T. equiperdum plasma 
membrane Ca2+-ATPase (138). In this regard, the T. cruzi PMC1 from plasma membrane 
vesicles was shown to be stimulated by endogenous or mammalian calmodulin (139).

A Cu-ATPase (ATP7) was first detected in the plasma and organellar membranes of 
T. brucei (94). The intracellular distribution agrees with its acidocalcisome localization by 
the TrypTag project (89) (Table 1). The N-terminal region of the protein was shown to 
bind copper in vitro and within E. coli cells (94). Leishmania major ortholog (LmATP7, 
LmjF33.2090) also localized to vesicles compatible with acidocalcisomes, in addition to 
the plasma membrane (95). It has been proposed that vesicles containing copper fuse to 
the plasma membrane to export the metal (140). The essentiality of the CuATPase of T. 
brucei has not been tested, while complete knockout (KO) of L. major CuATPase was not 
possible, suggesting its essentiality (95). Interestingly, copper accumulates in acidocalci­
somes of C. reinhardtii during zinc limitation, but the potential role of a CuATPase has 
not been investigated (141). P. berghei and T. gondii CuATPases are also detected in 
intracellular storage vesicles, which could be acidocalcisomes (114).

PolyP synthesis and degradation

Synthesis and translocation of polyP into the lumen of acidocalcisomes is catalyzed by 
the vacuolar transporter chaperone (VTC) complex (142). The VTC complex is present 
in fungi, trypanosomatids, apicomplexans, and algae but is absent in animals. The VTC 
complex of S. cervisiae has five subunits (Vtc1–Vtc5), of which Vtc4 is the catalytic 
subunit and forms subcomplexes with Vtc1 and Vtc2 or Vtc3 (Vtc1/Vtc2/Vtc4 or Vtc1/
Vtc3/Vtc4), which localize to the vacuole membrane (143). Vtc5 does not form part of 
these complexes but stimulates their activity. Structural studies of these subcomplexes 
in yeasts have shown that Vtc1 has three transmembrane domains, while Vtc2, Vtc3, 
and Vtc4 contain additional SPX (SYG1/Pho81/XPR1) and TTM (triphosphate tunnel 
metalloenzyme) domains (142, 144, 145). The TTM domain of Vtc4 synthesizes polyP 
by transferring the γ-phosphate of cytosolic ATP onto the growing polyP chain (142). The 
SPX domains are receptors for cytosolic inositol pyrophosphates (PP-IPs), which stimulate 
polyP synthesis (143). PP-IPs bind to the Vtc2 SPX domain, preventing its interaction with 
the SPX domain of Vtc4 and stimulating its activity (146). The VTC complex has therefore 
functions of polyP polymerase, polyP translocase, and PP-IPs receptor (144) (Fig. 5).

Trypanosomatid acidocalcisomes possess orthologs to Vtc1 and Vtc4, which have 
been studied in T. brucei (91–93), T. cruzi (93), and Leishmania spp. (147, 148). Vtc1 is the 
smaller subunit of the VTC complex, and the T. brucei protein (TbVtc1) also has three 
transmembrane domains. The GFP-tagged protein was shown to localize to the acidocal­
cisomes and endoplasmic reticulum (ER) of T. brucei procyclic forms by immunofluores-
cence assays (IFAs) and to the acidocalcisomes using polyclonal antibodies against the 
protein and immunoelectron microscopy (91). Downregulation of TbVtc1 expression by 
RNAi had marked effects, stopping cell proliferation, changing the morphology and size 
of acidocalcisomes, and decreasing their V-H+-PPase activity (91). Since the V-H+-PPase 
generates a protonmotive force that is essential for Ca2+ uptake by the Ca2+/H+ counter-
transporting ATPase (4, 14) and for polyP synthesis (13), these decreased V-H+-PPase 
activities would lead to the decrease in Ca2+ and short- and long-chain polyP content. 
PolyP deficiency would then result in a deficient response to hypo-osmotic stress (91) 
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and perhaps to cytokinesis defects. However, another possible explanation for the 
cytokinesis defects could be related to the role of the Vtc1 ortholog in S. pombe (Nrf1), 
which is an important regulator of the small Rho-like GTPase Cdc42p (149). This GTPase is 
found in most eukaryotic cells (150). Cdc42p is important for vacuolar function and 
morphology, critical for cell polarity and cytokinesis and for docking assembly in S. 
cerevisiae (151, 152).

TbVtc4 also appears to have three transmembrane domains. In situ tagged TbVtc4 
(92), as well as tagged T. cruzi Vtc4 (93), localized to acidocalcisomes, as detected by 
IFA and immunoelectron microscopy. The catalytic domain of either TbVtc4 or TcVtc4 
was able to catalyze the synthesis of short-chain polyP (100–300 Pi units), in contrast to 
the synthesis of long-chain polyP by the catalytic core of ScVtc4 (92, 93). PPi inhibited 
the synthesis of short-chain polyP by TbVtc4 or TcVtc4 and stimulated the synthesis of 
polyP by ScVtc4 (92, 93). A conditional KO of TbVtc4 in bloodstream forms resulted in 
decreased proliferation and short-chain polyP production without affecting long-chain 
polyP synthesis. These cells had higher sensitivity to hypo-osmotic and hyperosmotic 
stresses and lower infectivity to animals, but no cytokinesis defects (92). RNAi of 
TbVtc4 in procyclic forms also reduced proliferation and short-chain polyP synthesis 
without affecting long-chain polyP synthesis, suggesting that other polyP polymerases 
might occur in trypanosomes (93). Interestingly, both TbVtc1 and TbVtc4 appear to be 
palmitoylated (101).

Variable levels of polyP were observed in different Leishmania spp. (148). PolyP 
was more abundant in late logarithmic growth phase promastigotes of L. major and 
Leishmania amazonensis and decreased overtime in stationary phase cultures, although 
protein Vtc4 levels were constant (148). The role of Vtc4 in Leishmania spp. was studied 
by either knockout or knockdown of its gene expression. PolyP levels were reduced 5- 
to 10-fold by knockdown of Vtc4 expression by RNAi in Leishmania guyanensis, but this 

FIG 5 A model of the activation mechanism of the VTC complex in yeasts. Schematic of the Vtc4/Vtc3/Vtc1 complex. Subunits are colored. The three subunits of 

VTC1 are shown in gray; VTC3 is in violet; and VTC4 is in green. PP-InsPs bind to the Vtc3 SPX domain. The star indicates the binding resgion of the SPX domains. 

ATP is used to add a Pi to the polyP chain at the catalytic domain of VTC4. Key amino acids involved are highlighted. HH, horizontal alpha helix fastening the 

cytosolic entrance of the transmembrane channel for polyP. (Adapted from reference 145 with permission from the authors.)
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did not affect mice footpad infection (148). L. major Vtc4 knockout promastigotes were 
devoid of short-chain polyP, grew almost normally in culture, and were able to differ-
entiate normally into metacyclic promastigotes (148). Amastigotes had no detectable 
Vtc4 and only short-chain polyP (148). While late stationary promastigotes were able to 
infect macrophages and differentiate into amastigotes, they survived less than wild-type 
parasites (147, 148). When injected into the footpad of mice, they had a delay in 
replication, but they were still able to produce lesions (148).

T. gondii has homologs to Vtc2 and Vtc4. A signature-tagged mutagenesis screen 
identified a disrupted locus that encodes a protein with homology with yeast Vtc2 
(153). The tagged TgVtc2 was shown to have a punctate localization, compatible with 
acidocalcisomes, and the mutant had a significant reduced level of short- and long-chain 
polyP, which could be partially restored by complementation with an exogenous gene 
(153). The mutant tachyzoites were able to differentiate into bradyzoites, and they 
upregulated sixfold the expression of a FIKK kinase (153). Attempts to knockout TgVtc2 
were unsuccessful, suggesting that the gene is essential. TgVtc4 was shown to co-localize 
with the V-H+-ATPase to acidocalcisomes (118), but no further studies were reported.

Evidence for the presence of homologs to Vtc1 and Vtc4 in acidocalcisomes of 
C. reinhardtii has also been reported (154). A gene encoding a ScVtc1 homolog was 
found to be deleted in a C. reinhardtii mutant (ars76) with altered ability to acclimate 
to sulfur deficiency because of its inability to accumulate extracellular or periplasmic 
arylsulfatase (ARS) (154). The mutant had few acidocalcisomes; was more sensitive 
to exposure to sulfur-, phosphorus-, or N-deficient conditions; and was defective in 
trafficking of periplasmic ARS. The phenotypes were complemented by providing an 
exogenous CrVtc1 gene (154). A truncated CrVtc4 with the putative kinase domain was 
expressed and shown to synthesize polyP, while polyP was undetectable in a CrVtc4 
loss-of-function mutant (155). Phylogenetic studies revealed that VTC and phosphate 
transporter genes, like C. reinhardtii phosphate transporter C, which transports Pi out 
of acidocalcisomes, were conserved among species that store phosphorus as vacuolar 
polyP and absent from genomes of higher plants that store phosphorus as Pi in the 
vacuoles. This suggests loss of VTC and PTC genes during evolution to higher plants 
(155). CrVtc1- and CrVtc4-mediated synthesis of polyP was also measured at different 
times after adding Pi to P-starved cells, and it was found that their expression was 
markedly reduced after addition of Pi (156). The authors presented indirect evidence that 
inositol pyrophosphates could be stimulating polyP synthesis. Addition of Pi together 
with neomycin, which inhibits inositol phosphate synthesis by binding to phosphatidyli­
nositol 4,5-bisphosphate, accumulated less Pi than controls and had less polyP (156).

Degradation of polyP in the acidocalcisome-like vacuole of S. cerevisiae is through 
the activity of two endopolyphosphatases (they degrade polyP by attacking internal 
phosphoanhydride bonds): Ppn1 and Ppn2. ScPpn1 was originally described as a 
homodimer (157) but later found to be a homotetramer of 35-kDa subunits that requires 
protease activation of a 78-kDa precursor polypeptide (prePpn1) (158). The processed 
enzyme produces Pi and polyP3 (158). The enzyme requires Mn2+ or Mg2+; is inhibited 
by Ca2+, Zn2+, Pi, and PPi; and has a neutral pH optimum (7.5) (157). Null mutants in 
ScPpn1 are growth defective and accumulate long-chain polyP (159). The production 
of monomeric Pi suggests that ScPpn1 can also display exopolyphosphatase activity 
(cleavage of the terminal Pi) (158, 160).

ScPpn2 belongs to the phosphoprotein phosphatase family. It has one TMD in 
the N-terminus and the catalytic domain at its C-terminus, which localizes to the 
lumen of the acidocalcisome-like vacuole (159–161). ScPpn2 immunoprecipitated from 
yeast vacuoles had Zn2+- or Co2+-stimulated endopolyphosphatase activity. Studies with 
different ScPpn1, ScPpn2, and ScVtc mutants concluded that ScPpn1 might be involved in 
the mobilization of polyP stores, while ScPpn2 might control polyP chain length and that 
polyP levels of yeasts are controlled through synthesis rather than degradation (161).

Trypanosomatids have an acidocalcisome protein with homology to ScPpn2, but 
this enzyme has not been studied (Table 1). In addition, trypanosomatids have an 
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acidocalcisome vacuolar soluble pyrophosphatase (VSP), which has exopolyphosphatase 
activity in the presence of Zn2+ and pyrophosphatase activity in the presence of Mg2+ 

(99, 109, 162). The enzyme is also present in the cytosol (109). The exopolyphosphatase 
activity of the T. brucei enzyme is inhibited by bisphosphonates, which also inhibit in 
vivo infections (163). The enzyme has a putative calcium EF-hand-binding domain that 
was originally proposed to be involved in its oligomerization (99), but further structural 
work failed to find evidence for this effect (164). Downregulation of its expression by 
RNAi in T. brucei bloodstream form (BSF) resulted in decreased levels of short- and 
long-chain polyP and altered response to phosphate starvation and hypo-osmotic stress 
(99). Overexpression of the enzyme in T. cruzi led to a decrease in PPi and short- and 
long-chain polyP, larger acidocalcisomes, defective response to hyperosmotic stress, and 
lower proliferation in fibroblasts with reduced persistence in tissues of mice (109). The 
crystal structure of both the T. brucei (164, 165) and T. cruzi (164) enzyme has been solved 
and revealed an unusual tetrameric oligomeric state containing head-to-tail dimers (Fig. 
6).

Little is known on the mechanisms involved in polyP degradation in acidocalcisomes 
of other species except for the presence of a putative endopolyphosphatase in acidocal­
cisomes of the alga C. merolae (63).

The conclusion is that acidocalcisomes possess mechanisms for the synthesis (VTC 
complex) and degradation (endo- and exopoylphosphatases) of polyP. The absence of 
VTC complex in animal cells and the peculiarities of the polyP-degrading enzymes make 
them potential drug targets against pathogenic organisms possessing these organelles.

Channels

The presence of at least three channels has been reported in acidocalcisomes of 
trypanosomatids, an aquaporin, a potassium channel, and the inositol 1,4,5-trisphos­
phate receptor (IP3R) (Tables 1 and 2).

T. cruzi aquaporin 1 (TcAQP1) co-localized with the V-H+-PPase to acidocalcisomes and 
the contractile vacuole complex (CVC), as revealed by IFA using polyclonal antibodies 
against the GFP-tagged protein or against a synthetic C-terminal peptide (105). When 
expressed in Xenopus oocytes, TcAQP1 was shown to be water permeable but not 
glycerol permeable, in agreement with its phylogenetic analysis that indicates that it 
belongs to the orthodox (water transporting) aquaporin branch (105). The protein was 
found to be N-glycosylated (105) and was important for the response of the cells to 
hypo-osmotic stress (106). Upon hypo-osmotic stress, there was swelling of acidocalci­
somes and microtubule- and cyclic AMP-mediated fusion of the organelles to the CVC 
(Fig. 7) with translocation of TcAQP1 and water release to facilitate cell volume recovery 
(106). TcAQP1 is also important for the cellular response to hyperosmotic stress as 
revealed by experiments with inhibitors, or knockdown or overexpressed TcAQP1 (166).

A gene with homology to inward rectifying potassium channels was found in T. brucei, 
and the protein product (TbIRK) was shown to co-localize with V-H+-PPase to acidocalci­
somes of procyclic and bloodstream forms (98). The channel was functionally studied by 
electrophysiology after expressing it in Xenopus oocytes and found to be selective for 
potassium ions and inhibited by cesium but not by barium (98). The sequence TXTGY(F)G 
of the selectivity filter found in other potassium channels is replaced by the sequence 
GGYVG in TbIRK, which was confirmed as the selectivity filter by mutagenesis studies 
(98). Downregulation of its expression in procyclic forms was obtained by RNAi, but no 
proliferation changes were found.

Early proteomic studies of contractile vacuole fractions of T. cruzi reported the 
presence of peptides from a putative IP3R (168). The trypanosomatid IP3Rs possess 
domains present in other eukaryotes such as the putative suppressor domain-like, 
ryanodine receptor IP3R homology (RIH), and RIH-associated domains, and a Ca2+-specific 
selectivity filter, GVGD (169). However, they have five instead of six TMDs and conserve 
only 4 or 5 of the 10 residues proposed to form a basic pocket that binds IP3 (97). In situ 
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tagging of the ortholog gene in T. brucei co-localized the protein product with the V-H+-
PPase to the acidocalcisomes but not to the ER (97). These results were later confirmed 
using specific antibodies against T. brucei IP3R (TbIP3R) (26, 170) (Fig. 3). The TbIP3R 
function was confirmed by expressing it in DT40 chicken B lymphocytes that are 
knockout mutants for the three animal IP3Rs (DT-40–3KO) (171). IP3 was also able to 
release Ca2+ from permeabilized cells, and isolated acidocalcisomes’ previous acidifica-
tion of the organelle by PPi. Ca2+ release by uncaging IP3 by UV light was also observed in 
Fluo4-AM-loaded live procyclic forms (97).

Since acidocalcisomes are rich in phosphorus compounds, the response of TbIP3R 
expressed in DT-40–3KO cells to the addition of these compounds to its luminal side was 
investigated using patch-clamp recordings of nuclear membranes, which are continuous 
with the ER. K+ at 140 nM was the charge carrier, and IP3 was added to the patch pipette 
(cytosolic side) (172). The currents generated by IP3 were abolished by acidic pH and 
heparin and inhibited by 2-APB and caffeine (172). Pi and PPi, added to the luminal 
side, increased the currents, while polyP3, but no longer-chain polyP, inhibited it. These 
latter effects were not observed when rat IP3R-1 (RnIP3R) was tested instead of TbIP3R 
(172). In summary, the results suggest that TbIP3R is closed at the acidic conditions of 
the acidocalcisomes, but alkalinization or polyP hydrolysis favors the channel opening 
by IP3. Downregulation of TbIP3R expression by RNAi showed that it was essential for 
proliferation and infectivity of T. brucei in mice (97).

The T. cruzi IP3R was originally proposed to have an ER localization, although no clear 
co-localization with T. brucei ER marker binding immunoglobulin protein was demon­
strated, and the antibodies against the receptor gave a punctate staining in T. cruzi 
(171). Endogenous tagging of TcIP3R confirmed its acidocalcisome localization (107). 
Expression of TcIP3R in DT4-3KO cells also established its function in releasing Ca2+ upon 
stimulation with IP3 (108, 171).

TcIP3R single-allele knockout epimastigotes showed reduced proliferation rate and 
metacyclogenesis, while trypomastigotes had lower Ca2+ increase upon attachment to 

FIG 6 Structure superimposition of native TcVSP1 (green) and TbVSP1 (red) in the absence of any added substrate or inhibitor ligands. There is an EF-hand 

N-terminal domain and a C-terminal PPase domain. A long (~17 residues, ~32A) polypeptide chain linker connects the two domains. Blue denotes divalent 

cation-binding aspartates. (Reproduced from reference 164 with permission from the American Chemical Society.)
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host cells and were less infective but did not show differences in amastigote replication 
(171). TcIP3R double-allele ablation epimastigotes obtained by CRISPR/Cas9 genome 
editing also had reduced proliferation but increased metacyclogenesis (108). Similar 
to the single-allele KO, the double-allele KO trypomastigotes are also less infective 
without differences in amastigote replication. Single knockout trypomastigotes had a 
significantly higher transformation rate into amastigotes (171). Conversely, although 
overexpression of TcIP3R in epimastigotes did not modify their proliferation rate, 
they had reduced metacyclogenesis. Trypomastigotes overexpressing the TcIP3R had 
increased Ca2+ levels upon cell attachment and higher infectivity in tissue culture cells 
(171), without affecting (171) or reducing (108) amastigote replication, and showed a 
decreased transformation rate into amastigotes (171).

Little is known about the presence of channels in acidocalcisomes of other species. 
A transient receptor potential (TRP)-like protein is in the acidocalcisome-like vacuoles 
of S. cerevisiae and other fungi (TRPY1 or yvc1) (173). This channel is activated by 
either mechanical force or Ca2+ and mediates vacuolar Ca2+ release upon hyperosmotic 
stress (174). The channel has a tetrameric structure displaying activating and inhibiting 
Ca2+-binding sites and co-purifying with an inhibitory phosphatidylinositol 3-phosphate 
[PI(3)P] lipid (175). A two-pore channel (TDC2) is localized in the acidocalcisome-like 
platelet dense granules (PDGs) and regulates PDG luminal pH and functions in Ca2+ 

release from PDGs forming perigranular Ca2+ microdomains (175).

Membrane transporters

Several metal ion transporters were identified in trypanosomatid acidocalcisomes. 
Proteomic analysis of T. brucei acidocalcisomes (26) and immunofluorescence analysis 
of the parasite proteome (89) resulted in the identification of transporters for copper 
(copper ATPase or TbATP7), zinc (Zn transporters 1 and 2 or TbZnT1 and TbZnT2), and 
iron or manganese (vacuolar iron transporter or TbVIT) (Table 1).

FIG 7 Contractile vacuole complex of T. cruzi. (A) Epimastigote showing the kinetoplast (K), CV, S, F, and similar electron-dense material present in the CV 

bladder and in Ac. (B) Three dimensional model of a tomogram showing an acidocalcisome (orange) fusing with the CVC (blue) after hypo-osmotic stress. The 

CVC is represented by a central vacuole or bladder, and tubules or spongiome. Picture taken by Kildare Miranda. Experimental details in reference (167). (Panel 

A was reproduced from reference 105 with permission from the American Society for Biochemistry and Molecular Biology.) Ac, acidocalcisome; CV, contractile 

vacuole; CVC, contractile vacuole complex; F, flagellum; S, spongiome.
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A zinc transporter (TbZnT1) was identified by proteomic analysis of acidocalcisomes 
of T. brucei (26). TbZnT1 is a member of the cation diffusion facilitator family (CDF) (176). 
These transporters function as antiporters of Zn2+, Cd2+, Co2+, and/or Ni2+ with protons. 
All contain six transmembrane domains and share characteristic motifs, such as a CDF 
family-specific signature sequence at the C-terminus (177). A second zinc transporter 
(TbZnT2) was also found in acidocalcisomes (Table 1). A zinc transporter was also 
described in acidocalcisomes of T. cruzi (Table 2) (103). Zinc has catalyticand structural 
functions in more than 3,000 human proteins and has also a regulatory function (178). 
Downregulation of TbZnT1 by RNAi was not lethal in procyclic form or BSF (26), probably 
because of the presence of other Zn transporters in acidocalcisomes.

A zinc transporter (TgZnT) has also been shown to localize to small vesicles or 
acidocalcisomes that fuse with the PLVAC in T. gondii tachyzoites (113). The protein has 
six TMDs and is the sole member of the ZnT family of Zn2+ transporters. TgZnT knockout 
cells have reduced viability in the presence of extracellular Zn2+ (113).

An ortholog to the vacuolar iron transporter (VIT) originally described in Arabidopsis 
thaliana (179) and to the yeast Ca2+-sensitive cross-complementer 1 (180) was found in 
the acidocalcisome proteome of T. brucei (TbVIT1) and co-localized with TbV-H+-PPase 
(26). These transporters are localized to the plant and yeast vacuole, respectively, and 
have been involved in iron and manganese sequestration into the vacuoles. VIT family 
members are not found in humans but are found in other fungi, plants, and in malaria 
parasites, where it apparently localizes to the ER, and its expression downregulation 
yields reduced liver and blood infections (181). Knockdown of TbVIT1 by RNAi in both 
procyclic and bloodstream forms resulted in growth defects with a 44% ± 6% and 
41% ± 3% reduction in the number of cells 2 and 4 days after tetracycline addition to 
bloodstream and procyclic forms trypanosomes, respectively, indicating their essentiality 
for normal growth (26).

A Pi transporter (TbPho91) with homology to S. cerevisiae Pho91p, which is a 
low-affinity sodium-phosphate (Na+/Pi) symporter that was proposed to export Pi and 
Na+ from the vacuole lumen to the cytosol (182), was localized to acidocalcisomes of 
T. brucei (26, 131). Knockout of TbPho91 expression affected cell proliferation under 
phosphate starvation and increased the size of acidocalcisomes (131). Expression of 
TbPho91 in Xenopus laevis oocytes and two-electrode voltage clamp recordings found 
that 5-diphosphoinositol pentakisphosphate, an inositol pyrophosphate, stimulated 
sodium-dependent depolarization of the oocyte membrane potential and Pi conduc­
tance. This effect depended on the presence of the Pho91 SPX domain (131). Similar 
requirement for the SPX domain was found when giant vacuoles of yeasts expressing 
wild type or SPX mutant symporters from T. brucei or yeast were patch-clamped to detect 
currents (131). The results provided evidence for the role of TbPho91 and Pho91p in Pi 
and Na+ release from acidocalcisomes to the cytosol and for the role of its SPX domain in 
mediating its regulation by inositol pyrophosphates.

In contrast with TbPho91, T. cruzi Pho91 localizes mainly to the contractile vacuole 
complex (183). Overexpression of the gene led to higher levels of polyP while its 
downregulation reduced the growth rate and polyP levels (183).

Other transporters from T. brucei like a cation transporter, probably involved in Mg2+ 

uptake, a sulfate transporter, a polyamine transporter, two proteins belonging to the 
major facilitator superfamily, and a homolog to the multidrug and toxic extrusion protein 
have not been studied in detail, and their functions are unknown (Table 1).

Other components

There is physiological evidence for the occurrence of Ca2+/H+ and Na+/H+ exchange 
in T. brucei procyclic trypomastigotes (184, 185) and L. donovani promastigotes (186) 
acidocalcisomes, but the responsible exchangers have not been identified. Some 
proteins have been localized to acidocalcisomes of T. brucei but have not been studied 
in detail, such as the putative enzyme acid phosphatase (26), oxidoreductase, endopoly­

Review Microbiology and Molecular Biology Reviews

March 2024  Volume 88  Issue 1 10.1128/mmbr.00042-2319

https://doi.org/10.1128/mmbr.00042-23


phosphatase, and palmitoyl acyl transferase 2 (101), and other proteins like FLA-1 like 
(102) and STRAP (89) (Table 1).

In T. cruzi, the histidine ammonia lyase (HAL) co-localized with the V-H+-PPase to 
acidocalcisomes, as detected by the epitope tagging the enzyme or with specific 
antibodies (111). Fusing HAL to the pH sensor pHluorin detected the alkalinization 
of acidocalcisomes upon addition of histidine, as HAL catalyzes histidine deamination 
producing ammonia and urocanate (111). The enzyme has five lysine residues in the 
C-terminal region that are important for its binding to polyP, which inhibits its activity, 
and for the parasite survival under starvation conditions (111).

ACIDOCALCISOME BIOGENESIS

Acidocalcisomes share with lysosome-related organelles the transport mechanism of 
membrane proteins. LROs of animal cells were defined as “cell type-specific modifica-
tions of the post-Golgi endomembrane system that have a variety of functions and share 
some common characteristics with lysosomes” (187). Examples include melanosomes, 
platelet dense granules, basophil granules, and neutrophil azurophil granules (188).

The first evidence that acidocalcisomes were similar to lysosome-related organelles 
was provided by studies on the role of adaptor protein 3 (AP-3) complex in the 
transport of membrane proteins to acidocalcisomes of L. major (189). AP complexes 
mediate vesicular transport of membrane proteins between cellular compartments (190), 
and AP-3 complex is involved in sorting proteins to lysosome and lysosome-related 
organelles from the Golgi (191) or endosomes (192). It recognizes its cargo proteins 
through di-leucine- or tyrosine-based sorting signals (193). The AP-3 complex is a 
heterotetramer with two large subunits (β3 and δ), one medium subunit (µ) and one 
small subunit (σ). Deletion of L. major AP-3δ subunit did not apparently affect the 
multivesicular tubule-lysosome of these parasites but resulted in less acidic acidocal­
cisomes because of lower V-H+-ATPase and V-H+-PPase content and activity (189). 
The soluble VSP1 (162), however, was not affected and was detectable in mutant 
and wild-type cells acidocalcisomes. The AP-3δ knockout promastigotes had a lower 
proliferation rate and were able to differentiate into metacyclic forms and infect 
macrophages, although they replicated less intracellularly and had attenuated virulence 
in mice. All these alterations were complemented in a re-expressing cell line (189). These 
studies were later confirmed in T. brucei (100). C-terminal tagged T. brucei AP-3β3 and 
AP-3δ subunits co-localized with V-H+-PPase antibodies to acidocalcisomes, with the 
Golgi reassembly and stacking protein antibodies to the Golgi and with Rab11 antibodies 
to recycling endosomes, revealing their dynamic behavior (100). Downregulation of the 
expression of these adaptins by RNAi resulted in (i) reduction in the proliferation of both 
procyclic and bloodstream forms; (ii) progressive reduction in the number and calcium 
and phosphorus content of acidocalcisomes, leading to their disappearance; (iii) lack of 
detection of the V-H+-PPase by IFA; (iv) a considerable reduction in acidic Ca2+ and in 
total levels of PPi and polyP; and (v) reduced volume recovery after hypo-osmotic or 
hyperosmotic stress, compared with control cells (100). As occurred in L. major (189), 
trafficking of proteins (membrane glycoprotein p67 and luminal cathepsin L) to the 
lysosome was unaffected, and the mutant parasites were less virulent in mice (100).

Interestingly, mutation of AP-3 subunits in humans causes the Hermansky-Pudlack 
syndrome, characterized by decreased acidocalcisome-like platelet dense granules, 
which contain polyP (24), and resulting in bleeding problems (194). Mutations in ALP5 
(AP-3δ) or in APS3 (AP-3σ) in S. cerevisiae also resulted in decreased polyP accumulation 
in the acidocalcisome-like vacuoles associated to mistargeting of the Vtc5 subunit of the 
VTC complex (195).

In addition of the evidence of the role of AP-3 complex in the transfer of mem­
brane proteins to acidocalcisomes and acidocalcisome-like organelles like platelet dense 
granules and other LROs (196), the organelles were identified during assembly in the 
trans-Golgi in a variety of algae and protists (41). Small vesicles were observed fusing 
with the organelle membrane of C. reinhardtii, C. monoica, and T. brucei, in a manner 
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similar to those of some lysosome-related organelles (197) providing support for their 
trans-Golgi origin (Fig. 8).

Expression downregulation of several proteins has also been reported to affect the 
biogenesis of acidocalcisomes in trypanosomatids. Null mutants of the first enzyme in 
the sphingolipid synthesis pathway (serine palmitoyl transferase) of L. major have 
morphologically altered acidocalcisomes with lower long-chain polyP content (198). 
Acidocalcisomes of null mutants for target of rapamycin 3 (TOR 3) kinase of L. major are 
smaller and less numerous with little DAPI staining of polyP, suggesting a lower polyP 
content (199). In contrast, RNAi of TOR three kinase in T. brucei resulted in larger acidocal­
cisomes with increased levels of PPi and polyP (200). In addition, RNAi downregulation of 
a motor kinesin of T. brucei resulted in functional alterations (less Ca2+ release), suggest­
ing that this motor protein could be involved in the traffic of vesicles to acidocalcisomes 
(201).

In conclusion, beyond the role of the AP-3 complex in the targeting of proteins to the 
acidocalcisomes, the knowledge is still incomplete because there are probably other 
trafficking proteins involved in the biogenesis of the organelle. No targeting signals of 
proteins localized to the acidocalcisomes, besides the presence of one or more tyrosine-
based sorting signals with the YXXØ (Ø corresponds to a hydrophobic amino acid) 
consensus motif (26), have been described.

INTERACTION OF ACIDOCALCISOMES WITH OTHER ORGANELLES

Two types of interactions between acidocalcisomes and other organelles have been 
reported. The first one is through membrane fusion with the CVC that occurs in T. cruzi 
(167) and potentially in other species possessing acidocalcisomes and a CVC. The second 
is through membrane contact sites, which are regions at which organelles interact to 
exchange biomolecules and that are usually less than 30 nanometers apart (202).

Video microscopy of T. cruzi epimastigotes submitted to hypo-osmotic stress showed 
vesicle fusion events both with the contractile vacuole and between vesicles (106). GFP-
tagged TcAQP1 labeled the acidocalcisomes, but during hypo-osmotic stress, most of the 
label was translocated to the contractile vacuole (106). It was possible to quantify the 
translocation by counting the cells with one bright spot corresponding to the CVC since 
labeling of acidocalcisomes faded with time. Under isosmotic conditions, this transloca­
tion of TcAQP1 was stimulated by cyclic AMP analogs and cyclic adenosine monophos­
phate (cAMP) phosphodiesterase inhibitors, while preincubation with cyclic AMP or 
microtubule inhibitors decreased translocation under hypo-osmotic stress (106). The 
results are consistent with microtubule- and cyclic AMP-dependent traffic of acidocalci­
somes toward the CVC culminating in fusion of the organelles. Further evidence of fusion 
of acidocalcisomes and the CVC was provided by the change in localization of GFP-
tagged Rab32 or VAMP7 from acidocalcisomes to the CVC under hypo-osmotic stress 
and electron tomography evidence of fusion of the organelles (167) (Fig. 7B). Acidocalci­
somes from C. reinhardtii (18) and D. discoideum (17) also appear to contact their CVCs 
under hypo-osmotic conditions.

In addition to fusion with the CVC, there is also evidence of fusion of acidocalcisomes 
between themselves decreasing their numbers and becoming larger, for example, upon 
hypo-osmotic stress (17, 106) or after knockdown of AP-3 subunits (100) or Vtc1 (91).

Acidocalcisomes of trypanosomatids also interact with other organelles, such as 
mitochondria, nuclei, and lipid inclusions, through membrane contact sites (75). The 
interaction with mitochondria has been studied in more detail in T. brucei. In animal cells, 
the close apposition of the endoplasmic reticulum to the mitochondria facilitates IP3R-
dependent Ca2+ transfer, which is important to maintain the mitochondrial bioenergetics 
(203). A similar situation occurs between acidocalcisomes, where the IP3R localizes in 
trypanosomatids (97, 107), and the mitochondria, as demonstrated by super-resolution 
structured illumination microscopy, electron microscopy, proximity ligation assays, and 
functional studies (202). Super-resolution and electron microscopy revealed that the two 
organelles appear to be less than 30 nm apart, and proximity ligation assays using 

Review Microbiology and Molecular Biology Reviews

March 2024  Volume 88  Issue 1 10.1128/mmbr.00042-2321

https://doi.org/10.1128/mmbr.00042-23


antibodies against tagged acidocalcisome TbIP3R and mitochondrial voltage dependent 
anion channel (VDAC) detected several contacts between the organelles (202). In 
addition, downregulation of the TcIP3R expression resulted in alterations in the mito­
chondrial bioenergetics (108).

ROLE IN CALCIUM SIGNALING

Ca2+ signaling is the result of cytosolic Ca2+ increase due to Ca2+ release from intracel­
lular stores or Ca2+ influx through plasma membrane channels and regulates numer­
ous cellular processes including proliferation, differentiation, and cellular motility. In 
trypanosomatids, acidocalcisomes are major Ca2+ stores and possess mechanisms for 
Ca2+ uptake (Ca2+-ATPases) and Ca2+ release (IP3R). In other species, acidocalcisomes and 
acidocalcisome-like structures have been shown to possess Ca2+-ATPases but, except for 
the acidocalcisome-like vacuole of S. cerevisiae that possesses a Ca2+ release mechanism 
(Ca2+/H+ exchanger VCX1) (204), it is not known how Ca2+ release occurs and whether it is 
involved in signaling.

FIG 8 Acidocalcisomes from C. reinhardtii assembling at the trans-Golgi face. Note the rugose E-face with granule and fusing Golgi vesicles (asterisks); Bar, 

100 nm. (Reproduced from reference 41with permission from Elsevier.) g, polyphosphate granule.
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Two important functions have been attributed to the acidocalcisome releasable Ca2+ 

in T. cruzi. One is the regulation of mitochondrial bioenergetics by the TcIP3R-mediated 
acidocalcisome Ca2+ release (28) (Fig. 9). Ca2+ is taken up by the mitochondria and results 
in activation of pyruvate dehydrogenase dephosphorylation and increased O2 consump­
tion. In the absence of TcIP3R, epimastigotes were viable but showed slower proliferation 
rate and increased metacyclogenesis (108). Trypomastigotes were less infective, and 
amastigotes did not show changes in replication. In addition to lower O2 consumption 
in the null mutants, there was an increased phosphorylation of pyruvate dehydrogenase 
E1a subunit, AMP:ATP ratio, ammonia production, and autophagy (108). Overexpression 
of TcIP3R led to lower metacyclogenesis, host cell invasion, and amastigote replication 
(108).

Acidocalcisome releasable Ca2+ is also important for host cell invasion by T. cruzi. 
There is an increase in the parasite cytosolic Ca2+ upon its attachment to host cell that is 
needed for normal invasion (205, 206). That this Ca2+ increase is coming from the 
acidocalcisomes is supported by the deficient invasion when the acidocalcisome TcIP3R 
expression is downregulated (108) or when the phospholipase C, which generates IP3, is 
inhibited (207). Host cell invasion requires energy (208), and TcIP3R-dependent acidocal­
cisome Ca2+ release is important to maintain mitochondrial bioenergetics (108). Finally, 
depletion of acidocalcisome Ca2+ by treatment of the cells with a combination of 
ionomycin and nigericin inhibits host cell invasion (207).

ROLE IN OSMOREGULATION

This role has been studied mainly in trypanosomatids. Trypanosomatids are submitted to 
drastic fluctuations in osmolarity during their life cycles. In the insect vector lower 
digestive tract, epimastigotes of T. cruzi are submitted to increasing osmolarities that 
reach values of up to 1,000 mosmol/kg in the yellow rectal content (209). When the 
blood stages of trypanosomatids circulate through the kidney of their mammalian hosts, 
they need to resist up to 1,200–1,400 mosmol/kg in the ascending limb of the vasa recta 
and return to isosmotic conditions of 300 mosmol/kg a few seconds later (210). In 
addition, these parasites, like all cells, need to regulate their volumes continuously (28).

As described above (Interaction of Acidocalcisomes with Other Organelles), upon 
hypo-osmotic stress, acidocalcisomes of T. cruzi take part in a complex pathway that 
leads to their fusion with the contractile vacuole complex and transfer of TcAQP1 (106). A 
model was proposed (106) suggesting that cell swelling, by activating a mechanosensi­
tive channel, causes an increase in cAMP resulting in a microtubule-dependent move­
ment and fusion of acidocalcisomes with the contractile vacuole and translocation of 
TcAQP1. This fusion would also lead to transfer of osmolytes (cations and phosphorus 
resulting from the hydrolysis of polyP) to the CVC, leading to water uptake that could 
then be released out of the cells. The process would be terminated by a phosphodiester­
ase that hydrolyzes cAMP to 5′-AMP. Some evidence in favor of this model is that (i) a 
mechanosensitive channel (211), adenylyl cyclases (212), and a cAMP phosphodiesterase 
C (213) are present in the CVC; (ii) fusion of acidocalcisomes to the CVC is enhanced by 
cAMP analogs and PDE inhibitors and inhibited by microtubule and adenylyl cyclase 
inhibitors (106); and (iii) there is hydrolysis of polyP upon hypo-osmotic stress (13) (Fig. 
10).

The involvement of acidocalcisomes in the response to hypo-osmotic stress has also 
been reported in other trypanosomatids. L. major acidocalcisomes were reported to lose 
Na+ and Cl− (214), and T. brucei acidocalcisome V-H+-PPase downregulation led to a 
deficient regulatory volume decrease after hypo-osmotic stress (127).

On the other hand, hyperosmotic stress results in increased synthesis of acidocalci­
some polyP (13), which could have a role in sequestering inorganic ions. This sequestra­
tion would reduce the ionic strength increased by water elimination and prevent cell 
damage (166, 215).
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FIG 9 Acidocalcisomes are in close contact with the mitochondria. Ca2+ (black circles) is released from acidocalcisomes upon stimulation of the IP3 receptor 

(IP3R) by IP3, and after passing the outer mitochondrial membrane through the highly permeable VDAC, it is handled by the MCU. When in the matrix, Ca2+ 

stimulates the TCA function and oxidative phosphorylation (OXPHOS) with the generation of ATP, preventing autophagy. MCU, mitochondrial Ca2+ uniporter; 

VDAC, voltage-dependent anion channel.
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ROLE IN CATION AND PHOSPHORUS STORAGE

Acidocalcisomes store phosphorous compounds such as Pi, PPi, and polyP, combined 
with inorganic (Ca2+, Mg2+, Zn2+, Fe2+, Cu2+, Mn2+, K+, and Na+) and organic cations, like 
lysine, arginine, ornithine, and polyamines. Except for the acidocalcisome-like platelet 
dense granules (24), or the secretory granules of mast cells (25), which can release the 
intact polyP polymer, phosphorus release from most acidocalcisomes is in the form 
of orthophosphate and through Pi transporters like TbPho91 and S. cerevisiae Pho91p 
(131). Dictyostelium discoideum also releases polyP (~9 mer) (216), but, although their 
acidocalcisome-like mass dense granules are rich in polyP (17), it is not known whether 
they are the source of extracellular polyP.

PolyP release in the case of human platelets has been extensively studied since it was 
found to have roles in blood clotting and fibrinolysis (217). Platelet-size polyP (~60 to 
100 mer) accelerates blood clotting by activating the contact pathway, promoting factor 
V activation, and inhibiting the function of tissue factor pathway inhibitor (TFTPI). It was 
found that platelet-size polyP accelerates factor V activation by factor Xa, thrombin (217, 
218), and factor XIa (219) and promotes factor XI back-activation by thrombin (220). It 
also delays clot lysis by promoting the thrombin-activatable fibrinolysis inhibitor (217) 
(Fig. 11). The ability of polyP to activate the contact pathway was shown to depend 
on the polymer length being more relevant with long-chain polyP, like that present in 
bacteria (218). Long-chain polyP found in bacteria is a potent proinflammatory agent 
(221), suppresses complement (222), and modulates fibrin clot structure and stability 
(223). PolyP secreted from mast cells could be important for their proinflammatory and 
procoagulant activity (25).

Storage of polyP in acidocalcisomes could be important as a phosphorus reserve for 
the synthesis of nucleic acids and phospholipids when the cells multiply. T. cruzi 

FIG 10 Model proposed for regulatory volume decrease in T. cruzi. Cell swelling causes activation of an adenylyl cyclase, probably by a mechanosensitive 

channel. cAMP formed stimulates the microtubule-dependent fusion of acidocalcisomes with the contractile vacuole and translocation of an aquaporin. A rise in 

ammonia in acidocalcisomes activates an exopolyphosphatase activity, which cleaves polyP, releasing inorganic phosphate residues and polyP-chelated cations. 

The resulting osmotic gradient sequesters water through the aid of the aquaporin. Water is released into the flagellar pocket. Amino acid release contributes to 

the volume recovery. A, acidocalcisome, AA, amino acid; CV, contractile vacuole.
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epimastigotes increase their synthesis of short- and long-chain polyP during the lag 
phase of proliferation and then consume it when they start dividing (13). PolyP is also 
higher during the logarithmic phase of growth and decreases in Leishmania spp. during 
stationary phase (148). There is also an increase in polyP synthesis when trypomastigotes 
differentiate into amastigotes, which are the forms that multiply within the host cells and 
possibly need to store polyP for their rapid intracellular replication (13). PolyP hydrolysis 
and synthesis also occurs under hypo-osmotic and hyperosmotic stress, respectively, and 
phosphorus and cations could serve as osmolytes with a role in cell recovery after 
osmotic stress (215). Finally, polyP could serve as chelating agent for inorganic and 
organic cations allowing their safe storage within acidocalcisomes. Some of these cations 
are essential for cell growth as they are required for a variety of reactions. For example, in 
trypanosomes zinc is a catalytic/structural cofactor of many metalloproteins; copper is a 
cofactor for Cu-containing enzymes, such as cytochrome c oxidase; iron is a cofactor of 
important enzymes, like iron superoxide dismutases (224); and manganese is required for 
protein glycosylation in the Golgi complex (225). These nutrient metal ions are concen­
trated for eventual delivery to the cytosol or other organelles. However, these metals are 
deleterious if they achieve high concentrations in the cell cytosol. In some cases, like with 
iron and copper, these metals can generate reactive oxygen species via Fenton-based 
reactions (226). In other cases, like with zinc and manganese, metabolic enzymes can be 
inhibited (227). Sequestration of these metals within acidocalcisomes could prevent their 
deleterious cellular reactions. This sequestration is driven by the pH gradient with the 
cytosol as many of these transporters take up metals in exchange for protons, which are 
taken up by the vacuolar H+-ATPase (V-ATPase) or the vacuolar H+-pyrophosphatase 
(VP1) localized to acidocalcisomes. The complexes of these metals with polyP within 
acidocalcisomes would help to prevent their release.

Except for Ca2+, for which there is a specialized channel, little is known on how other 
inorganic and organic cations are released from acidocalcisomes.

FIG 11 Steps of the coagulation cascade affected by polyP. PolyP (red) accelerates factor V activation by factors Xa and thrombin, accelerates factor IX 

back-activation by thrombin, inhibits the ability of TFPI to inhibit factor Xa, and enhances fibrin polymerization. LC, long-chain polyP; polyP, polyphosphate.

Review Microbiology and Molecular Biology Reviews

March 2024  Volume 88  Issue 1 10.1128/mmbr.00042-2326

https://doi.org/10.1128/mmbr.00042-23


OTHER ROLES OF ACIDOCALCISOMES

Other roles of acidocalcisomes include their involvement in autophagy, regulation of pH 
homeostasis, and infectivity.

The finding that blocking acidocalcisome biogenesis in T. brucei by downregulation 
of the expression of δ and β3 subunits of the AP-3 complex by RNAi inhibited amino 
acid starvation-induced autophagy revealed the involvement of acidocalcisomes in the 
initiation of the autophagic process (228). There was a correlation between acido­
calcisome acidification and autophagy. Acidocalcisome acidification increased when 
autophagy was induced by starvation or vanadate treatment, while acidocalcisome 
alkalinization by bafilomycin A1, monensin, or ionomycin and NH4Cl treatment inhibited 
autophagy (228). Notably, RNAi depletion of neither the V-H+-ATPase nor the V-H+-PPase, 
which acidify the acidocalcisomes, showed inhibition of autophagy. Phosphatidylinositol 
3-phosphate associates with acidocalcisomes upon starvation and could be involved in 
autophagy initiation (228).

It was found that when the expression of the V-H+-PPase of T. brucei procyclic forms 
was downregulated, the cells recovered their intracellular pH after acidification at a 
slower rate than controls and to a more acidic final pH, suggesting the involvement of 
these acidic compartment in pH homeostasis (127).

There is indirect evidence that acidocalcisome polyP is important for infectivity. 
Expression downregulation of acidocalcisome enzymes like the V-H+-PPase (127) or Vtc4 
(92), the catalytic subunit of the VTC complex in T. brucei, decreased polyP levels and 
virulence in mice. Expression downregulation of other proteins involved in the biogene­
sis of acidocalcisomes such as the AP-3 complex subunits in T. brucei (100) and the TOR 
kinase three in L. major (199) also reduces parasite virulence. Similarly, overexpression of 
the acidocalcisome-located VSP in T. cruzi (109) makes the parasite less prone to cause a 
persistent mouse infection.

ACIDOCALCISOMES AS DRUG TARGETS

The presence and relevance of acidocalcisomes in pathogenic eukaryotes suggest that 
they can be drug targets (229). Several acidocalcisome components are present in 
pathogens but absent in animals, like the V-H+-PPase (9, 14, 20, 50, 115, 120, 127, 128), 
VTC complex (91–93, 148, 153), Pho91 (131), and VIT (26), while others are distantly 
related to those present in animals, like VSP (99, 163, 164), V-H+-ATPase (117, 118), 
and Ca2+-ATPase (96, 104). Some of these pumps and enzymes have been screened for 
potential inhibitors (230). For example, the V-H+-PPase from plants is inhibited by the 
pyrophosphate analogs known as bisphosphonates, which contain a non-hydolizable 
P-C-P instead of a P-O-P backbone (231). AMDP and IDP, which have a non-hydrolyzable 
P-N-P group, are currently used as in vitro inhibitors of the enzyme (232). AMDP was 
shown to inhibit intracellular replication of T. gondii without affecting host infection 
(50, 233). The VSP present in trypanosomatids (99, 162) is essential for their normal 
proliferation and is inhibited by bisphosphonates (163), some of which are active in mice 
infections by T. brucei (99). Some drugs, like diamidines (234), accumulate in acidocalci­
somes, although the involvement of this phenomenon in their mode of action is not 
known.

In summary, there is convincing evidence that acidocalcisomes are potential drug 
targets and that continuing their study could contribute to new approaches for 
chemotherapy of protozoan parasite infections.

CONCLUSIONS AND FUTURE DIRECTIONS

Significant progress has been made in understanding the structure and function of 
acidocalcisomes in several species. Acidocalcisomes and acidocalcisome-like organelles 
have been identified in most phylogenetic groups. The search for acidocalcisome-like 
organelles led to the unexpected finding of polyP in human platelet dense granules (24) 
and mast cell granules (25) and its secretion, which led to the discovery of the role of 
this polymer in blood coagulation (217), thrombosis, and inflammation (235). Electron 
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microscopy studies have been fundamental for understanding their ultrastructure (41) 
and the elemental organization within the organelle (78). Progress has been made 
in the characterization of the channels, pumps, transporters, and enzymes of these 
organelles (26) and in their chemical composition (88).These studies led to the discovery 
in eukaryotes of enzymes previously found only in plants and archaea (V-H+-PPase) (9) 
and to the first eukaryotic enzymes involved in the synthesis of polyP (VTC complex) 
(142). Chlamydomonas acidocalcisomes have been developed as models for the study 
of organellar metal acquisition (85). Trypanosomatids and yeasts have been especially 
useful for advancing our understanding of the function of their different components 
and their involvement in cell signaling. The regulation of polyP synthesis in the 
acidocalcisome-like organelles of yeasts (143) and of the Pi release from acidocalcisomes 
of trypanosomes (131) by inositol pyrophosphates was first investigated. The finding of 
mechanisms for Ca2+ uptake and release in acidocalcisomes resulted in the discovery 
of the role of these organelles rather than the endoplasmic reticulum in the regulation 
of mitochondrial bioenergetics in trypanosomatids (108). A novel role in osmoregula­
tion involving fusion of acidocalcisomes with the contractile vacuole of T. cruzi (106), 
potentially present in other species possessing these organelles, was described. Future 
studies should include the investigation of (i) the role of the enzymes and transporters 
newly identified; (ii) the reason for organic cation accumulation and whether polyamines 
are present in all acidocalcisomes; (iii) the tethers that link acidocalcisomes to other 
organelles; (iv) whether the membrane contact sites are used for transfer of polyP or 
cations between organelles; and (v) additional roles of acidocalcisomes in cell signaling. 
In addition, it would be interesting to investigate whether some acidocalcisome-like 
vacuoles present in ciliates, other lysosome-related organelles of animal species, or 
organelles accumulating metals, such as the zincosomes (236), possess polyP.
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