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Fully automated deep learning 
based auto‑contouring 
of liver segments and spleen 
on contrast‑enhanced CT images
Aashish C. Gupta 1,2*, Guillaume Cazoulat 1, Mais Al Taie 1, Sireesha Yedururi 3, 
Bastien Rigaud 1, Austin Castelo 1, John Wood 1, Cenji Yu 2,4, Caleb O’Connor 1, Usama Salem 3, 
Jessica Albuquerque Marques Silva 5, Aaron Kyle Jones 1,2, Molly McCulloch 1, Bruno C. Odisio 5, 
Eugene J. Koay 2,6 & Kristy K. Brock 1,2,4*

Manual delineation of liver segments on computed tomography (CT) images for primary/secondary 
liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, 
we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-
enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net ( MpaU−Net) 
and 3d full resolution of nnU-Net ( MnnU−Net) to determine the best architecture ( BA) . BA was used 
with vessels ( MVess) and spleen ( Mseg+spleen) to assess the impact on segment contouring. Models 
were trained, validated, and tested on 160 ( CRTTrain ), 40 ( CRTVal ), 33 ( CLS ), 25 (CCH) and 20 (CPVE) CECT 
of LC patients. MnnU−Net outperformed MpaU−Net across all segments with median differences in 
Dice similarity coefficients (DSC) ranging 0.03–0.05 (p < 0.05). Mseg+spleen , and MnnU−Net were not 
statistically different (p > 0.05), however, both were slightly better than MVess by DSC up to 0.02. The 
final model, Mseg+spleen , showed a mean DSC of 0.89, 0.82, 0.88, 0.87, 0.96, and 0.95 for segments 1, 
2, 3, 4, 5–8, and spleen, respectively on entire test sets. Qualitatively, more than 85% of cases showed 
a Likert score ≥ 3 on test sets. Our final model provides clinically acceptable contours of liver segments 
and spleen which are usable in treatment planning.

Liver cancer is the third most common cause of the cancer-related deaths globally and it resulted in roughly 
700,000 deaths in 20201. Surgery (resection or lobectomy) is considered the main line of treatment especially 
in colorectal liver metastases2 in which segment(s) or entire lobe is removed depending upon the extent of 
tumor3,4. However, the ability to perform liver surgery is largely dependent upon accurate localization of tumor 
with respect to segments and the volumetric measurement of liver segments as it allows clinician to ensure that 
the patient would have minimum remnant functional liver volume after the surgery (e.g. 20% in normal liver)4. 
To quantify the functional liver volume, radiologists/technologists perform manual contouring of segments on 
the contrast-enhanced CT (CECT) images following the architecture of vessels, ligament and organs5. However, 
manual contouring is time intensive6 and prone to inter/intra-observer variabilities7 which can affect the volu-
metric measurement and subsequent clinical use. Therefore, automation of liver segment contouring is crucial 
to evaluate the eligibility of patient for liver surgery.

Several semi-automatic and automatic segmentation approaches exist but recent advancements in Deep 
Learning (DL) based models have outperformed other methods in terms of required time and segmentation 
accuracies across various organ sites8. Recent surveys have reported a plethora of architectures used in medical 
image segmentation out of which U-Net based architectures are widely used for organ segmentations9,10. In par-
ticular, 3D U-Net (the 3D extension of U-Net) is of great importance as it offers two major features (1) training 
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with sparse volumetric data (2) input of 3D volume/patch in the training which allows the architecture to retain 
more features in contrast to 2D input11. Both of those features make 3D U-Net more applicable in 3D organ 
segmentation, and resultingly, several studies12,13 have reported reasonable accuracy and clinically translatable 
performance of organ segmentations with 3D U-Net. Currently, nnU-Net is one of the state-of-art segmenta-
tion framework which utilizes U-Net based architectures (combined or individual 2D and 3D U-Net) to train 
segmentation models14, and has shown excellent translatable clinical performance in abdominal segmentation15. 
In addition, nnU-Net is a self-configuring framework and automatically performs hyperparameter tuning and 
data augmentation which promises to result in higher segmentation accuracies14. However, the presence of 3D 
input patch also implies the inclusion of features from irrelevant regions which involve large number of trainable 
parameters resulting in excessive requirement of computational resources. To address such issues, Attention based 
gating has been implemented by Oktay et al. 2018 in the standard 2D U-Net, which uses attention coefficients to 
identify relevant image features and merge them just before the concatenation operation in the skip-connection 
phase16. Additionally, Attention U-Net showed consistent significant performance improvements when its per-
formance was compared with 3D U-Net16. However, since 3D input patch would also preserve higher number 
of relevant features compared to 2D input, it is therefore reasonable to implement attention mechanism in the 
multiple skip connection of standard “3D U-Net” and test if it would improve the segmentation accuracies.

Additionally, with regard to model training for segment contouring in the patients with primary and meta-
static liver disease, the architecture has to face liver specific anatomical challenges which could result in uncer-
tainties in demarcation of liver segments. For example, the occlusion of vessels due to tumor could result in dis-
tortion of liver contours and liver segments. Both aforementioned issues could be addressed if we can implement 
localization of vessels during the training. Another important condition is enlargement of liver and spleen in 
cancer patients in which spleen is abutted with segment 2 and 3 which result in incorrect separation of segments 
with spleen. One possible approach to address such issues is training the model with both segments and spleen. 
Currently, a very few DL based liver segmentation studies exist that investigated the automated segmentation 
accuracy on CT images of patients with liver tumors. Tian et al. 2019 implemented global and local context 
U-Nets (GLC-UNet) which first segmented the whole liver and then localized vessel-based slice features are 
utilized to segment the Couinaud’s segments17. GLC-UNet achieved a mean segment DSC similarity coefficient 
(DSCs) of 0.92. Additionally, a recent study by Lee et al. 2022 developed two different models to separately 
contour the liver segments and spleen and achieved a median DSC score around 0.91 across the segments18.

In this study, our central goal is to develop a fully automated segmentation model that can achieve consist-
ent, robust, expert observer-level accuracy in liver segment contouring to guide the liver surgery planning. To 
achieve this goal, we have established three main aims (1) to determine the best architecture for auto segmenta-
tion of liver segments by investigating the performance of 3D patch based attention U-Net (paU-Net) over the 
gold-standard framework of nnU-Net (2) to determine if addition of vessels and spleen during segmentation 
training could improve the liver segments segmentations (3) to perform quantitative and qualitative assessment 
of model across patients undergoing RT, general evaluation for liver surgery, portal vein embolization (PVE), 
and CT based liver pathologies used in various segmentation challenges.

Materials and methods
Overall framework
Figure 1 shows the overall workflow of our study which involves three major blocks. Starting in the architecture 
selection block (block 1), we investigated the best architecture by comparing Attention 3D U-Net and 3D full 
resolution from nnU-Net. In the uncertainty improvement block (block 2), we investigated whether the addition 
of vessels and spleen during model training improves the segmentation results while using the best architecture 
identified from block 1. Lastly, in the Model Assessment (block 3), all the models were evaluated on surgery 
candidates’ CT scans, patients who received portal vein embolization, non-contrast CT images and on external 
CT datasets from various segmentation challenges19–22.

Datasets patient population
The study included two major data group, namely, an internal data group (IDG) and external data group (EDG). 
The IDG consisted of contrast enhanced CT (CECT) scans of patients diagnosed with primary and metastatic 
liver cancer at our institution. Within IDG, we have four cohorts. The radiotherapy cohort ( CRT ) consisted of 100 
patients with a radiotherapy planning and 3-month follow-up CECT image. The surgery cohort ( CLS ) included 
33 CT scans of patients that were being evaluated for liver surgery. The non-contrast cohort ( CNC ) included 
20 non-contrast CT (non-CECT) scans of patient with contrast scans used in the training. The portal vein 
embolization cohort ( CPVE ) included 20 CT scans of patient undergoing portal vein embolization for the liver 
(PVE). All patients from internal data group were retrospectively enrolled in a Health Insurance Portability and 
Accountability Act-compliant institutional review board approved study (The University of Texas MD Anderson 
Cancer Center IRB PA18-0832) with a waiver of informed consent. Use of data was approved by the IRB and all 
experiments were performed in accordance with relevant guidelines and regulations.

The EDG consisted of challenge data ( CCH ) which included a total of 25 patients obtained from 
3D-IRCADb-01 ( CIRCAD−01 ), 3D-IRCADb-02 (CIRCAD−02 ), task 8 Medical Imaging Decathlon Challenge ( CMID ) 
and CHAOS ( CCHAOS ) datasets19–21. Table 1 shows the detailed technical information regarding the images and 
patients used in this study.

Manual and AI edited segmentations
Ground-truth segmentations of the patient datasets included liver segments 1, 2, 3, 4, 5–8 (combined), spleen, 
and vessels. Two major approaches were used to contour the liver segments. In first approach, an in-house 
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nnU-Net model trained on the subset of CRTTrain was used to contour liver segments on CRT and CLS . After-
wards, the model generated contours were edited or recontoured fully by a radiologist (MA) as per the need. 
In second approach, liver segments were manually contoured by the radiologist MA on CPVE , and CCH without 
any assistance from AI models. Additionally, spleen contours on CRT and CCH were first created by a nnU-Net 
model trained on task 9 Medical Imaging Decathlon Dataset20 and were manually edited by a radiologist (MA) 
or students (SR and ACG). On CPVE , CLS , and CNC the spleen was manually contoured by ACG without using 
any AI segmentations. Lastly, the reader is referred to Sect. “Uncertainty improvement-impact of vessels and 
spleen” for mechanism behind vessels contours.

Architecture selection
We have investigated two variants of 3D U-Net in this study. First, we developed a 3D patch-based U-Net with 
attention mechanism based on the standard 3D U-Net11 and attention gate16. As shown in Fig. 1A and B, in the 
analysis path, a patch size of 256 × 256 × 24 was input to the network. The network consisted of 4 layers with 2 
blocks in each layer. A convolution of 3 × 3 × 3 is performed at each block with group normalization and Leaky 
ReLU followed by a 2 × 2 × 2 max pooling before transitioning to the next layer. In the decoder, blocks within 
each layer undergo up-sampling through convolution of 3 × 3 × 3. A skip-layer with concatenation is implemented 
which feeds the feature map from corresponding block in encoder to attention gate. The attention gate suppresses 

Figure 1.   (A) Overall workflow of the study. (B) Architecture for 3D-patch based U-Net with attention 
mechanism (C) nnU-Net framework which automatically optimizes the architecture based on the type of 
datasets. *Quantitative analysis were performed by calculating Dice similarity coefficient, 95th percentile 
Hausdoff ’s distance, and percent change in the volume of segments and spleen between AI predicted and 
ground-truth contours. Statistical analysis was performed using Wilcoxon signed rank test with Bonferroni 
correction. **All models were assessed on cohorts of Block 3 using both quantitative and qualitative analyses 
(Figures created using biore​nder.​com).

https://biorender.com
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the irrelevant features and noise as per the standard methodology16. The gated feature is then concatenated to the 
transposed block in the analysis. A final 1 × 1 × 1 convolution is performed in the last layer of the decoder path 
to produce the image with selected number of classes. Categorical cross entropy is used as the loss function for 
validation. To identify the best hyperparameters, we performed multiple trainings (epoch = 1000) using stable 
and cyclic learning rates (rate = 0.0001) for number of blocks = 2 and 3 and number of filters = 16, 32, 48, 64. As 
a result, 16 models were trained.

Second, we investigated the 3D full-resolution configuration of nnU-Net which is also a patch-based 3D 
U-Net. nnU-Net automatically generates the segmentation pipeline specific to the dataset through its three 
major domains: fixed, rule-based, and empirical parameters, which handles all the preprocessing, training and 
postprocessing for the datasets14. Unlike our in-house architecture, the nnU-Net automatically selects the hyper-
parameter that is suitable for a dataset. Figure 1C shows an example of nnU-Net architecture which was used to 
train the model in section. A patch size of 192 × 192 × 48 with a batch size of 2 is input to the architecture with 5 
layers, 2 blocks, and 32 filters. In the encoder, there is a convolution of 3 × 3x × 3 followed by Intensity Normaliza-
tion (IN) and a 2 × 2 × 2 max pooling. In the decoder, blocks undergo up-sampling using the same mechanism 
as described for the 3D U-Net. Data augmentation was performed automatically as described in the nnU-Net 
guidelines14. Combined DSC and cross-entropy are used as the loss function.

To identify the best architecture, we trained two models, one based on the patch U-Net (MpaU-Net) and one 
based on the nnU-Net (MnnU-Net) to predict the segmentation of segments 1, 2, 3, 4, and 5–8. Models were trained 
for five-fold cross validation using ensemble approach in both architectures. In MpaU-Net, majority vote and STA-
PLE algorithm from Simple ITK v2.2.1 was implemented to select the best result from five folds. In MnnU-Net, the 
default configuration of nnU-Net (average ensembling) was used14. Quantitative and statistical analysis were 
performed (as per Sect. “Data analysis”) to select the best architecture model, MBest-Architecture.

Uncertainty improvement‑impact of vessels and spleen
We investigated if the uncertainties in the definition of liver segment boundaries can be improved by incorporat-
ing two additional features in the training.

First, we trained a model ( Mvess ) using MBest−Architecture (from Block 1) to investigate if the incorporation 
of vessels during the training would improve the segmentation of the liver segments. We began by generating 
liver vessels using the liver vessel generation algorithms23 available in a commercial treatment planning system 
(RayStation v12.0.110.72, RaySearch Laboratories, Stockholm, Sweden) on CRT (N = 200). The binary label map 
of vessels was added as an extra input channel using modality function in nnU-Net, and the model was trained 
to predict the contours of liver segments. Second, we trained a model ( Mseg+spleen ) using MBest−Architecture (from 
Block 1) to determine if the addition of spleen contours during the training would result in improved segmenta-
tion of liver segments, especially segments 2 and 3. The training was optimized to predict the contours of the 
liver segments (with segments 5–8 combined) and spleen.

Last, we individually compared the performance of the models Mves and Mseg+spleen with our best architecture 
model MBest−Architecture to determine if individual features improved the segmentation performance. Addition-
ally, we compared Mvess and Mseg+spleen models to determine if one features would result in greater impact on 
segmentation. To select a single best model ( MBest−Model) , all the model comparisons were performed on the 
external validation set CRTval using quantitative and qualitative assessment described in Sect. “Quantitative 
analysis” and “Qualitative analysis”. After the optimal model was selected, all models were evaluated on all test 
sets to determine if the optimal model ranking was held in the test environment.

Training, validation and test set for model creation
Our framework includes training, validation, and test sets. As shown in Fig. 1A, CRT was used for training 
and validation, and CLS, CCH, CPVE were used for test set. CRT datasets were split into training (N = 160), and 
validation (N = 40) by randomizing planning and 3 month follow up images of patients. The optimization of 
models during training was performed using cross entropy and dice as a loss function (see Sect. “Manual and AI 
edited segmentations” for more details). Hyperparameters were tuned manually and automatically according to 

Table 1.   Characteristics of patients used in this study. ┼ Median (min–max). *All means all the cases showed 
same values. **CRM colorectal or other metastasis, CC Cholangiocarcinoma, HCC Hepatocellular carcinoma, 
mixed more than one cancer types.

Cohorts (Number of 
images) Treatment type Used for Image

Cancer types** (Number 
of patients)

Median Voxel size (in x/y, 
mm)┼

Median Voxel size (in 
z, mm)┼

CRTTrain(N = 160) Radiotherapy Training Contrast HCC = 30 CC = 49 
CRM = 12 mixed = 4 0.98 (0.66–1.17) 2.5 (0.63–5.0)

CRTVal(N = 40) Radiotherapy Validation Contrast HCC = 16 CC = 18 
CRM = 2 0.98 (0.7–1.07) 2.5 (2.5–5.0)

CLS(N = 33) Liver surgery evaluation Test Contrast HCC = 2 CC = 5 CRM = 22 0.86 (0.51–0.98) 2.5 (2.5–5.0)

CPVE(N = 20) Portal vein embolization Test Contrast HCC = 0 CC = 3 CRM = 17 0.80 (0.70–0.98) 2.5 (1.0–2.5)

CCH(N = 25) Liver segmentation chal-
lenge Test Contrast NA 0.71 (0.60–0.96) 2 (1.0–5.0)

CCNC(N = 20) Pre-contrast of CRT Perturbation study Non-contrast HCC = 6 CC = 10 CRM = 3 
mixed = 1 0.98 (0.98–1.17) 2.5 (all*)
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architecture as described in Sect. “Manual and AI edited segmentations”. All models in our study were trained 
for 1000 epochs and with five-fold cross-validation. All models were evaluated on both validation ( CRTVal ) and 
test sets ( CLS, CCH, CPVE ). While the main purpose of validation set was to select the best model, the assessment 
of models on test set was used to further establish the discrimination among the model performance.

Table 2 shows the labels used in the study and data separation for training, validation, and test across the 
models.

Assessment of the models on patients withheld from training/validation
Assessment of the final model on the liver surgery patients
To assess the accuracy of the models in clinical practice, we retrospectively obtained 33 CT scans of patients for 
whom the segment volume was assessed to determine the eligibility of the patient for liver surgery. AI predicted 
contours from each model were quantitatively and qualitatively evaluated as per Sect. “Qualitative analysis”.

Assessment of the models on challenge datasets
This test set was developed by randomly selecting 25 CT images from each cohort CIRCAD−01, CIRCAD−02, CMID, 
and CCHAOS . A radiologist (MA) contoured the liver segments and spleen on each CT. The liver segment and 
spleen contours generated by all of the models were qualitatively and quantitatively compared with the ground-
truth contours.

Assessment of the models on post‑portal vein embolization images
This test set was developed by obtaining 20 patients who received Portal vein embolization at our institution. This 
analysis’s main purpose was to quantify the model’s performance in presence of liver hypertrophy and metallic 
artifacts. All images included some form of metallic artifacts due to embolization coil. AI predicted contours 
from all models were assessed against the ground-truth using both quantitative and qualitative analysis.

Perturbation analysis of the model using non‑contrast images
Here, we investigated the adaptability of our models on the perturbed images of patients using non-contrast 
images which is one of the clinical scenarios. We randomly selected CECT images of 20 patients used in train-
ing and then obtained their corresponding pre-contrast CT (i.e., non-CECT) images from the same four-phase 
liver CT protocol examination. To generate the ground-truth contours of liver segments, we first contoured the 
whole liver on the both CECT and non-CECT using our deep-learning based model24, and then performed whole 
liver based biomechanical deformable image registration using an algorithm previously validated25,26. We used 
models MBest−Architecture and Mseg+spleen to predict the liver segments and spleen.Mvess was not assessed because 
non-contrast images lack the vessels in the image. Further, no qualitative analysis was performed due to absence 
of vessel information on the image. In addition to quantitative metrics mentioned in Sect. “Qualitative analysis”, 
mean distance to agreement (MDA) was also evaluated to further quantify the adaptability of our model when 
presented with perturbation.

Data analysis
Quantitative analysis
The performance of the model was evaluated on all validation (N = 40), entire test (N = 78 total) and perturba-
tion sets (N = 20) using Sorenson-DSC similarity coefficients (DSC), average Hausdorff Distance (HDA), 95th 
Percentile Hausdorff Distance (HD95), Percent Difference in the Volume (PDV).

For further comparison, we calculated the individual DSC differences ( DSCM1−M2 ) between the correspond-
ing cases of models of interests using Eq. (1a) and binned the results in [0.025, 0.05), [0.05, 0.1), and [0.1, 1) 
under respective models based on the sign (Eq. (1b)). Lastly, the ratio of the frequency of cases within each bin 
from two models of interests was used to evaluate the models (Eq. (2)).

where  M1 and M2  are  two mo dels  of  interests  and could  b e  any  mo dels  f rom 
{ MpaU−Net,MnnU−Net,Mvess,Mseg+spleen }. NM1 and NM2 are number of cases from each model meeting the 
criteria in Eq. (2). All parameters discussed above were assessed for segmentations corresponding to the models 
in Table 2.

Qualitative analysis
Unipolar Likert scale survey on the scale of 1–5 was performed by radiologists to evaluate the contours from 
various datasets. To avoid the inherent biasness in observer, the assessments were performed by two radiologist 
who did not participate in delineating any contours in our study. A radiologist (SY) evaluated the contours of 
all models on CLS and CCH . Another radiologist (US) evaluated the contours of all models on CRTVal and CPVE . 
Likert scoring criteria with the definition of rating is shown in the Table 3 below.

(1a)DSCM1−M2 = DSCM1 − DSCM2

(1b)DSCM1−M2ǫ

{

NM1,DSCM1−M2 ≥ 0.025
NM2, DSCM1−M2 ≤ −0.025

(2)fM1:M2 =
NM1

NM2
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Intra‑ and inter‑observer analysis
We selected 10 images that were used in our model training. Radiologist MA contoured the segments twice in the 
gap of two weeks and relative inter-observer variability in DSC was estimated. Additionally, another radiologist, 
JAMS, contoured the liver segments on the same patients, and relative interobserver variability in DSC were 
calculated with respect to the contours of MA.

Statistical analysis
Wilcoxon signed-rank test was performed to determine if the models were statistically different (p < 0.05). For 
comparison involving more than 2 models, Bonferroni correction was performed to adjust the p-values.

Results
Selection of best architecture
The best tuned hyperparameters for paU-Net were obtained for the model with 3 blocks and 64 filters. This 
model showed highest validation DSC of 0.75 and a low difference between training and validation DSC of 0.14 
among all paU-Net models.

In paU-Net’s ensembling method comparison, the majority vote and STAPLE based contours showed overall 
similar mean DSCs of 0.86 and 0.87, respectively. However, when we compared minimum DSC of segments 
altogether, STAPLE showed improvement of 0.052 or 5.2% on average (see Table S1). Additionally, our visual 
assessment revealed that the majority vote contours had increased zero voxels at the boundaries of segments 
compared to STAPLE results (see Fig. S1). Therefore, we selected STAPLE based prediction as our final ensem-
bling method for MpaU−Net.

Table 4 shows the volumetric and overlap metric comparison between the results of MpaU−Net and MnnU−Net . 
MpaU−Net and MnnU−Net showed overall mean (average of median) DSC of 0.87 (0.87) and 0.89 (0.92), respec-
tively, when assessed across all segments. The individual mean DSC values of MnnU−Net for segments 1, 2, 3, and 4 
were greater than that of MpaU−Net by 0.03, 0.04, 0.02, and 0.05, respectively. The ratio of number of cases meeting 
binned differences (Eq. (3)) i.e., fMnnU−Net:MpaU−Net was > 3 for segments 2, 3, and 5–8 and were > 10 for segments 
2 and 4 (see Table S2 for details). Additionally, MnnU−Net demonstrated lower mean and median HD95 values 
than MpaU−Net for each segment. The difference in mean and median HD95 between MpaU−Net and MnnU−Net 
were within 1 mm for all segments except segment 4 where the differences were 16.3 mm (mean) and 2.7 mm 
(median), with MnnU−Net having superior performance. PDV comparison showed that differences in mean and 
median were mostly within ± 1.5% with few exceptions; segment 1 showed differences of − 5.3% and − 3.2% for 
mean and median, respectively, with MnnU−Net having superior performance, segment 2 showed − 5.8% (mean) 
and segment 4–3.9%(mean), with MnnU−Net having superior performance. Statistically, Wilcoxon signed-rank 
showed that performance difference of the models were significant for DSC values of all segments with MnnU−Net 
having superior performance. Further, except segments 2 and 5–8 in HDA and HD95 , all other metrics/segments 
showed statistical significance in the comparison. Lastly, as per the qualitative assessment (Table 5), 99% of cases 
from MnnU−Net received an overall score ≥ 3 whereas 88% of cases from MpaU−Net received an overall score of 
≥ 3. Considering the better agreement with MnnU−Net qualitatively and quantitatively, we selected nnU-Net as 
the best architecture, i.e. MBest−Architecture = MnnU−Net . Hereafter, MnnU−Net is also used to represent the best 
architecture which is nnU-Net model trained with segments only.

Table 2.   Number of CT scans allotted for training, validation, and test sets across different models.

Model Training Validation ( CRTval) Global test sets (CLS, CPVE, CCH) Labels

MpaU-Net 160 40 33 + 20 + 25 Segments 1, 2, 3, 4, 5-8

MnnU-Net 160 40 33 + 20 + 25 Segments 1, 2, 3, 4, 5-8

Mvess 160 40 33 + 20 + 25 Segments 1, 2, 3, 4, 5-8, vessels as color 
channel

Mseg+spleen 160 40 33 + 20 + 25 Segments 1, 2, 3, 4, 5-8 Spleen

Table 3.   Scoring criteria used by radiologists to evaluate the contours for qualitative analysis.

Likert scale Criteria

5 Strongly agree Minor edits which are not clinically important, or no edits are required. Can use the contours in the 
clinic without any edits

4 Agree Minor edits (peripheral portal veinous branches) are required, and the time required to recontour is 
minimal

3 Neither agree nor disagree
Major edits (Major vessels (hepatic veins, right/left/main portal, and segmental portal vein branches) 
boundaries and anatomical boundaries (intersegmental fissure and gall bladder fossa) need to be cor-
rected) but time required to recontour is minimal

2 Disagree Major edits are required, and the time required to edit the contour is extraordinarily long

1 Strongly disagree Segmentations are unusable



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4678  | https://doi.org/10.1038/s41598-024-53997-y

www.nature.com/scientificreports/

Impact of vessels and spleen on segment contouring/selection of best model
Tables 5 and 6 shows the comparison of models MnnU−Net , Mvess , and Mseg+spleen using quantitative and quali-
tative approach described in Sects. “Quantitative analysis” and “Qualitative analysis”, respectively. For Mvess 
vs.MnnU−Net , Mvess showed DSC values of 0.89 (mean) and 0.91 (average of median), which are similar to mean 
DSC of 0.89 and average of median DSC of 0.92 of MnnU−Net . Individual DSC difference ( Mvess −MnnU−Net ) 
were within -0.01 (mean) for segments 2, 3, 4, 5–8 and − 0.02 (median) for segments 2 and 4. All other seg-
ments had mean and median DSC difference of 0. fMvess:MnnU-Net was ≤ 1 : 3(0.33) (see Table S3 for details) for 
all except segment 5–8 where the ratio was 1:1. With regard to HD95 , the difference in mean and median values 
( Mvess −MnnU−Net ) were within ±1mm for all cases except mean values of segments 3, 4, and 5–8 where the dif-
ferences were 2.6 mm,1.50 mm, and 1.67 mm, respectively. Additionally, the overall differences in the mean and 
median PDV values were within ±2.5%. Most of the differences were > 0 , indicating a reduction in performance 
for Mvess . Qualitatively, the difference between the cases of Mvess and MnnU−Net receiving score ≥ 3 is within 1% 
in all segments except segments 2 and 3 where MnnU−Net leads by 3% and 5% respectively. Overall, the metrics 
of Mvess were equivalent or slightly worse than of that of MnnU−Net.

In Mseg+spleen vs.MnnU−Net , Mseg+spleen showed DSC values of 0.89 (mean) and 0.91 (average of median) which 
are similar to mean DSC of 0.89 and average of median DSC of 0.92 of MnnU−Net . Individual DSC difference 
between ( Mseg+spleen −MnnU−Net ) were 0 for all segments except the median of segment 4 where MnnU−Net

>Mseg+spleen by 0.01. fMseg+spleen:MnnU-Net was negligible or 1:1) (see Table S4 for details). The difference in the 
mean and median HD95 of the two models were negligible (range =  − 0.62 to 0.01 mm). Lastly, the difference in 
the mean and median PDV of the two models ranged from -1.7% to 0.6%. Qualitatively, the difference between 
percent of cases receiving score ≥ 3 across two models were within 1% except segment 5–8 where Mseg+spleen led 
by 5%. Overall, the results from two models were equivalent.

Lastly, the Wilcoxon signed-rank test showed that Mseg+spleen and MnnU−Net were not significantly different 
in their metrics (p > 0.05). Comparison of Mseg+spleen with Mvess showed no significance in most cases with few 
exceptions (see footer of Table 7). Furthermore, Mseg+spleen showed better agreement than Mvess in terms of 
HD95 . Therefore, in overall comparison, we establish that Mseg+spleen ∼ MnnU−Net and MnnU−Net > Mvess . We 
selected Mseg+spleen as our best model due to its wider application as the mean/median DSC of spleen is 0.99.

Table 4.   Comparison of descriptive statistics from paU-Net and nnU-Net. 1 Data in each cell is organized as 
row 1 = Median, row 2 = Mean, row 3 = Standard deviation, row 4 = Max, row 5 = Min row row 6 = significance 
level, P ≤ 0.05 = *, P ≤ 0.01 = **, P > 0.05 = ns. 2 One of the patients was removed because paU-Net failed to 
predict segment 1. 3 HDA and HD95 average and 95% Hausdorff distance (mm); PDV = percent difference in 
volume.

Seg 1 N = 392 Seg 2 N = 40 Seg 3 N = 40 Seg 4 N = 40 Seg 5–8 N = 40

paU-Net1 nnU- Net1 paU-Net1 nnU- Net1 paU-Net1 nnU- Net1 paU-Net1 nnU- Net1 paU-Net1 nnU- Net1

DSC

0.90 0.93 0.82 0.86 0.89 0.91 0.86 0.91 0.97 0.97

0.88 0.90 0.81 0.83 0.87 0.89 0.83 0.88 0.96 0.97

0.07 0.07 0.08 0.09 0.09 0.10 0.11 0.08 0.03 0.03

0.96 0.98 0.92 0.94 0.94 0.96 0.95 0.97 0.99 0.99

0.71 0.70 0.56 0.51 0.44 0.36 0.46 0.56 0.88 0.86

** * ** ** **

HD
3
95

4 3.1 8 8.0 8 6.6 9 6.5 6 4.5

5 4.6 11 9.5 9 8.0 25 8.3 10 7.6

5 6.1 8 6.0 5 5.5 34 6.7 11 8.8

31 37.1 34 33.4 26 28.9 118 36.7 46 47.8

1 0.8 4 3.1 4 2.5 4 2.1 1 0.7

* ns ns ** ns

HD
3
A

0.20 0.14 0.60 0.48 0.38 0.31 0.49 0.24 0.09 0.06

0.35 0.30 0.79 0.69 0.57 0.49 1.18 0.47 0.22 0.18

0.50 0.61 0.61 0.62 0.81 0.87 1.78 0.55 0.37 0.29

2.99 3.85 2.55 2.92 4.56 5.37 9.43 2.71 1.85 1.54

0.06 0.02 0.19 0.11 0.14 0.08 0.11 0.04 0.01 0.01

** ns * ** ns

PDV

10 7 16 11 6 5 7 7 3 2

14 8 22 21 9 8 12 8 3 4

15 10 22 35 8 8 13 7 3 4

80 45 123 173 39 27 54 30 19 22

0 0 1 0 0 0 0 0 0 0

* ns ns ** ns
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Assessment of the models on the liver surgery patients
Table 7 shows the results from quantitative assessment of our models on the pre-surgery CTs. The mean and 
average of median DSC values of Mseg+spleen across all segments were 0.91 and 0.92, respectively, and those for 
spleen were 0.91 and 0.96. Individually, the mean and median DSCs of all segments from Mseg+spleen were ≥ 0.90 
except segment 2 where median and mean DSC were 0.86 and 0.85, respectively. With regards to distance metrics, 
segment 2 from Mseg+spleen showed a mean and median HD95 values of 8.5 mm and 9.4 mm which was the highest 
among all other segments. The best HD95 were obtained in case of segment 1 with mean and median values of 
2.8 mm and 3.2 mm. Additionally, spleen showed mean HD95 of 2.2 mm. With regard to volumetric comparison, 
Mseg+spleen vs radiologist ground-truth contours, the overall mean and average median values across all segments 
were 8.2% and 5.6%. Likewise, mean and median PDV for spleen were within 2%. Lastly, stratification of DSC 
based on the cancer type showed no performance change in segments ( ± 1%) but spleen of CC (N = 5) showed 
2% lesser DSC than CRM (N = 22) cases.

In comparison to Mseg+spleen , MpaU−Net and Mvess showed poor performance in case of segment 1 as mean 
DSC of Mseg+spleen were greater than other two models by 7% and 6%, respectively. On segment 3 and 4, 
Mseg+spleen outperformed MpaU−Net by 2% and 5%, respectively. Moreover, the mean DSC value of MVess was 
around 5% less that other models on segments 2, 3, and 4 which supports that vessels architectures and seg-
ments 2 and 3 boundary are sensitive to each other. The mean DSC of other three models were within 2% of one 
another. With regards to HD, MpaU−Net showed the largest HD but all other models showed similar performance.

Qualitatively, regarding Mseg+spleen , 97% of segments showed a score ≥ 3 with 69% showing a score of ≥ 4 
and 27% showing a score of 5. Individually, at least 64% of each segment showed a score of 4 or more. Segments 
1, 4, and 5–8 received higher scores than segments 2 which is highlighted by the lower value of 15% (score of 5) 
in Table 5. Compared with other models, contours from Mseg+spleen included 14% more cases of Likert score ≥ 3 
than MpaU−Net . However, the other two models received similar scores as the Mseg+spleen.

Assessment of the models on challenge datasets
Tables 6 and 8 shows the results from quantitative and qualitative assessment of all models on the challenge 
dataset (CCH). With regards to the best model ( MSeg+Spleen ), both overall mean and median DSC values of seg-
ments were 0.87. The individual mean and median DSC values were ≥ 0.96 for segment 5–8 and spleen whereas 
the mean/median DSC for segments 1, 2, 3, 4 ranged 0.80 to 0.88. Segment 2 had the lowest mean and median 
DSCs of 0.80. For distance metrics, segment 1 and spleen had a mean and median HD95 within 5 mm which was 
better than all other segments. The largest mean and median HD95 values were ≥ 10 mm which was observed 
in the segment 2. Lastly, the overall mean and average median PDV were 11% and 9.5% for segment and 2% for 
spleen. Largest PDVs were observed in segment 2 with mean/median of 19%. Lastly, since the cancer types of 

Table 5.   Comparison of descriptive statistics from models trained with segments, segments with vessel 
(color channel) and segments with spleen on validation set (CRTVal). 1 Data in each cell is organized as row 
1 = Median, row 2 = Mean, Standard deviation, row 3 = Max, Min; 1MnnUnet = model trained with segments 
only, Mseg+spleen = Model trained with Segments and Spleen as labels, Mvess = Model trained with segments as 
label and vessel as color channel. 2a IntraMD = Intra-observer mean dice. 2b InterMD = Inter-observer mean 
dice. 3 HD = Hausdorff distance (95 = 95th percentile and A = Average in mm); Wilcoxon signed rank test 
with Bonferroni adjustment showed p > 0.05 in MnnU-Net vs. Mseg+spleen for all. In Mseg+spleen vs. Mvess, segment 
3 showed p < 0.05 in DSC and HDA. In MnnU-Net vs. Mvess, segment 3 showed p < 0.05 in HD95 and segment 4 
showed p < 0.05 in PDV and HD95.

Seg 1, Seg 2, Seg 3, Seg 4, Seg 5–8,

Spleen, 
N = 401

N = 40 N = 401 N = 401 N = 401 N = 401

(IntraMD2a = 0.88) (IntraMD2a = 0.88) (IntraMD2a = 0.94) (IntraMD2a = 0.92) (IntraMD2a = 0.99)

(InterMD2b = 0.82) (InterMD2b = 0.85) (InterMD2b = 0.91) (InterMD2b = 0.88) (InterMD2b = 0.96)

MnnUnet
1 Mseg+spleen

1 Mvess
1 MnnUnet

1 Mseg+spleen
1 Mvess

1 MnnUnet
1 Mseg+spleen

1 Mvess
1 MnnUnet

1 Mseg+spleen
1 Mvess

1 MnnUnet
1 Mseg+spleen

1 Mvess
1 Mseg+spleen

1

Dice

0.93 0.93 0.93 0.86 0.86 0.84 0.91 0.91 0.91 0.91 0.90 0.89 0.97 0.97 0.97 0.99

0.90, 
0.07 0.90, 0.06 0.90, 

0.07
0.83, 
0.09 0.83, 0.10 0.82, 

0.10
0.89, 
0.10 0.89, 0.10 0.88, 

0.12
0.88, 
0.08 0.88, 0.08 0.87, 

0.09
0.97, 
0.03 0.97, 0.02 0.96, 0.03 0.99, 0.01

0.98, 
0.70 0.98, 0.75 0.97, 

0.73
0.94, 
0.51 0.94, 0.48 0.93, 

0.47
0.96, 
0.36 0.96, 0.36 0.96, 

0.21
0.97, 
0.56 0.97, 0.55 0.97, 

0.57
0.99, 
0.86 0.99, 0.91 0.99, 0.84 1.00, 0.96

HD
3
95

3.1 3.1 3 8.0 7.5 8 6.6 6.5 7 6.5 6.2 7 4.5 4.4 6 0.9

4.6, 6.1 4.6, 5.7 5, 6 9.5, 6.0 8.9, 5.1 9, 5 8.0, 5.5 8.4, 6.7 11, 13 8.3, 6.7 8.4, 6.7 10, 8 7.6, 8.8 7.0, 7.5 9, 12 0.9, 0.7

37.1, 0.8 34.4, 0.8 34, 1 33.4, 3.1 25.8, 2.7 30, 3 28.9, 2.5 32.3, 2.5 81, 2 36.7, 2.1 36.5, 1.5 41, 2 47.0, 0.7 38.2, 0.7 54, 1 2.7, 0.0

Avg. 
HD

3
A

0.14 0.13 0.15 0.48 0.45 0.57 0.31 0.28 0.32 0.24 0.24 0.33 0.06 0.06 0.08 0.01

0.30, 
0.61 0.28, 0.50 0.29, 

0.50
0.69, 
0.62 0.66, 0.60 0.70, 

0.60
0.49, 
0.87 0.52, 0.97 0.64, 

1.33
0.47, 
0.55 0.47, 0.52 0.64, 

0.90
0.18, 
0.29 0.13, 0.19 0.27, 0.61 0.02, 0.01

3.85, 
0.02 3.14, 0.02 3.16, 

0.03
2.92, 
0.11 3.16, 0.15 3.02, 

0.16
5.37, 
0.08 5.54, 0.08 7.97, 

0.09
2.71, 
0.04 2.33, 0.04 4.57, 

0.05
1.54, 
0.01 1.03, 0.01 3.38, 0.01  0.06, 0.00

PDV

7 5 6 11 10 10 5 5 5 7 6 8 2 2 3 0

8, 10 8, 10 9, 12 21, 35 21, 36 23, 40 8, 8 8, 8 9, 9 8, 7 9, 7 11, 10 4, 4 3, 3 4, 4 1, 1

45, 0 45, 0 63, 0 173, 0 177, 0 218, 0 27, 0 29, 0 30, 0 30, 0 25, 1 52, 1 22, 0 12, 0 18, 0 4, 0



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4678  | https://doi.org/10.1038/s41598-024-53997-y

www.nature.com/scientificreports/

C
ha

lle
ng

e 
co

ho
rt

 (C
C

H
)

Va
lid

at
io

n 
co

ho
rt

 (C
RT

va
l)

Su
rg

er
y 

co
ho

rt
 (C

LS
)

Po
rt

al
 v

ei
n 

em
bo

liz
at

io
n 

co
ho

rt
 (C

PV
E)

Sc
or

es

Se
gm

en
t 

an
d 

Ve
ss

el
s 

w
ith

 n
nU

-
N

et
 (M

ve
ss

), 
N

 =
 25

1

Se
gm

en
t O

nl
y 

w
ith

 n
nU

-N
et

 
(M

nn
U

-N
et

), 
N

 =
 25

1

Se
gm

en
t o

nl
y 

w
ith

 p
aU

-N
et

 
(M

pa
U

-N
et

), 
N

 =
 25

1

Se
gm

en
ts

 
an

d 
Sp

le
en

 
w

ith
 n

nU
-N

et
 

(M
se

g+
sp

le
en

), 
N

 =
 25

1

Se
gm

en
t 

an
d 

Ve
ss

el
s 

w
ith

 n
nU

-
N

et
 (M

ve
ss

), 
N

 =
 40

1

Se
gm

en
t O

nl
y 

w
ith

 n
nU

-N
et

 
(M

nn
U

-N
et

), 
N

 =
 40

1

Se
gm

en
t o

nl
y 

w
ith

 p
aU

-N
et

 
(M

pa
U

-N
et

), 
N

 =
 40

1

Se
gm

en
ts

 
an

d 
Sp

le
en

 
w

ith
 n

nU
-N

et
 

(M
se

g +
 Sp

le
en

), 
N

 =
 40

1

Se
gm

en
t 

an
d 

Ve
ss

el
s 

w
ith

 n
nU

-
N

et
 (M

Ve
ss

), 
N

 =
 31

1

Se
gm

en
t O

nl
y 

w
ith

 n
nU

-N
et

 
(M

nn
U

-N
et

), 
N

 =
 33

1

Se
gm

en
t o

nl
y 

w
ith

 p
aU

-N
et

 
(M

pa
U

-N
et

), 
N

 =
 33

1

Se
gm

en
ts

 
an

d 
Sp

le
en

 
w

ith
 n

nU
-N

et
 

(M
se

g +
 Sp

le
en

), 
N

 =
 33

1

Se
gm

en
t 

an
d 

Ve
ss

el
s 

w
ith

 n
nU

-
N

et
 (M

Ve
ss

), 
N

 =
 20

1

Se
gm

en
t O

nl
y 

w
ith

 n
nU

-N
et

 
(M

nn
U

-N
et

), 
N

 =
 20

1

Se
gm

en
t o

nl
y 

w
ith

 p
aU

-N
et

 
(M

pa
U

-N
et

), 
N

 =
 20

1

Se
gm

en
ts

 
an

d 
Sp

le
en

 
w

ith
 n

nU
-N

et
 

(M
se

g +
 Sp

le
en

), 
N

 =
 20

1

Se
g 

1

 1
0

0
0

0
1 

(2
.5

%
)

1 
(2

.5
%

)
1 

(2
.6

%
)

1 
(2

.5
%

)
1 

(3
.2

%
)

1 
(3

.0
%

)
4 

(1
2%

)
1 

(3
.0

%
)

0
0

0
0

 2
0 

(0
%

)
0 

(0
%

)
4 

(1
6%

)
0 

(0
%

)
0

0
0

0
0

0
0

0
0 

(0
%

)
0 

(0
%

)
1 

(5
.0

%
)

0 
(0

%
)

 3
4 

(1
6%

)
4 

(1
6%

)
4 

(1
6%

)
4 

(1
6%

)
1 

(2
.5

%
)

1 
(2

.5
%

)
1 

(2
.6

%
)

1 
(2

.5
%

)
7 

(2
3%

)
8 

(2
4%

)
6 

(1
8%

)
7 

(2
1%

)
1 

(5
.0

%
)

1 
(5

.0
%

)
0 

(0
%

)
1 

(5
.0

%
)

 4
13

 (5
2%

)
13

 (5
2%

)
14

 (5
6%

)
13

 (5
2%

)
11

 (2
8%

)
11

 (2
8%

)
11

 (2
8%

)
11

 (2
8%

)
14

 (4
5%

)
14

 (4
2%

)
17

 (5
2%

)
15

 (4
5%

)
1 

(5
.0

%
)

2 
(1

0%
)

5 
(2

5%
)

1 
(5

.0
%

)

 5
8 

(3
2%

)
8 

(3
2%

)
3 

(1
2%

)
8 

(3
2%

)
27

 (6
8%

)
27

 (6
8%

)
26

 (6
7%

)
27

 (6
8%

)
9 

(2
9%

)
10

 (3
0%

)
6 

(1
8%

)
10

 (3
0%

)
18

 (9
0%

)
17

 (8
5%

)
14

 (7
0%

)
18

 (9
0%

)

Se
g 

2

 1
0

0
0

0
1 

(2
.5

%
)

1 
(2

.5
%

)
4 

(1
0%

)
1 

(2
.5

%
)

2 
(6

.5
%

)
1 

(3
.0

%
)

3 
(9

.1
%

)
1 

(3
.0

%
)

0 
(0

%
)

0 
(0

%
)

1 
(5

.0
%

)
0 

(0
%

)

 2
1 

(4
.0

%
)

1 
(4

.0
%

)
5 

(2
0%

)
1 

(4
.0

%
)

1 
(2

.5
%

)
0 

(0
%

)
1 

(2
.5

%
)

0 
(0

%
)

0 
(0

%
)

1 
(3

.0
%

)
3 

(9
.1

%
)

0 
(0

%
)

0
0

0
0

 3
7 

(2
8%

)
7 

(2
8%

)
9 

(3
6%

)
7 

(2
8%

)
8 

(2
0%

)
8 

(2
0%

)
10

 (2
5%

)
9 

(2
2%

)
8 

(2
6%

)
11

 (3
3%

)
8 

(2
4%

)
11

 (3
3%

)
1 

(5
.0

%
)

1 
(5

.0
%

)
2 

(1
0%

)
1 

(5
.0

%
)

 4
11

 (4
4%

)
11

 (4
4%

)
10

 (4
0%

)
11

 (4
4%

)
9 

(2
2%

)
9 

(2
2%

)
18

 (4
5%

)
9 

(2
2%

)
16

 (5
2%

)
15

 (4
5%

)
16

 (4
8%

)
16

 (4
8%

)
3 

(1
5%

)
3 

(1
5%

)
12

 (6
0%

)
2 

(1
0%

)

 5
6 

(2
4%

)
6 

(2
4%

)
1 

(4
.0

%
)

6 
(2

4%
)

21
 (5

2%
)

22
 (5

5%
)

7 
(1

8%
)

21
 (5

2%
)

5 
(1

6%
)

5 
(1

5%
)

3 
(9

.1
%

)
5 

(1
5%

)
16

 (8
0%

)
16

 (8
0%

)
5 

(2
5%

)
17

 (8
5%

)

Se
g 

3

 1
0

0
0

0
2 

(5
.0

%
)

1 
(2

.5
%

)
2 

(5
.0

%
)

1 
(2

.5
%

)
2 

(6
.5

%
)

1 
(3

.0
%

)
3 

(9
.1

%
)

1 
(3

.0
%

)
0 

(0
%

)
0 

(0
%

)
2 

(1
0%

)
0 

(0
%

)

 2
1 

(4
.0

%
)

1 
(4

.0
%

)
8 

(3
2%

)
1 

(4
.0

%
)

1 
(2

.5
%

)
0 

(0
%

)
3 

(7
.5

%
)

0 
(0

%
)

0 
(0

%
)

2 
(6

.1
%

)
3 

(9
.1

%
)

0 
(0

%
)

0 
(0

%
)

1 
(5

.0
%

)
0 

(0
%

)
0 

(0
%

)

 3
7 

(2
8%

)
7 

(2
8%

)
6 

(2
4%

)
7 

(2
8%

)
8 

(2
0%

)
8 

(2
0%

)
8 

(2
0%

)
9 

(2
2%

)
8 

(2
6%

)
9 

(2
7%

)
10

 (3
0%

)
11

 (3
3%

)
0 

(0
%

)
0 

(0
%

)
1 

(5
.0

%
)

0 
(0

%
)

 4
11

 (4
4%

)
11

 (4
4%

)
10

 (4
0%

)
11

 (4
4%

)
8 

(2
0%

)
8 

(2
0%

)
15

 (3
8%

)
8 

(2
0%

)
16

 (5
2%

)
16

 (4
8%

)
14

 (4
2%

)
16

 (4
8%

)
4 

(2
0%

)
2 

(1
0%

)
10

 (5
0%

)
3 

(1
5%

)

 5
6 

(2
4%

)
6 

(2
4%

)
1 

(4
.0

%
)

6 
(2

4%
)

21
 (5

2%
)

23
 (5

7%
)

12
 (3

0%
)

22
 (5

5%
)

5 
(1

6%
)

5 
(1

5%
)

3 
(9

.1
%

)
5 

(1
5%

)
16

 (8
0%

)
17

 (8
5%

)
7 

(3
5%

)
17

 (8
5%

)

Se
g 

4

 1
0

0
0

0
0 

(0
%

)
0 

(0
%

)
8 

(2
0%

)
0 

(0
%

)
1 

(3
.2

%
)

1 
(3

.0
%

)
4 

(1
2%

)
1 

(3
.0

%
)

0 
(0

%
)

0 
(0

%
)

4 
(2

0%
)

0 
(0

%
)

 2
0 

(0
%

)
0 

(0
%

)
12

 (4
8%

)
0 

(0
%

)
1 

(2
.5

%
)

1 
(2

.5
%

)
4 

(1
0%

)
1 

(2
.5

%
)

3 
(9

.7
%

)
2 

(6
.1

%
)

3 
(9

.1
%

)
1 

(3
.0

%
)

0 
(0

%
)

0 
(0

%
)

1 
(5

.0
%

)
0 

(0
%

)

 3
4 

(1
6%

)
5 

(2
0%

)
7 

(2
8%

)
4 

(1
6%

)
3 

(7
.5

%
)

2 
(5

.0
%

)
6 

(1
5%

)
2 

(5
.0

%
)

4 
(1

3%
)

6 
(1

8%
)

15
 (4

5%
)

7 
(2

1%
)

2 
(1

0%
)

0 
(0

%
)

13
 (6

5%
)

0 
(0

%
)

 4
11

 (4
4%

)
10

 (4
0%

)
5 

(2
0%

)
11

 (4
4%

)
7 

(1
8%

)
7 

(1
8%

)
14

 (3
5%

)
8 

(2
0%

)
14

 (4
5%

)
14

 (4
2%

)
7 

(2
1%

)
14

 (4
2%

)
5 

(2
5%

)
6 

(3
0%

)
1 

(5
.0

%
)

6 
(3

0%
)

 5
10

 (4
0%

)
10

 (4
0%

)
1 

(4
.0

%
)

10
 (4

0%
)

29
 (7

2%
)

30
 (7

5%
)

8 
(2

0%
)

29
 (7

2%
)

9 
(2

9%
)

10
 (3

0%
)

4 
(1

2%
)

10
 (3

0%
)

13
 (6

5%
)

14
 (7

0%
)

1 
(5

.0
%

)
14

 (7
0%

)

Se
g 

5–
8

 1
0 

(0
%

)
0 

(0
%

)
1 

(4
.0

%
)

0 
(0

%
)

1 
(2

.5
%

)
1 

(2
.5

%
)

2 
(5

.0
%

)
0 

(0
%

)
1 

(3
.2

%
)

1 
(3

.0
%

)
4 

(1
2%

)
1 

(3
.0

%
)

0 
(0

%
)

0 
(0

%
)

4 
(2

0%
)

0 
(0

%
)

 2
0 

(0
%

)
0 

(0
%

)
11

 (4
4%

)
0 

(0
%

)
3 

(7
.5

%
)

3 
(7

.5
%

)
5 

(1
2%

)
2 

(5
.0

%
)

3 
(9

.7
%

)
2 

(6
.1

%
)

3 
(9

.1
%

)
1 

(3
.0

%
)

5 
(2

5%
)

4 
(2

0%
)

7 
(3

5%
)

3 
(1

5%
)

 3
4 

(1
6%

)
4 

(1
6%

)
7 

(2
8%

)
4 

(1
6%

)
5 

(1
2%

)
4 

(1
0%

)
8 

(2
0%

)
5 

(1
2%

)
4 

(1
3%

)
7 

(2
1%

)
14

 (4
2%

)
8 

(2
4%

)
11

 (5
5%

)
11

 (5
5%

)
8 

(4
0%

)
12

 (6
0%

)

 4
11

 (4
4%

)
11

 (4
4%

)
5 

(2
0%

)
11

 (4
4%

)
7 

(1
8%

)
9 

(2
2%

)
16

 (4
0%

)
8 

(2
0%

)
14

 (4
5%

)
14

 (4
2%

)
8 

(2
4%

)
14

 (4
2%

)
1 

(5
.0

%
)

1 
(5

.0
%

)
1 

(5
.0

%
)

1 
(5

.0
%

)

 5
10

 (4
0%

)
10

 (4
0%

)
1 

(4
.0

%
)

10
 (4

0%
)

24
 (6

0%
)

23
 (5

7%
)

9 
(2

2%
)

25
 (6

2%
)

9 
(2

9%
)

9 
(2

7%
)

4 
(1

2%
)

9 
(2

7%
)

3 
(1

5%
)

4 
(2

0%
)

0 
(0

%
)

4 
(2

0%
)

O
ve

ra
ll 

liv
er

 1
0

0
0

0
0 

(0
%

)
0 

(0
%

)
2 

(5
.0

%
)

0 
(0

%
)

1 
(3

.2
%

)
1 

(3
.0

%
)

4 
(1

2%
)

1 
(3

.0
%

)
0 

(0
%

)
0 

(0
%

)
1 

(5
.0

%
)

0 
(0

%
)

 2
0 

(0
%

)
0 

(0
%

)
9 

(3
6%

)
0 

(0
%

)
0 

(0
%

)
0 

(0
%

)
3 

(7
.5

%
)

0 
(0

%
)

2 
(6

.5
%

)
1 

(3
.0

%
)

3 
(9

.1
%

)
0 

(0
%

)
0 

(0
%

)
0 

(0
%

)
4 

(2
0%

)
0 

(0
%

)

 3
5 

(2
0%

)
6 

(2
4%

)
11

 (4
4%

)
5 

(2
0%

)
5 

(1
2%

)
5 

(1
2%

)
11

 (2
8%

)
5 

(1
2%

)
5 

(1
6%

)
8 

(2
4%

)
11

 (3
3%

)
9 

(2
7%

)
4 

(2
0%

)
3 

(1
5%

)
7 

(3
5%

)
1 

(5
.0

%
)

 4
12

 (4
8%

)
11

 (4
4%

)
5 

(2
0%

)
12

 (4
8%

)
15

 (3
8%

)
14

 (3
5%

)
21

 (5
2%

)
15

 (3
8%

)
14

 (4
5%

)
14

 (4
2%

)
10

 (3
0%

)
14

 (4
2%

)
9 

(4
5%

)
10

 (5
0%

)
8 

(4
0%

)
11

 (5
5%

)

 5
8 

(3
2%

)
8 

(3
2%

)
0 

(0
%

)
8 

(3
2%

)
20

 (5
0%

)
21

 (5
2%

)
3 

(7
.5

%
)

20
 (5

0%
)

9 
(2

9%
)

9 
(2

7%
)

5 
(1

5%
)

9 
(2

7%
)

7 
(3

5%
)

7 
(3

5%
)

0 
(0

%
)

8 
(4

0%
)

Sp
le

en

 4
0

0
0

0
0

0
0

0
0

0
0

1 
(3

.0
%

)
0

0
0

0

 5
0

0
0

25
 (1

00
%

)
0

0
0

40
 (1

00
%

)
0

0
0

32
 (9

7%
)

0
0

0
20

 (1
00

%
)

Ta
bl

e 
6.

  L
ik

er
t s

ca
le

 a
ss

es
sm

en
t p

er
fo

rm
ed

 b
y 

in
de

pe
nd

en
t r

ad
io

lo
gi

st
s t

o 
as

se
s t

he
 u

sa
bi

lit
y 

of
 co

nt
ou

rs
 in

 th
e 

cl
in

ic
.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4678  | https://doi.org/10.1038/s41598-024-53997-y

www.nature.com/scientificreports/

Ta
bl

e 
7.

  C
om

pa
ris

on
 o

f d
es

cr
ip

tiv
e 

st
at

ist
ic

s f
ro

m
 m

od
el

s t
ra

in
ed

 w
ith

 se
gm

en
ts

, s
eg

m
en

ts
 w

ith
 v

es
se

l (
co

lo
r c

ha
nn

el
) a

nd
 se

gm
en

ts
 w

ith
 sp

le
en

 o
n 

liv
er

 su
rg

er
y 

co
ho

rt
 C

LS
. 1  D

at
a 

in
 e

ac
h 

ce
ll 

is 
or

ga
ni

ze
d 

as
 ro

w
 1

 =
 M

ed
ia

n,
 ro

w
 2

 =
 M

ea
n,

 S
ta

nd
ar

d 
de

vi
at

io
n,

 ro
w

 3
 =

 M
ax

, M
in

; 1 M
nn

U
ne

t =
 m

od
el

 tr
ai

ne
d 

w
ith

 se
gm

en
ts

 o
nl

y, 
M

se
g+

sp
le

en
 =

 M
od

el
 tr

ai
ne

d 
w

ith
 S

eg
m

en
ts

 a
nd

 S
pl

ee
n 

as
 la

be
ls,

 M
ve

ss
 =

 M
od

el
 tr

ai
ne

d 
w

ith
 se

gm
en

ts
 a

s l
ab

el
 a

nd
 v

es
se

l a
s c

ol
or

 ch
an

ne
l; 

2a
In

tr
aM

D
 =

 In
tr

a-
ob

se
rv

er
 m

ea
n 

di
ce

,2b
In

tr
er

M
D

 =
 In

te
r-

ob
se

rv
er

 m
ea

n 
di

ce
, 3 H

D
 =

 H
au

sd
or

ff 
di

st
an

ce
 

(9
5 =

 95
th

 p
er

ce
nt

ile
 a

nd
 A

 =
 A

ve
ra

ge
) i

n 
m

m
; P

D
V

 =
 p

er
ce

nt
 d

iff
er

en
ce

 in
 v

ol
um

e.

Se
g 

1,
Se

g 
2,

Se
g 

3,
Se

g 
4,

Se
g 

5–
8,

Sp
le

en
,

N
 =

 33
1

N
 =

 33
1

N
 =

 33
1

N
 =

 33
1

 N
 =

 33
1

 N
=3

31

(I
nt

ra
M

D
2a

 =
 0.

88
)

(I
nt

ra
M

D
2a

 =
 0.

88
)

(I
nt

ra
M

D
2a

 =
 0.

94
)

(I
nt

ra
M

D
2a

 =
 0.

92
)

 (I
nt

ra
M

D
2a

 =
 0

.9
9)

(I
nt

er
M

D
2b

 =
 0.

82
)

(I
nt

er
M

D
2b

 =
 0.

85
)

(I
nt

er
M

D
2b

 =
 0.

91
)

(I
nt

er
M

D
2b

 =
 0.

88
)

 (I
nt

er
M

D
2b

 =
 0

.9
6)

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

 sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
se

g+
sp

le
en

1

D
ic

e

0.
91

0.
94

0.
94

0.
94

0.
87

0.
88

0.
86

0.
86

0.
90

0.
93

0.
91

0.
91

0.
89

0.
93

0.
92

0.
93

0.
97

0.
98

0.
98

0.
98

0.
96

0.
85

,0
.1

7
0.

92
,0

.0
6

0.
92

,0
.0

7
0.

86
, 0

.2
3

0.
85

, 0
.0

6
0.

86
, 0

.0
6

0.
85

, 0
.0

7
0.

80
, 

0.
22

0.
89

, 0
.0

5
0.

91
, 

0.
04

0.
91

, 0
.0

4
0.

85
, 0

.2
2

0.
86

, 0
.0

9
0.

91
, 0

.0
6

0.
90

, 0
.0

7
0.

86
, 

0.
23

0.
96

, 0
.0

3
0.

98
, 

0.
02

0.
98

, 0
.0

2
0.

91
, 

0.
24

0.
91

, 0
.2

3

0.
96

,0
.0

0
0.

98
,0

.7
5

0.
98

,0
.6

9
0.

98
, 0

.0
0

0.
93

, 0
.6

2
0.

94
, 0

.6
3

0.
94

, 0
.6

2
0.

93
, 

0.
00

0.
95

, 0
.6

9
0.

96
, 

0.
75

0.
96

, 0
.7

6
0.

96
, 0

.0
0

0.
96

, 0
.5

8
0.

97
, 0

.7
2

0.
96

, 0
.6

3
0.

97
, 

0.
00

0.
99

, 0
.8

8
0.

99
, 

0.
92

0.
99

, 0
.9

1
0.

99
, 

0.
00

0.
98

, 0
.0

0

H
D
3 9
5

4
2.

5
2.

8
2.

5
8

7.
8

8.
5

6.
8

7
5.

4
5.

8
5.

8
10

5.
0

5.
8

5.
0

5
2.

5
3.

0
2.

2
2.

1

14
, 2

3.
0,

 1
.6

3.
2,

 2
.0

3.
0,

 1
.9

9,
 5

8.
1,

 3
.2

9.
4,

 4
.1

7.
9,

 4
.8

10
, 1

0
8.

7,
 1

4.
8

6.
6,

 3
.0

6.
4,

 4
.1

12
, 8

6.
8,

 5
.2

7.
4,

 5
.0

6.
2,

 4
.6

9,
 1

2
4.

1,
 3

.8
4.

6,
 4

.3
5.

5,
 

9.
9

2.
2,

 0
.8

22
9,

 2
6.

4,
 0

.9
8.

3,
 0

.8
8.

0,
 0

.0
23

, 3
15

.7
, 2

.8
22

.3
, 3

.0
23

.4
, 

0.
0

55
, 3

89
.8

, 2
.5

15
.4

, 2
.7

22
.2

, 0
.0

36
, 3

23
.2

, 1
.7

18
.9

, 2
.5

16
.1

, 
0.

0
65

, 1
16

.2
, 0

.8
19

.8
, 0

.8
51

.6
, 

0.
0

5.
2,

 1
.3

Av
g.

 
H
D
3 A

0.
20

0.
11

 
0.

10
0.

11
0.

38
0.

39
0.

50
0.

40
0.

31
0.

22
0.

26
0.

23
0.

42
0.

16
0.

21
0.

17
0.

09
0.

03
0.

04
0.

03
0.

05

6.
70

,3
5.

86
0.

17
,0

.1
6

0.
19

,0
.2

1
0.

18
, 0

.1
9

0.
59

, 0
.4

0
0.

51
, 0

.3
7

0.
62

, 0
.4

5
0.

57
, 

0.
63

0.
51

, 0
.6

3
0.

52
, 

1.
47

0.
32

, 0
.2

1
0.

32
, 0

.3
4

0.
79

, 0
.9

5
0.

31
, 0

.3
7

0.
37

, 0
.4

6
0.

29
, 

0.
32

0.
21

, 0
.3

7
0.

06
, 

0.
08

0.
07

, 0
.0

7
0.

17
, 

0.
52

0.
05

, 0
.0

3

20
6.

36
,0

.0
6

0.
74

,0
.0

2
0.

98
,0

.0
2

0.
74

, 0
.0

0
1.

77
, 0

.1
6

1.
90

,0
.1

2
2.

15
, 0

.1
5

2.
96

, 
0.

00
3.

52
, 0

.1
0

8.
63

, 
0.

06
0.

93
, 0

.1
0

1.
86

, 0
.0

0
3.

54
, 0

.0
8

1.
25

, 0
.0

4
1.

97
, 0

.0
5

1.
24

, 
0.

00
2.

08
, 0

.0
1

0.
37

, 
0.

01
0.

28
, 0

.0
1

2.
83

, 
0.

00
0.

17
, 0

.0
2

PD
V

12
4

3.
8

3
12

11
12

.0
9

5
4

5.
8

4
6

5
4.

6
4

3
2

1.
9

1
1.

3

17
, 2

3
6,

 5
6.

2,
 5

.7
6,

 6
15

, 1
5

14
, 1

6
15

.3
, 1

8.
8

14
, 2

0
7,

 8
7,

 7
6.

8,
 4

.2
7,

 8
14

, 2
1

9,
 1

3
10

.6
, 1

5.
2

7,
 1

1
4,

 3
2,

 2
2.

3,
 2

.0
3,

 5
1.

9,
 1

.8

13
3,

 0
24

, 0
26

.7
, 0

.0
26

, 0
89

, 1
95

, 0
11

0.
3,

 0
.9

11
8,

 0
36

, 0
35

, 1
18

.0
, 0

.5
37

, 0
92

, 0
54

, 0
64

.9
, 0

.7
47

, 0
15

, 0
9,

 0
9.

2,
 0

.1
25

, 0
7.

6,
 0

.0



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4678  | https://doi.org/10.1038/s41598-024-53997-y

www.nature.com/scientificreports/

Ta
bl

e 
8.

  C
om

pa
ris

on
 o

f d
es

cr
ip

tiv
e 

st
at

ist
ic

s f
ro

m
 m

od
el

s t
ra

in
ed

 w
ith

 se
gm

en
ts

, s
eg

m
en

ts
 w

ith
 v

es
se

l (
co

lo
r c

ha
nn

el
) a

nd
 se

gm
en

ts
 w

ith
 sp

le
en

 o
n 

ch
al

le
ng

e 
co

ho
rt

 C
C

H
.

Se
g 

1,
 N

 =
 25

1
Se

g 
2,

 N
 =

 25
1

Se
g 

3,
 N

 =
 25

1
Se

g 
4,

 N
 =

 25
1

Se
g 

5–
8,

 N
 =

 25
1

Sp
le

en
, 

N
 =

 25
1

(I
nt

ra
M

D
2a

 =
 0.

88
)

N
 =

 33
1

(I
nt

ra
M

D
2a

 =
 0.

94
)

(I
nt

ra
M

D
2a

 =
 0.

92
)

 (I
nt

ra
M

D
2a

 =
 0

.9
9)

(I
nt

er
M

D
2b

 =
 0.

82
)

(I
nt

er
M

D
2b

 =
 0.

85
)

(I
nt

er
M

D
2b

 =
 0.

91
)

(I
nt

er
M

D
2b

 =
 0.

88
)

 (I
nt

er
M

D
2b

 =
 0

.9
6)

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
se

g+
sp

le
en

1

D
ic

e

0.
87

0.
88

0.
88

0.
88

0.
80

0.
80

0.
80

0.
81

0.
83

0.
85

0.
85

0.
86

0.
80

0.
85

0.
85

0.
84

0.
96

0.
97

0.
97

0.
96

0.
95

0.
85

,0
.0

5
0.

88
,0

.0
4

0.
88

,0
.0

4
0.

87
,0

.0
5

0.
79

, 0
.0

5
0.

80
, 

0.
05

0.
80

, 0
.0

5
0.

81
, 

0.
04

0.
83

, 0
.0

6
0.

85
, 

0.
05

0.
85

, 0
.0

5
0.

85
, 

0.
06

0.
80

, 0
.0

7
0.

85
, 

0.
06

0.
84

, 0
.0

6
0.

84
, 

0.
06

0.
96

, 0
.0

1
0.

97
, 

0.
01

0.
97

, 0
.0

1
0.

96
, 

0.
01

0.
96

, 0
.0

1

0.
94

,0
.7

2
0.

97
,0

.7
7

0.
96

,0
.7

6
0.

97
,0

.7
7

0.
88

, 0
.6

7
0.

88
, 

0.
65

0.
89

, 0
.6

5
0.

87
, 

0.
68

0.
92

, 0
.6

7
0.

94
, 

0.
67

0.
95

, 0
.7

0
0.

94
, 

0.
65

0.
93

, 0
.6

6
0.

95
, 

0.
74

0.
95

, 0
.7

3
0.

94
, 

0.
72

0.
99

, 0
.9

2
0.

99
, 

0.
95

0.
99

, 0
.9

5
0.

99
, 

0.
94

0.
99

, 0
.9

3

H
D
3 9
5

5
3.

8
3.

8
4.

3
10

9.
8

10
.0

10
.7

10
9.

1
8.

8
9.

0
14

8.
6

8.
4

8.
9

8
6.

1
6.

1
6.

0
2.

0

6,
 3

4.
1,

 2
.3

4.
2,

 2
.6

4.
4,

 2
.3

12
, 5

11
.5

, 5
.0

11
.4

, 5
.1

12
.0

, 
5.

9
11

, 4
9.

3,
 3

.2
9.

5,
 3

.2
9.

5,
 3

.0
16

, 9
10

.5
, 4

.9
10

.8
, 5

.2
10

.5
, 

5.
0

9,
 6

7.
3,

 5
.2

7.
6,

 5
.7

7.
3,

 
4.

8
1.

9,
 0

.5

15
, 2

12
.8

, 0
.7

14
.1

, 0
.7

13
.0

, 0
.7

25
, 5

25
.9

, 5
.6

25
.2

, 5
.5

29
.3

, 
5.

6
24

, 6
15

.9
, 4

.9
16

.0
, 5

.0
16

.6
, 4

.6
43

, 4
23

.4
, 3

.1
24

.0
, 3

.2
21

.9
, 

3.
4

26
, 2

22
.8

, 1
.4

23
.2

, 1
.4

21
.9

, 
1.

0
2.

8,
 0

.7

Av
g.

 
H
D
3 A

0.
26

 
0.

21
0.

21
0.

22
0.

76
0.

71
0.

69
0.

74
0.

58
0.

45
0.

49
0.

47
1.

17
0.

52
0.

54
0.

45
0.

15
0.

10
0.

09
0.

09
0.

06

0.
35

, 0
.3

0
0.

25
, 0

.2
0

0.
25

,0
.2

2
0.

27
,0

.2
0

0.
88

, 0
.5

3
0.

81
, 

0.
46

0.
81

, 0
.4

7
0.

83
, 

0.
45

0.
73

, 0
.5

2
0.

56
, 

0.
33

0.
55

, 0
.2

7
0.

58
, 

0.
37

1.
06

, 0
.6

4
0.

63
, 

0.
48

0.
66

, 0
.5

1
0.

64
, 

0.
47

0.
19

, 0
.1

4
0.

11
, 

0.
09

0.
12

, 0
.1

1
0.

11
, 

0.
09

0.
06

, 0
.0

2

1.
42

, 0
.0

6
1.

10
, 0

.0
2

1.
21

,0
.0

3
1.

08
,0

.0
2

2.
19

, 0
.2

4
2.

14
, 

0.
30

2.
28

, 0
.4

1
1.

91
, 

0.
36

1.
99

, 0
.2

3
1.

61
, 

0.
13

1.
30

, 0
.1

2
1.

95
,0

.1
8

2.
49

, 0
.1

2
2.

07
, 

0.
07

2.
12

, 0
.0

7
1.

86
, 

0.
08

0.
51

, 0
.0

1
0.

43
, 

0.
01

0.
44

, 0
.0

1
0.

40
, 

0.
01

0.
10

, 0
.0

0

PD
V

14
8

8
11

18
16

18
18

13
9

8
8

9
7

8
6

2
2

3
3

4

17
, 1

2
11

, 8
11

, 1
0

12
, 8

19
, 1

2
19

, 1
3

19
, 1

1
19

, 1
1

14
, 1

3
12

, 9
12

, 1
0

11
, 1

0
11

, 8
10

, 7
10

, 8
9,

 8
2,

 2
3,

 2
3,

 2
3,

 2
4,

 2

52
, 1

31
, 0

34
, 0

31
, 1

44
, 1

49
, 0

50
, 2

47
, 2

46
, 0

37
, 1

40
, 0

37
, 0

26
, 0

30
, 0

33
, 0

30
, 0

6,
 0

7,
 0

7,
 0

8,
 0

8,
 0



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4678  | https://doi.org/10.1038/s41598-024-53997-y

www.nature.com/scientificreports/

Ta
bl

e 
9.

  C
om

pa
ris

on
 o

f d
es

cr
ip

tiv
e 

st
at

ist
ic

s f
ro

m
 m

od
el

s t
ra

in
ed

 w
ith

 se
gm

en
ts

, s
eg

m
en

ts
 w

ith
 v

es
se

l (
co

lo
r c

ha
nn

el
) a

nd
 se

gm
en

ts
 w

ith
 sp

le
en

 o
n 

po
rt

al
 v

ei
n 

em
bo

liz
at

io
n 

co
ho

rt
 C

PV
E. 

1  D
at

a 
in

 e
ac

h 
ce

ll 
is 

or
ga

ni
ze

d 
as

 ro
w

 1
 =

 M
ed

ia
n,

 ro
w

 2
 =

 M
ea

n,
 S

ta
nd

ar
d 

de
vi

at
io

n,
 ro

w
 3

 =
 M

ax
, M

in
; 1 M

nn
U

ne
t =

 m
od

el
 tr

ai
ne

d 
w

ith
 se

gm
en

ts
 o

nl
y, 

M
se

g+
sp

le
en

 =
 M

od
el

 tr
ai

ne
d 

w
ith

 S
eg

m
en

ts
 

an
d 

Sp
le

en
 a

s l
ab

el
s, 

M
ve

ss
 =

 M
od

el
 tr

ai
ne

d 
w

ith
 se

gm
en

ts
 a

s l
ab

el
 a

nd
 v

es
se

l a
s c

ol
or

 ch
an

ne
l; 

2a
In

tr
aM

D
 =

 In
tr

a-
ob

se
rv

er
 m

ea
n 

di
ce

,2b
In

tr
er

M
D

 =
 In

te
r-

ob
se

rv
er

 m
ea

n 
di

ce
, 3 H

D
 =

 H
au

sd
or

ff 
di

st
an

ce
 (9

5 =
 95

th
 p

er
ce

nt
ile

 a
nd

 A
 =

 A
ve

ra
ge

) i
n 

m
m

; P
D

V
 =

 p
er

ce
nt

 d
iff

er
en

ce
 in

 v
ol

um
e.

Se
g 

1,
 N

 =
 20

Se
g 

2,
 N

 =
 20

1
Se

g 
3,

 N
 =

 20
1

Se
g 

4,
 N

 =
 20

1
Se

g 
5–

8,
 N

 =
 20

1
Sp

le
en

, 
N

 =
 20

1

(I
nt

ra
M

D
2a

 =
 0.

88
)

(I
nt

ra
M

D
2a

 =
 0.

88
)

(I
nt

ra
M

D
2a

 =
 0.

94
)

(I
nt

ra
M

D
2a

 =
 0.

92
)

(I
nt

ra
M

D
2a

 =
 0.

99
)

(I
nt

er
M

D
2b

 =
 0.

82
)

(I
nt

er
M

D
2b

 =
 0.

85
)

(I
nt

er
M

D
2b

 =
 0.

91
)

(I
nt

er
M

D
2b

 =
 0.

88
)

(I
nt

er
M

D
2b

 =
 0.

96
)

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
pa

U
-N

et
1

M
nn

U
ne

t1
M

se
g+

sp
le

en
1

M
ve

ss
1

M
se

g+
sp

le
en

1

D
ic

e

0.
90

0.
90

0.
91

0.
90

0.
81

0.
82

0.
82

0.
82

0.
87

0.
88

0.
88

0.
88

0.
85

0.
89

0.
89

0.
89

0.
92

0.
93

0.
93

0.
94

0.
97

0.
88

, 0
.0

5
0.

88
, 0

.0
6

0.
88

, 0
.0

6
0.

89
,0

.0
5

0.
77

, 0
.1

9
0.

80
, 

0.
10

0.
80

, 0
.1

0
0.

80
, 

0.
11

 
0.

86
, 0

.0
5

0.
87

, 
0.

05
0.

87
, 0

.0
5

0.
87

, 
0.

05
0.

81
, 0

.1
0

0.
88

, 
0.

05
0.

88
, 0

.0
5

0.
87

, 
0.

07
0.

91
, 0

.0
6

0.
92

, 
0.

04
0.

93
, 0

.0
4

0.
92

, 
0.

05
0.

97
, 0

.0
1

0.
95

, 0
.7

5
0.

94
, 0

.6
9

0.
94

, 0
.6

7
0.

94
, 0

.7
5

0.
89

, 0
.0

0
0.

89
, 

0.
42

0.
89

, 0
.4

3
0.

89
, 

0.
41

0.
92

, 0
.6

9
0.

93
, 

0.
68

0.
92

, 0
.7

1
0.

93
, 

0.
70

0.
91

, 0
.4

6
0.

94
, 

0.
77

0.
95

, 0
.7

5
0.

94
, 

0.
64

0.
96

, 0
.7

2
0.

98
, 

0.
82

0.
98

, 0
.8

4
0.

98
, 

0.
80

0.
98

, 0
.9

6

H
D
3 9
5

4
4.

3
4

4
13

10
.9

11
11

12
9.

3
10

9
15

7.
8

8
9

15
14

.9
11

10
2

5,
 4

5.
5,

 4
.3

5,
 4

5,
 3

16
, 1

3
13

.5
, 

10
.3

12
, 6

14
, 1

1
17

, 1
4

10
.2

, 4
.3

11
, 8

12
, 8

18
, 8

9.
5,

 5
.1

9,
 6

11
, 7

18
, 1

0
16

.1
, 

15
.9

12
, 7

12
, 9

2,
 0

16
, 2

21
.7

, 2
.5

21
, 2

17
, 2

66
, 5

51
.7

, 5
.8

27
, 6

55
, 5

56
, 5

22
.0

, 5
.8

40
, 5

42
, 5

36
, 6

21
.9

, 3
.4

22
, 3

27
, 3

47
, 5

77
.2

, 2
.5

27
, 2

41
, 3

3,
 1

Av
g.
H
D
3 A

0.
21

0.
19

0.
19

0.
21

0.
80

0.
72

0.
70

0.
71

0.
53

0.
43

0.
46

0.
45

0.
89

0.
36

0.
37

0.
43

0.
28

0.
30

0.
26

0.
23

0.
03

0.
33

,0
.3

2
0.

35
,0

.4
7

0.
35

,0
.4

9
0.

31
, 0

.3
1

2.
35

,6
.4

9
0.

96
, 

0.
84

0.
96

, 0
.7

8
1.

14
, 

1.
43

0.
91

, 0
.8

7
0.

60
, 

0.
60

0.
65

, 0
.7

7
0.

68
, 

0.
84

1.
15

,0
.9

2
0.

49
, 

0.
38

0.
50

, 0
.4

5
0.

62
, 

0.
65

0.
61

, 0
.9

4
0.

42
, 

0.
36

0.
33

, 0
.3

0
0.

41
, 

0.
51

0.
03

, 0
.0

1

1.
26

,0
.0

6
2.

15
, 0

.0
9

2.
26

, 0
.0

8
1.

43
, 0

.0
8

29
.8

1,
0.

23
3.

71
, 

0.
27

3.
15

, 0
.2

5
6.

47
, 

0.
26

3.
56

,0
.2

0
2.

92
, 

0.
21

3.
73

, 0
.2

0
4.

11
, 

0.
20

3.
41

, 0
.2

4
1.

49
, 

0.
10

1.
74

, 0
.0

7
2.

83
, 

0.
09

4.
19

, 0
.0

9
1.

25
, 

0.
03

1.
16

, 0
.0

3
2.

26
, 

0.
04

0.
08

, 0
.0

2

PD
V

7
6

6
5

19
15

15
20

7
5

6
6

13
6

7
6

3
4

4
4

1

7,
 5

10
, 1

8
10

, 2
0

8,
 1

3
34

, 6
8

18
, 1

3
18

, 1
3

22
, 1

6
9,

 6
7,

 6
7,

 7
8,

 6
14

, 1
4

8,
 7

9,
 8

10
, 1

2
6,

 5
6,

 6
6,

 5
6,

 6
1,

 1

19
, 0

85
, 0

92
, 0

61
, 1

32
0,

 3
53

, 1
53

, 5
56

, 0
23

, 2
22

, 0
25

, 1
26

, 1
62

, 1
26

, 0
32

, 1
48

, 0
16

, 0
24

, 1
22

, 0
22

, 0
3,

 0



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4678  | https://doi.org/10.1038/s41598-024-53997-y

www.nature.com/scientificreports/

challenge datasets are not available, we could not perform stratified DSC analysis. Comparatively, both MnnU−Net 
and MVess showed mean and median DSC/HD95/PDV within 1%/1 mm/2% of our best model. On the other hand, 
MpaU−Net showed mean and median HD95/PDV of 5 mm/6% higher than the that of the best model.

Qualitatively, 100% of cases in Mseg+spleen received an overall Likert score ≥ 3 with more than 80% received 
score ≥ 4. Lower Likert scores were localized to segments 2 and 3 contours. Regarding other models, Likert 
scores of MVess and MSeg showed similar trend as the MSeg+Spleen . In contrast, the percentage of cases of MpaU−Net 
receiving score ≥ 3 was 64% with only 20% showing overall score ≥ 4. Lastly, more than 97% of spleen from 
Mseg+spleen received score ≥ 4.

Assessment of the models on post‑portal vein embolization images
As per Table 9, MSeg+Spleen showed mean and median DSCs ≥ 0.87 for all segments and spleen except segment 
2 where the mean and median DSCs were 0.82 and 0.80 in the case of segment 2. Furthermore, segments 2, 3, 
4, 5–8, showed mean/median DSCs HD95≥7 mm. Segment 1 and Spleen showed mean/median HD95 within 
5 mm. Mean and median PDVs of segments 1, 3, 4, 5–8 were within 10% but that of segment 2 was ≥ 15%. 
The stratified DSC analysis using cancer types showed CC (N = 3) larger DSC CRM (N = 17) by 2 to 4%. With 
regards to other models, all of the models showed mean and median DSCs within 1% of MSeg+Spleen with the 
exception of MpaU−Net in case of segment 4 where DSCs were less than that of MSeg+Spleen by 7%. Similar trends 
were observed in HD95 with the exception of MpaU−Net showing mean HD95 up to 18% in the case of segment 
5–8. Except MpaU−Net , PDVs of all models were within 4% of one another. Mean PDVs of MpaU−Net were greater 
than that of MSeg+Spleen by 16%.

Qualitatively, at least 90% of cases received a score ≥ 3 and at least 85% received a score of ≥ 4 across all 
models in each segment with the exception of segment 4 and 5–8. For segments 4 and 5–8, only 5% and 10% 
cases of MpaU−Net received score ≥ 4 whereas at least 25% cases of MSeg+Spleen received score ≥ 4. Additionally, 
a score ≥ 3 was received by more than 45% of cases of segment 5–8 across all models. Lastly, all cases of spleen 
received a score of 5. Examples of Likert scores with the specific images are shown in Fig. 2.

Assessment of the model on non‑contrast images
As per Table 10, MSeg+Spleen showed mean and median DSCs ≥ 0.83 across all segments and spleen with the 
exception of segment 1 and 2 where the mean DSCs were 0.70 and 0.78 respectively. Further, mean, and median 
HD95 were ≥ 5mm across all segments but spleen showed HD95 <5 mm. Segment 1 showed a mean and median 
PDVs of 18% and 30% which was the largest PDV compared to other segments. Next, The mean MDA ranged 
from 1.6–3.6 mm for segments and was 1.3 mm for spleen.

MnnU−Net , showed similar performance as MSeg+Spleen , across all metrics in all segments. Specifically, the 
agreement between the models were within 2%, 1.5 mm, and 3% and 0.2 mm in terms of DSC, HD95 , PDV, and 
MDA, respectively, with MnnU−Net showing underperformance. On the other hand, MpaU−Net showed slightly 
improved performance than MnnU−Net and MSeg+Spleen in case of segment 1 and 2. Specifically, mean DSC of 

Figure 2.   Example cases of three different Likert score (5, 4, and 3) is shown for two different cohorts. Blue 
arrow highlights the uncertainties in boundaries between the manual and model predicted contours. For score 4 
and 3 in the images of CPVE , the arrow highlights the hole in segment 5–8 due to metal artifacts. In CPVE , a score 
of 4 is given when image has a hole, but segments boundaries follow the vessels.
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segment 1 from MpaU−Net was greater than that of MSeg+Spleen by 8%. Similarly, mean DSC of segment 2 from 
MpaU−Net was greater than that of MSeg+Spleen by 5%. However, such magnitude of discrimination was not 
observed in segment 1 and 4 in terms of HD95 . MpaU−Net showed mean HD95 greater than that of other two 
models by 10 mm and 6 mm in case of segments 1 and 4, respectively. Likewise, the mean PDV were larger than 
two models by 9% for segment 4. Additionally, MpaU−Net showed MDA was within 1 mm for all segments when 
compared with the MSeg+Spleen.

No MVess model was trained, and no qualitative evaluation was performed because there is no vessel informa-
tion on the non-CECT images.

Intra‑ and inter‑observer analysis
The intraobserver mean DSCs on contours drawn by radiologist MA were of 0.88, 0.88, 0.94, 0.92, and 0.99 in 
segments 1, 2, 3, 4, 5–8, respectively. Likewise, the interobserver mean DSCs in between the contours drawn by 
radiologists JAMS and MA were 0.82, 0.85, 0.91, 0.88, and 0.96, respectively.

Discussion
In this study, we have developed a clinically translatable model that can be used to auto-contour the liver seg-
ments and spleen on abdominal CT images. We validated all models on a validation set ( CRTVal ) of 40 CECT 
of patients with primary and metastatic liver tumors to identify the best model. We also assessed all models on 
various test sets (N = 78) shown in Fig. 1. First, we demonstrated that 3D full resolution architecture of nnU-Net 
outperformed 3D attention U-Net (paU-Net) by 2–5% in DSC across all liver segments. We also investigated the 
impact of adding segmentation of the vessels and spleen to aid in segmenting the liver segments and observed 
no major performance change between the models. Our final model can segment liver segments 1, 2 ,3 ,4 and 
5–8 and the spleen with an average mean DSC of 0.89 and 0.99 across liver segments and spleen, respectively. We 
demonstrated that our model can be used in the clinical environment for surgical planning (mean DSC = 0.91) 
and for PVE patients (overall Likert score ≥ 4 for 95%). To our knowledge, this is the first study to develop a 
single model to contour liver segments and spleen which is validated across primary/secondary liver cancers 
patients and across both contrast and non-contrast images.

Our final model is applicable in four clinical scenarios. First, the model can be used to auto-contour the seg-
ments of liver surgery patients where it can aid in estimating the volumetric change due to PVE and in overall 
resection planning, demonstrating an accuracy of 5.6% in overall median volume. Second, the model can be 
used to auto-contour liver segments in patients undergoing RT for liver cancer as studies5,27,28 have highlighted 
the importance of understanding liver segment regeneration for the optimization of RT plans. Third, the vol-
ume estimation from the model can be used in the prediction of cirrhosis and fibrosis as studies have reported 
that segment-volume ratio are significant predictors of cirrhosis/fibrosis18,29. Last, for the pathologies leading 
to hepatosplenomegaly, our model can be used to segment liver and spleen with higher accuracies in the case 
where segment 2 and 3 is abutted with spleen. Once our model is fully translated in the clinic, the utilization of 
model will allow improve efficiency, as the model can generate all its structure in 30–75 s per patient. The required 
time is very efficient compared to 90 min required in manual segmentation at our clinic and up to three minutes 
required in some of the semi-automatic segmentation methods30.

With regard to technical results, our first major observation was in the comparison of STAPLE vs. majority 
vote where we hypothesized that STAPLE > majority vote. This was confirmed based upon visual assessment that 
all 40 images in test set from CRT has at least one slice with increased zero valued pixel at the segment demarca-
tion than STAPLE. The observation was expected because STAPLE assigns the label based on the probability 
values compared to a majority voting in SimpleITK (used in our study), which utilizes frequency of label which 
could lead to large number of undecided pixels. Second, in our architecture selection study, we observed that 
the nnU-Net architecture was superior with the paU-Net architecture demonstrating over segmentation of seg-
ment 1 including volume of segments 4, 5–8, and inferior venacava, and under segmentation in segment 3 with 
volume classified as segments 2 and 4. This could be due to less options in data augmentation in paU-Net than 
nnU-Net which greatly impacted the performance in the cases where vessel defining the segment boundaries 
deviated from the majority of the training data. Lastly, the paU-Net often failed to accurately contour segment 4, 
typically failing at the interface of the portal vein. The nnU-Net did not suffer from this uncertainty and therefore 
the accuracy improvement for segment 4 was the most significant, compared to the paU-Net model.

With regard to improvement in uncertainty, the statistical test showed no differences in models when spleen 
were added to the best architecture model. Specifically, in CRT , for MvessvsMnnU−Net , 91% of the cases showed 
DSC differences within [-0.025,0.025]. The cases where DSC differences were larger ( MnnU−Net>Mvess ) corre-
sponded to errors in Mvess due to over segmentation of segment 3 to segment 2 in two cases, over segmentation 
and under segmentation of segments 5–8 over 4 in one case. Similar trends were observed for MvessvsMseg+spleen , 
to suggest a preference for Mseg+spleen . However, most of the contrast in performance was observed in segment 
1, 2, and 4 (Table S5). In Mseg+spleen vs. MnnU−Net , we argued Mseg+spleen was similar to MnnU−Net (Table 7 and 
Table S4), however, we selected Mseg+spleen because of slightly improved performance. Quantitatively, we observed 
in Table 7 that descriptive statistics of the results were similar except segment 5–8 of Mseg+spleen where minimum 
DSC and maximum HD95 improved by 0.05 and ~ 9 mm upon addition of spleen. Upon qualitative assessment of 
those cases, the improvement in Mseg+spleen was due to lesser under segmentation of segment 5–8 compared to 
MnnU−Net . Next, our validation set included N = 8/40 cases of segment 2 and 3 hypertrophy. In N = 7/8, there was 
no difference in segment 2 and 3 i.e., both models showed reasonable segmentation without any over or under 
segmentations. In N = 1/7, MnnU−Net showed under segmentation of segment 2 next to spleen but segmenta-
tions from Mseg+spleen were improved on the same slices. Although our hypothesis that including the spleen in 
the model would be better than one without spleen was not supported because both models showed reasonable 
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performance on cases with segment 2/3 hypertrophy we still selected model with spleen as our final model as 
this model has wider application and can be also used to estimate the severity of cirrhosis/fibrosis if needed in 
the patient undergoing liver surgery or RT.

Mseg+spleen, the final model showed excellent performance on the CLS patients for all segments except segment 
2 where mean DSC was 0.85 and mean HD95 was 9.4 mm. Furthermore, the subjective analysis showed that 
except segment 2/3, more than 70% of all cases received overall score ≥ 4 on Likert score. This is likely due to the 
uncertainties in the boundary of segment 2/3. While the uncertainties are primarily attributed to performance of 
the model, it is also important to note that the opacification of the veins plays a great role in the ability of radiolo-
gist to evaluate the segmentation. The radiologist (SY) reported that N = 16/33 images were arterial phase images 
leading to a reduced confidence level in the evaluation of the contours as the portal venous branches are not well 
opacified and localized on the arterial phase images. Additionally, the visual assessment also showed that 5/33 
of CLS showed holes or under segmentation in segment 5–8 due to photon starvation from metal artifact of the 
embolization coil/stent (N = 4/5) and tumor hole (N = 1/5).Furthermore, another N = 2/33 cases showed holes 
and under segmentation in segment 4 due to photon starvation from metal artifacts. Lastly, we observed slightly 
lower DSC in CC compared to CRM primarily because of portal hypertension in CC which could lead to enlarged 
spleen and could affect the contour performance. This was supported when obtained a difference of 13 cc between 
mean volume of both cancer types. Comparatively, since our final model showed better DSC in the case of CC 
opposed to HCC by approximately 2%, it could be argued that the severity of underlying disease which affects 
liver texture on CT across different cancer types could also impact vessels and hence the contours. Therefore, 
one would expect a DSC performance trend of colorectal metastasis patients > Cholangiocarcinoma > Hepato-
cellular carcinoma. However, since the number of patients in Cholangiocarcinoma in CLS is smaller (5 vs. 22), 
we cannot state a robust conclusion. In comparison with other models, our best model outperformed paU-Net 
and vessel-based model mostly on segment 1, 4 and 2, 3, 4, respectively but not on segment 5–8. This could be 
because segment 5–8 is the largest structure which means it is less sensitive to change in the vessel structures and 
includes more features. This requires lesser optimization in the model which means model less robust models 
such MpaU−Net could also show better performance.

Next, in CCH, MSeg+Spleen showed overall mean DSC of 0.87 which was smaller than the observed results on 
the CLS and CRTVal sets. Specifically, poor results were confined to segment 1 thru 4. The reason behind such 
observation was uncertainties in the boundaries of the segments in most of the cases. The images in challenge 
dataset also include cases with large and multiple tumors in the which could potentially lead to vessel occlusion 
and/or unremarkable opacification of the vessels on CT scans. Further, upon visual assessment, N = 4/25 cases 
of CCH showed under and over segmentation. Specifically, N = 3/4 showed under segmentation in segment 2, 4, 
and 5–8 dues to tumor and diseases, and N = 1/4 segment showed over segmentation to heart.

In CPVE , we observed that the overall mean DSC of segments was 0.87 which is primarily because of poor per-
formance in the segment 2. Upon visual assessment, we found N = 20/20 images showed inconsistency between 
the segment 2–3 boundary of ground-truth and prediction. The boundary of segments 2 and 3 is dictated by 
the portal veins in the left liver, and the architecture of those veins exhibit higher variation across patient popu-
lation due to disease in liver. Another reason is segmental hypertrophy which could result in under and over 
segmentation of a specific segments. The volume of segment 2 from our best model in CPVE is 148 ± 73 cc and 
the ground-truth volume of normal liver from CHAOS dataset is 88 ± 36 cc which supports there is hypertro-
phy of segment 2. Next, regarding the effect of metallic artifacts, we found that N = 17/20 patients of CPVE had 
embolization coils spanning segment 5–8 and 4 with mostly localized in segment 5–8. N = 2/17 were immune 
from the impact of metal artifacts. However, in the remaining N = 15/17, both segments 4 (N = 3/15) and 5–8 
(N = 15/15) showed holes in contours due to photon starvation arising from metal artifacts. This was expected 
because our training dataset did not include patients undergoing portal vein embolization. Lastly, the stratified 
DSC analysis for different cancer types showed the model performed better on CC (N = 3) patients than CRM 
(N = 17) patients by 2–4% which is not consistent with our observation in the CRTVal.

Next, in the perturbation analysis, we observed that MSeg+Spleen was still better than the other two models in 
terms of DSC, HD95, and PDV across all segments except segment 1 and 2. In segment 1, and 2, MpaUNet showed 
slightly better performance (p < 0.05). However, this was contradicted when we assessed the MDA which was 
higher for MpaUNet . Therefore, we attribute the observation of DSC for segment 1 mostly because of attention 
mechanism due to absence of contrast and randomness in the data. Overall, we argue that our best model could 
be potentially used on non-contrast images of same examination in clinic for segments 3, 4, 5–8 and spleen. For 
segments 1, and 2, minimum interventions from radiologist would be required to correct the contours. Lastly, 
since the non-contrast images are hardly used to discriminate tumor types, we did not perform stratified DSC 
analysis on non-contrast cases.

Comparing the performance of final model across validation and various test sets in Tables 6, 7, 8 and 9, we 
found that model performs best on CLS as evidenced by improved segment mean DSC (2–6%) than other cohorts. 
This could be attributed to the fact that surgery patients have less severe pathologies (e.g., surgery is typically 
a first-line therapy for smaller tumors) and minimal fewer artifacts than patients undergoing radiotherapy 
or portal vein embolization or patients in challenge cohorts. Further, we also observed that mean segmental 
DSC of CRTVal and CLS were slightly better than CCH and CPVE . Specifically, while performance in segment 1 is 
within mean DSC of 2% across the datasets, segments 2, 3, and 4 showed lesser mean DSCs (up to 6%) which 
is attributed to fact that CCH dataset has larger and numerous tumors, larger slice thickness. For segment 5–8, 
CPVE showed lesser mean DSC by 3–5% due to presence of under segmentation or holes in segment 5–8 arising 
from metallic artifacts.

Considering the above analysis, our study has three limitations (1) segmentation of combined segments 5–8, 
(2) failure of the model on segments with metal artifacts, and (3) uncertainty in the segment 2 and 3 bounda-
ries. For (1), clinical practice for surgical planning dictated our segmentation selection and the combination of 
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segments 5–8. In addition, in our experience, there is substantial variability in the manual contouring of these 
segments individually. For (2), the issue can be addressed by manually editing the failed contours in the cases with 
severe photon starvation and increasing the number of such cases in our training datasets. For the last issue, we 
could implement post-processing methods to automatically optimize the boundary of segment 2 and 3. In our 
clinic, the segmental boundaries are separated based on the branching of portal veins and the regions above the 
left portal vein branch are segment 2 whereas regions below the left portal vein branches are segment 331. We can 
use our in-house tool to generate liver vessels on CT scans in post-processing phase23 and also implement vessel 
enhancements and active contour methods, as reviewed by Ciecholewski et. al. 202132, to further enhance the 
vessels at the periphery of segment 2 and 3. Despite the limitations, our model performs comparable or improved 
accuracy in comparison with studies as shown in Table 11. Tian et al. 2019 reported the mean values across all 
segments and our results are in close agreement with their result, In comparison with Lee et al. 2022, our model 
demonstrated superior results on CLS in all segments (except segment 2) by 3–30%. For segment 2, our model 
showed inferior results by up to 6% which is attributed to the variability in the boundaries of the segments 2 and 
sensitivity of our model to the vessel architecture. Another reason is the difference in the underlying pathology 
of the literature compared to our datasets. Lee et al. 202218 assessed their model performance on the patients 
with hepatitis C and cirrhosis, however, our CLS is dominantly CRM and CC patients (see Table 1). The severity 
of cancer is also known to cause cavernous transformation of the vessels which also leads to uncertainties in the 
segment 2 contours.

Conclusion
In this study, we developed and validated to a clinically acceptable accuracy, a fully automated model that can 
auto-contour liver segments and spleen on CECT images. We found that implementing the attention mechanism 
in 3D U-Net did not improve the performance when compared with the 3D full-resolution nnU-Net. We also 
identified that the addition of segmenting the vessels and spleen did not have large impact on accuracy of seg-
ment contours. The application of the model is primarily intended for use with patients undergoing assessment 
for liver surgery or liver radiotherapy, but the model can be used in any clinical scenario where there is a need 
for segment contouring on CECT. Upon assessing our model on patients undergoing portal-vein embolization, 
we conclude that contouring is significantly impacted by presence of metallic artifacts leading to holes in the 
contours. However, inclusion of such patients in the training may improve performance in the future. Lastly, 
with regard to non-contrast images, we conclude that our final model can contours segments with accuracies 
sufficient enough for clinical use with review and possibly moderate interventions from radiologist.

Data availability
The 3D-IRCADb-01 data can be accessed at https://​www.​ircad.​fr/​resea​rch/​data-​sets/​liver-​segme​ntati​on-​3d-​
ircadb-​01/. The 3D-IRCADb-02 dataset can be accessed at https://​www.​ircad.​fr/​resea​rch/​data-​sets/​respi​ratory-​
cycle-​3d-​ircadb-​02/. The task 8 Medical Imaging Decathlon Challenge dataset can be accessed at http://​medic​
aldec​athlon.​com/​dataa​ws/. The CHAOS dataset can be accessed at https://​chaos.​grand-​chall​enge.​org/​Downl​
oad/. The internal liver CT data used during our study are available upon reasonable request in compliance with 
instuitutional IRB requirements.
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