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Abstract
Background  The pharmaceutical industry is continually striving to innovate drug development and formulation 
processes. Orally disintegrating tablets (ODTs) have gained popularity due to their quick release and patient-friendly 
characteristics. The choice of excipients in tablet formulations plays a critical role in ensuring product quality, 
highlighting its importance in tablet creation. The traditional trial-and-error approach to this process is both expensive 
and time-intensive. To tackle these obstacles, we introduce a fresh approach leveraging machine learning and deep 
learning methods to automate and enhance pre-formulation drug design.

Methods  We collected a comprehensive dataset of 1983 formulations, including excipient names, quantities, active 
ingredient details, and various physicochemical attributes. Our study focused on predicting two critical control test 
parameters: tablet disintegration time and hardness. We compared a range of models like deep learning, artificial 
neural networks, support vector machines, decision trees, multiple linear regression, and random forests.

Results  A 12-layer deep neural network, as a form of deep learning, surpassed alternative techniques by achieving 
73% accuracy for disintegration time and 99% for tablet hardness. This success underscores its efficacy in predicting 
complex pharmaceutical factors. Such an approach streamlines the drug formulation process, reducing iterations and 
material consumption.

Conclusions  Our findings highlight the deep learning potential in pharmaceutical formulations, particularly for 
tablet hardness prediction. Future work should focus on enlarging the dataset to improve model effectiveness and 
extend its application in pharmaceutical product development and assessment.

Keywords  Pharmaceutical formulation, Orally disintegrating tablets (ODTs), Machine learning, Deep learning, Drug 
design, Tablet disintegration time, Tablet hardness, Pharmaceutical innovation, Prediction model
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Introduction
In the pursuit of better medications, the pharmaceuti-
cal industry continues to explore new drugs and improve 
existing drugs. Tablets are one of the most commonly 
used and stable forms of medication due to their higher 
patient acceptance, ease of consumption, safety, portabil-
ity, higher physicochemical and microbiological stability, 
and efficient production capabilities. Among these, rap-
idly disintegrating tablets, due to their quick release of 
contents after consumption and rapid interaction with 
gastrointestinal fluids in less than 3  min, have gained 
increased patient favor and popularity [1, 2]. 

Tablets, which are prepared through the compression 
of one or more active pharmaceutical ingredients (APIs) 
along with excipients, can vary in effectiveness based on 
the formulation type. While excipients do not possess 
medicinal properties, their choice is crucial because of 
their impact on the final product quality, making it a crit-
ical element in tablet formulation design [3–7]. 

The appropriate selection of excipients for direct tab-
let compression can enhance the quality, stability, and 
desired performance of pharmaceutical tablets, ulti-
mately contributing to the success and effectiveness of 
this dosage form. The tablets characteristics are influ-
enced by the physicochemical properties of the active 
ingredient, formulation factors, and process parameters. 
These attributes hold special importance in the design 
of brand name drug formulations, and predicting them 
given the diversity of influential specifications can be 
challenging [8, 9].Understanding these connections 
is crucial in fabricating pharmaceutical products for 
improved quality and efficacy [10]. 

The development of pharmaceutical formulations 
involve pre-formulation experiments carried out through 
trial and error, a method that is time-consuming, costly, 
labor-intensive and leads to environmental pollution 
[11]. Consequently, simplification and automation of 
this process are crucial in the pharmaceutical industry 
[12]. The key parameter that requires optimization in the 
development of fast-disintegrating tablets is the tablet’s 
disintegration time. Initially, these tablets contain a vari-
ety of excipients. Parameters such as friability, hardness, 
and disintegration time are then evaluated to identify the 
best formulation balance, aiming for minimal disintegra-
tion time alongside suitable hardness and friability [13].
The ODTs formulation design is essential for reducing 
disintegration time without compromising the tablet’s 
quality [14]. 

In the past decade, numerous studies, have been con-
ducted in the field of pre-formulation drug design, with 
a focus on the automation and learnability of this pro-
cess through approaches based on machine learning 
techniques, [15–23], The utilization of these techniques 
can accelerate and facilitate the development process, 

formulation optimization, and lead to cost reductions 
[20].

The utilization of artificial intelligence technology in 
the pharmaceutical industry has experienced significant 
growth in recent years. Numerous studies have con-
firmed the effectiveness of AI in various applications. 
A considerable number of these studies have demon-
strated that deep learning consistently outperforms 
other machine learning methods in predicting the dis-
solution or tablets disintegration times, drug solubility in 
water, and drug discovery and identification [14, 24–28]. 
However, studies that represent machine learning or 
deep learning models in pharmaceutical formulations 
were carried out with constrained data conditions and 
a restricted dataset. Considering the superior ability of 
deep learning methodologies over conventional machine 
learning approaches in handling vast data volumes and 
empowering analysis, the inclusion of more data is likely 
to yield improved outcomes. Therefore, this study aimed 
to develop a prediction model employing advanced 
machine learning techniques and deep learning, aim-
ing to assist in the pre-formulation drug design process. 
This enhancement involves reducing the initial stages 
and iterations to find the best solution, as well as mini-
mizing the consumption of primary drug materials. The 
created model accurately predicts two important param-
eters—disintegration time and hardness—in control 
tests for fast-disintegrating tablets. This is accomplished 
by integrating additional input data, a dataset resulting 
from aggregating formulations under various laboratory 
conditions, enriched with many of records from multiple 
studies, enhancing its reliability and precision in assess-
ing these crucial tablet properties.

Method
This study represents the second phase of a two-phase 
project, encompassing dataset creation and model 
design. In the initial phase, our focus was on compiling 
a comprehensive dataset of rapidly disintegrating tablet 
formulations, which involved four key stages: extract-
ing articles from databases, compiling article specifica-
tions, extracting formulations from selected articles, and 
preprocessing and cleaning the data. These stages are 
elaborated upon in the article [29]. In the second phase, 
presented in this study, we leveraged the dataset cre-
ated in the first phase to develop predictive models for 
estimating disintegration time and tablet hardness. This 
phase involved three main stages, namely, data prepro-
cessing, data splitting, and development, which centered 
on the design and evaluation of predictive models using 
deep learning and machine learning techniques.
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Data description
The dataset from the initial phase of the aforementioned 
project consisted of 1983 formulations, each associated 
with 78 features. These formulations were obtained from 
articles retrieved from databases such as PubMed, Web 

of Science, Scopus, and Google Scholar, spanning from 
2010 to 2020. A visual representation of the dataset cre-
ation process employed in this research is depicted in 
Fig. 1 [29]. This research focused on analyzing two char-
acteristics, disintegration time and tablet hardness, as 

Fig. 1  Stages of extracting selected articles [29]
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key variables of interest given their significance in the 
formulation process.

The dataset utilized in this study contains comprehen-
sive information crucial for formulating and assessing 
pharmaceutical products. Table  1 outlines a summary 
of this dataset, incorporating different aspects related to 
the active ingredient, excipients, and structural features. 
Categorized into seven general dimensions, this dataset 
presents valuable insights into the formulation process, 
facilitating a comprehensive understanding of formula-
tion characteristics.

Modeling
The research was structured into three phases. Initially, 
data preprocessing procedures were implemented (2.1). 
Subsequently, the study dataset was segmented into three 
sections: training, validation, and test datasets (2.2). The 
final phase centered on constructing predictive models 
(2.3).

Data preprocessing
At this point, the data preprocessing and cleaning 
were performed, and in the following, various steps are 
detailed separately:

The steps involved in standardizing excipient and 
active ingredient names, as well as structural property 

values, included normalizing excipient material names 
(abbreviations and alternate titles), compiling a stan-
dardized list of active ingredients (abbreviations, alterna-
tive names, converting brand names to generic names), 
aligning units for structural properties, setting the mean 
as the midpoint and one-sixth of the range as the stan-
dard deviation for values reported within a numerical 
range. Additionally, the data was cleaned by reformat-
ting it from a multi-row structure to a single record per 
formulation for better processing, and extreme data val-
ues (such as outliers related to disintegration time) were 
removed from consideration by deleting corresponding 
records.

Data splitting
Before the modeling process, the research dataset was 
split into training, validation, and test datasets for each 
algorithm. This was accomplished by employing the 
Repeated Random Train-Validation-Test split method, 
where random splits were performed multiple times to 
attain a more reliable performance assessment. Eventu-
ally, the optimal splitting percentage was determined 
for each method. Based on these principles, in the deep 
learning method, 85% of the dataset was allocated for the 
training set, 5% for the validation set, and 10% for the test 
set. In the artificial neural network method, these ratios 
were 90%, 5%, and 5% respectively. For other machine 
learning methods, an 80% training set and a 20% test set 
were considered for the data.

The training dataset was used for model training and 
learning. The validation dataset was also utilized for fine-
tuning the hyperparameters of the algorithms, aimed at 
enhancing performance and preventing overfitting, par-
ticularly in the case of deep learning models and artificial 
neural networks exclusively. Finally, the test dataset was 
used to assess the model’s performance in predicting new 
data.

Development
Given the prevalence of machine learning and deep 
learning methods in the field of pharmaceutical technol-
ogies and considering the nature of the formulation data-
set which includes formulation compositions and process 
control tests for drug manufacturing (17, 31, 39, 72, 73) 
(39), in this study, deep learning methods were employed, 
with the primary focus on the fully connected deep neu-
ral network architecture.

In addition to deep neural networks (DNNs), other 
methods such as artificial neural networks (ANNs), sup-
port vector machines (SVMs), general neural network 
regression (GRNNs), decision trees (DTs), multiple linear 
regression (MLR), and the random forest (RF) ensem-
ble method, were used for investigation and compari-
son. This choice was made due to the relevance of these 

Table 1  Summary of dataset dimensions and attributes
Dimension Attributes
Quality control tests for formulations Disintegration Time

Hardness
Friability
Water Absorption Ratio

Excipients Excipient 1 Amount
Excipient 2 Amount
…
Excipient 56 Amount

Characteristics of powdered material 
composition

Bulk Density
Tapped Density
Carr’s Compressibility Index
Hausner Ratio
Angle of Repose

Physical attributes of the tablet after 
blending and compression

Thickness
Wetting Time

Total tablet weight Tablet Weight
Amount of active ingredient Active ingredient weight
Physicochemical properties of the 
active
ingredient

Molecular Weight
XLogP3-AA
Hydrogen Bond Donor Count
Hydrogen Bond Acceptor Count
Rotational Bond Count
Topological Surface Area
Heavy Atom Count
Complexity
LogS
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techniques in pharmaceutical research and the potential 
benefits they offer in extracting insights from complex 
data.

We conducted hyperparameter optimization to fine-
tune the parameters of our models for optimal per-
formance. This involved systematically testing and 
evaluating various combinations of hyperparameters 
using techniques such as grid searches and random 
searches. Specifically, we explored different values for 
each hyperparameter, including learning rates, batch 
sizes, activation functions, and regularization techniques. 
The goal was to identify the set of hyperparameters that 
maximized the performance metrics of our models, 
such as accuracy or mean squared error. After extensive 
experimentation and comparison, we selected the hyper-
parameters that yielded the best results based on our 
evaluation criteria.

Hyperparameters of the deep learning method
For the prediction of disintegration time, as illustrated in 
Fig. 2, the deep neural network is structured as a 12-layer 
network comprising 8 hidden layers, two dropout layers 

(with a dropout rate of 0.2) to mitigate overfitting, and 
input and output layers. This architecture was carefully 
designed to optimize the model’s performance and gen-
eralization ability. In each hidden layer, a total of 512 
neurons were placed, and the activation function for 
each of these hidden layers was set as the ‘Rectified Lin-
ear Unit (ReLU)’ function. Considering that the model 
is a regression model and needs to produce a single esti-
mated value in the final layer, no activation function was 
applied to this layer. During model training, the Adam 
optimizer was employed with a learning rate of 0.0007 
over 500 epochs, while the batch size was set to 256. For 
predicting hardness, the deep neural network had a simi-
lar structure, with one less hidden layer, and the number 
of neurons in the hidden layers was adjusted to 320. The 
learning rate was set to 0.001.

Hyperparameters of machine learning methods
Regression models were developed using various 
machine learning methods for comparison with DNNs, 
including ANNs, SVMs, GRNNs, DTs, MLR, and RF 
ensemble method. These models were trained using the 

Fig. 2  Architecture of the deep neural network
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scikit-learn package. The artificial neural network was 
designed with an input layer, a hidden layer with 256 
neurons, and an output layer. The ReLU served as the 
activation function in the hidden layers, and the Adam 
optimizer was used with a learning rate of 0.001. For 
SVM, a linear kernel was employed, whereas an RBF ker-
nel was used for GRNN. In the case of RF, the number of 
decision trees in the forest (n_estimators) was set to 30.

Evaluation
As selecting a model that exhibits desirable accuracy 
and precision is crucial in the process of designing and 
developing predictive models, in this study, various per-
formance measurement methods (such as Mean Squared 
Error, Coefficient of Determination, and Mean Absolute 
Error) were considered to assess the predictive accuracy 
and compare different models. The formulas for each of 
these metrics are as shown below:

Root Mean Squared Error (RMSE).	

RMSE =

√√√√ 1

N

N∑

j=1

(targetj − outputj)
2

The RMSE measures the average deviation between pre-
dicted values (output) and actual values (target). It is cal-
culated by taking the square root of the average of the 
squared differences between each predicted and actual 
value.

Coefficient of determination (R2).	

R2 =

∑n
i=1 (outputi −

−
target)

2

∑n
i=1 (targeti −

−
target)

2

The R2 value, also known as the coefficient of determi-
nation, indicates the proportion of the variance in the 
dependent variable(s) that is predictable from the inde-
pendent variables in a regression model. It ranges from 0 
to 1, where 1 indicates a perfect fit.

Mean Absolute Error (MAE).	
MAE =

1

N

∑N

J=1

∣∣targetj − outputj
∣∣

The MAE represents the average absolute difference 
between the predicted (output) and actual (target) val-
ues. It provides a measure of the model’s accuracy in 
predicting the target variable. To assess the accuracy of 
the model within three different tolerance levels of the 
predicted values, the following formulas were applied. 
The rationale behind this calculation is as follows: if the 
discrepancy between the predicted value and the true 
value is less than 10% (15%, 20%) of the true value, it is 

considered a correct prediction. To assess the model’s 
accuracy within three different percent tolerances of the 
predicted values, the following formulas were employed. 
The underlying principle of this calculation is as fol-
lows: if the difference between the predicted value and 
the actual value is less than 10% (15%, 20%) of the actual 
value, it is deemed a correct prediction.

	
Accuracytolerance=10% =

Number (
∣∣∣Yi − Ŷi

∣∣∣ ≤ 0.1 ∗ Ŷ )

All predictions
� (1)

	
Accuracytolerance=15% =

Number (
∣∣∣Yi − Ŷi

∣∣∣ ≤ 0.15 ∗ Ŷ )

All predictions
� (2)

	
Accuracytolerance=20% =

Number (
∣∣∣Yi − Ŷi

∣∣∣ ≤ 0.2 ∗ Ŷ )

All predictions
� (3)

To implement the predictive models, Python version 
3.6.3 was utilized, along with the PyCharm 2020.3 pro-
gramming environment.

Result
The predicted results of various models for the “disinte-
gration time” response variable can be found in Table 1, 
while those for the “hardness” of tablets are detailed in 
Table 2.

Table 2 presents the predictive performance metrics of 
various models for the “disintegration time” variable. The 
MAE, RMSE, R2, and accuracy metrics are provided for 
each model, along with the train-test split ratio.

MAE metric measures the average absolute difference 
between the predicted and actual disintegration times. 
Lower values indicate better predictive accuracy.

The RMSE represents the square root of the average 
squared difference between the predicted and actual 
values. It provides a measure of the overall error of the 
model predictions, with lower values indicating better 
performance.

R2 indicates the proportion of the variance in the 
response variable that is explained by the model. Higher 
values closer to 1 suggest better fit and predictive 
capability.

Accuracy metrics are provided for different tolerance 
levels, indicating the percentage of predictions that fall 
within a certain percentage tolerance of the actual values. 
the details of calculation accuracy metric are introduced 
in the Methods section.

The results demonstrate the performance of each 
model in accurately predicting the disintegration time 
of tablets, with the DNN model achieving notably high 
accuracy across various metrics compared to other 
methods.
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Table 3 presents the predictive performance metrics of 
various models for the “hardness” tablet response vari-
able, similar to Table 2.

Lower MAE values indicate better predictive accuracy, 
representing the average absolute difference between the 
predicted and actual hardness values.

Lower RMSE values indicate better overall predictive 
accuracy, as measured by the square root of the aver-
age squared difference between the predicted and actual 
hardness values.

Higher R2 values indicate a better fit of the model to 
the data, explaining a larger proportion of the variance in 
hardness values.

Similar to Table  1, accuracy metrics are provided for 
different tolerance levels, indicating the percentage of 
predictions within a certain percentage tolerance of the 
actual hardness values.

The results highlight the superior performance of the 
deep neural network (DNN) model in accurately pre-
dicting tablet hardness compared to other methods, as 
evidenced by higher accuracy metrics across various tol-
erance levels.

In Figs. 3 and 4, the predicted values generated by the 
deep neural network predictive model are shown along-
side the actual disintegration time and hardness values of 
the tablets within the dataset. To offer additional expla-
nation regarding the comparison of predictions, Table 4 
illustrates ten sample data points, showing the actual 
disintegration time and hardness, as well as the model’s 
corresponding predictions. This tabular format provides 
a thorough analysis of the model’s predictive precision at 
the level of each individual sample.

Discussion
The main objective of this study is to improve the optimi-
zation of pharmaceutical formulations by utilizing arti-
ficial intelligence, particularly deep learning techniques. 
The approach involved creating predictive models to 
automate the optimization process, ultimately reducing 
the number of iterations and material usage in experi-
mental tablet manufacturing and testing.

The automation of this process is realized through the 
development of a predictive model. To identify the most 
effective predictive model, a range of methods includ-
ing deep learning techniques, artificial neural networks, 
support vector machines, general neural network regres-
sion, decision trees, multiple linear regression, and the 
ensemble method of random forest were employed. 
These methodologies were subsequently compared using 
assessment metrics such as the Mean Squared Error, 
Coefficient of Determination, and Mean Absolute Error.

Given the complexity of tablet contents and their man-
ufacturing process, predicting variables such as disinte-
gration time and tablet hardness using conventional and Ta
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outdated methods is not feasible. These variables are cor-
related with physical characteristics such as particle size, 
shape, and tablet thickness, as well as formulation com-
ponents (excipients and active ingredients) [30]. 

Prediction models were designed and implemented on 
the training dataset, and subsequently, these models were 
evaluated using the test dataset.

The accuracy (tolerance of 20%) of the machine learn-
ing techniques (ANN, GRNN, DT, MLR, SMR, RF) for 
predicting the disintegration time variable were 67%, 
64%, 50%, 30%, 35%, and 56%, respectively. The corre-
sponding R2 values for the same methods were 0.52, 0.35, 
0.36, 0.41, 0.24, and 0.70.

Similarly, for the tablet hardness variable, the accuracy 
rates of the machine learning techniques (ANN, GRNN, 
DT, MLR, SMR, RF) were 95%, 89%, 88%, 62%, 68%, and 
92%, respectively. The corresponding R2 values for the 
same methods were 0.82, 0.20, 0.87, 0.23, 0.10, and 0.68.

Additionally, the accuracy of the deep learning tech-
nique for predicting the disintegration time variable (20% 
tolerance) was 73%. The corresponding R2 for this vari-
able was 77%.

For the tablet hardness response variable, the accuracy 
rate achieved using the deep learning technique was 99%, 
with an R2 value of 91%. These outcomes highlight the 
effectiveness of the deep learning approach in predicting 
the specified response variables and the correlation cap-
tured by the R2 metric.

By comparing the results obtained from various models 
on the dataset of this study, it becomes evident that the 
deep learning method exhibited superior performance.

The tablet hardness response variable exhibited supe-
rior performance compared to the disintegration time. 
This variation in performance can be attributed to the 
inherent characteristics of the variable, which is influ-
enced by a greater amount of interdependencies.

As shown in Fig. 5, considering the results and charac-
teristics of deep learning methods, it can be concluded 
that increasing the amount of data will improve the 
model’s performance. In contrast, conventional machine 
learning models do not show any performance improve-
ment when reaching a specific threshold, even with 
increased data.

As indicated in a prior investigation [10], the impact 
of active ingredient properties on tablet disintegration 
time is more intricate than that on tablet hardness. This 
complexity poses a more challenging prediction task. 
To address this challenge and enhance predictive accu-
racy, a larger dataset containing a diverse range of active 
ingredients will be necessary. The findings of the current 
research support and confirm this assertion.

In a similar study [14], which was conducted for rapidly 
disintegrating tablets, the study dataset consisted of only 
145 formulations. Deep learning methods and neural Ta
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Fig. 4  Predicted hardness values vs. actual values - deep learning method

 

Fig. 3  Predicted disintegration time values vs actual values - deep learning method
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networks were implemented for the data. the authors of 
the article set the response variable range (disintegra-
tion time) in the study dataset from zero to 100 as the 
basis. They defined 10% of this range as the tolerance 
threshold for their evaluation. If the difference between 
the predicted and actual values was less than 10 s, it was 
considered a correct estimate. Using this criterion, deep 
learning achieved an accuracy of 80% on the test data.

Following discussions with specialists in the field, it 
was recognized that this approach (constant value) might 
pose limitations when dealing with data featuring short 
disintegration times. This could introduce bias and ren-
der the method unsuitable for model fitting and evalua-
tion. Consequently, in the present study, the tolerance 
percentage was employed as the evaluation metric for the 
assessment and comparison of the predicted responses. 
This approach is deemed to be a more appropriate metric 
for this scenario. (Eq. 1–3)

In a study conducted in 2016 [30], the prediction of 
response variables for disintegration time and tablet 
hardness was carried out using non-destructive meth-
ods of ultrasound waves and machine learning. The aim 
of this research was to establish a practical and expand-
able framework for the rational design and evaluation of 
various pharmaceutical products in the pharmaceutical 

sciences. They focused solely on variables related to phys-
ical and mechanical characteristics, as well as the process 
parameters of tablet production for modeling. Factors 
that were formulation-dependent and had limited gen-
eralizability, such as excipients used in the formulation, 
were neglected. However, in the present study, in addi-
tion to physical characteristics, the attributes of the pow-
dered mixture of excipients and active ingredients, the 
physicochemical attributes of the active substance, and 
the individual quantities of excipients were incorporated 
into the model. This broadened approach was taken to 
capture a more comprehensive representation of the for-
mulation and its constituents.

Despite the valuable insights gained from this study, it 
is important to acknowledge its limitations. These limita-
tions delineate the scope within which our findings can 
be interpreted and emphasize areas that warrant further 
investigation. Due to insufficient data for each active 
ingredient, especially in formulations with a disintegra-
tion time exceeding 180 s, there was a noticeable differ-
ence between the estimated time and the actual time. 
Therefore, it can be concluded that the model will per-
form better when an adequate number of instances are 
available for each active ingredient.

Furthermore, another limitation of this study was the 
use of data from various studies, which may have dif-
ferences in terms of the devices used to measure the 
response variable, the rotation speed of the blender, the 
pressure of the tablet press machine, and the method 
of mixing the ingredients. Due to the high diversity of 
these factors and the absence of references to the types of 
devices used in some articles, it was not possible to stan-
dardize them. These factors could have an impact on the 
response, but they were not considered in this study.

In previous and similar studies [10, 14, 28, 30, 32] all 
the data used in the models were extracted in limited 
quantities and from a single laboratory with consistent 
settings. However, in this study, a comprehensive data-
set of formulations was used, and the data were extracted 
from various sources [29].Therefore, considering the 
diversity of the data and the wide range of device settings 
used, this data diversity can be considered a prominent 
feature of this research. Achieving an accuracy of 71% in 
predicting tablet disintegration time under the current 
study conditions is desirable. Hence, it can be claimed 
that the models presented in this study can provide 
acceptable predictions of response variables for new data 
with different settings. This is a notable strength of the 
current study.

Some variables, such as tablet hardness, are measured 
after the final tablet production, and therefore, their 
values are not available during the formulation design 
phase. However, considering the significant impact of 
this variable on tablet disintegration time, as indicated in 

Table 4  Sample records of predicted values vs actual values
Disintegration time (Second) Hardness (Newton)
Actual Prediction Actual Prediction
96 101.95 5.2 5.97
15 15.48 3.46 3.57
17 20.07 6.7 5.90
20 18.42 3.27 3.23
32 34.76 2.5 2.93
25 29.09 2.3 2.46
80 66.82 5.12 5.28
18.15 19.22 3.8 4.21
43 40.15 4.77 4.79
50.5 57.92 3.65 3.57

Fig. 5  Comparison of different methods with data volume increases [31]
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study [30], in future research on the dataset [29], it may 
be beneficial to predict this variable. Subsequently, using 
the predicted value as one of the predictive variables in 
the tablet formulation prediction model can potentially 
enhance the model’s performance and should be explored 
to improve model accuracy and reliability.

In future studies, tablet disintegration time could 
be considered a qualitative variable and classification 
machine learning methods and deep learning techniques 
could be applied. This approach can offer various applica-
tions compared to the quantitative approach in industry. 
By doing so, it may provide valuable insights and poten-
tially improve the prediction and control of tablet disin-
tegration behavior, leading to more efficient and versatile 
applications in pharmaceutical and related industries.

To comprehensively assess the models created for 
future use as practical tools, given the diverse nature of 
excipients and the sparsity of the databases in the col-
umns related to them, improving the models can involve 
creating another dataset by aggregating excipients based 
on their performance in tablet formulations. Creating a 
supplementary dataset that focuses on excipient perfor-
mance can be beneficial. This dataset can provide a more 
detailed understanding of how different excipients influ-
ence tablet properties and disintegration behavior. By 
expanding the dataset with more excipient-related fea-
tures and their effects on tablet characteristics, the mod-
el’s predictive capabilities can be enhanced, making it a 
more valuable tool for future applications, especially in 
the pharmaceutical industry.

Furthermore, deep learning techniques have been used 
for different tasks, including sequence feature analysis 
[33] and clustering [34], and they also offer significant 
potential for optimizing pharmaceutical formulations in 
the future.

The findings of this study underscore the importance 
of data diversity and model sophistication in achieving 
accurate predictions, ultimately contributing to more 
efficient pharmaceutical manufacturing processes.

Conclusion
In conclusion, our research presents a groundbreaking 
approach to pharmaceutical formulation by harnessing 
the power of machine learning and deep learning tech-
niques. We addressed the challenges in pre-formulation 
drug design, including the time-consuming and costly 
trial-and-error process. Through the analysis of a com-
prehensive dataset comprising formulation details and 
physicochemical attributes, we successfully predicted 
two critical control test parameters: disintegration time 
and tablet hardness.

Our study demonstrated that deep learning, particu-
larly a 12-layer deep neural network, outperformed other 
methods, achieving remarkable accuracy in predicting 

these complex pharmaceutical variables. This approach 
offers the potential to streamline the drug formulation 
process, reducing the need for extensive iterations and 
saving valuable consumable materials.

As the pharmaceutical industry continues to evolve, 
the utilization of deep learning and machine learning 
techniques holds promise for optimizing pharmaceuti-
cal product development. Future work should focus on 
expanding the dataset, improving model performance, 
and exploring broader applications in pharmaceutical 
design and evaluation. Ultimately, our research contrib-
utes to the advancement of pharmaceutical science and 
innovation.
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