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Abstract: Traumatic brain injury (TBI) is a major global health problem that affects both civilian and
military populations worldwide. Post-injury acute, sub-acute, and chronic progression of secondary
injury processes may contribute further to other neurodegenerative diseases. However, there are no
approved therapeutic options available that can attenuate TBI-related progressive pathophysiology.
Recent advances in preclinical research have identified that mitochondria-centric redox imbalance,
bioenergetics failure and calcium dysregulation play a crucial role in secondary injury progression
after TBI. Mitochondrial antioxidants play an important role in regulating redox homeostasis. Based
on the proven efficacy of preclinical and clinical compounds and targeting numerous pathways
to trigger innate antioxidant defense, we may be able to alleviate TBI pathology progression by
primarily focusing on preserving post-injury mitochondrial and cerebral function. In this review, we
will discuss novel mitochondria-targeted antioxidant compounds, which offer a high capability of
successful clinical translation for TBI management in the near future.

Keywords: traumatic brain injury; mitochondria; free radicals; oxidative stress; cell death; antioxi-
dants; therapeutics; neuroprotection

1. Introduction

Traumatic brain injury (TBI) is caused by a mechanical blow, penetration, bump, or jolt
to the head subsequently leading to tissue and cellular damage, and ultimately resulting in
alteration of physiological and behavioral functions. TBI represents a major contributor
to morbidity and mortality amongst civilian and military populations across the world.
There were over 69,000 TBI-related deaths in the United States alone in 2021, accounting for
about 190 deaths per day [1]. TBI also has a big global impact, with annual TBI incidence
estimated to be 27 to 69 million [2,3]. These injuries have both short-term and long-term
effects on individuals, their families, and society and their financial cost is enormous. Many
survivors live with significant disabilities, resulting in major socioeconomic burden. The
economic impact of TBI in the United States is estimated to be about USD 76.5 billion for
survivors [4,5]. Clinically, TBI is categorized as mild, moderate, or severe injury based
on the Glasgow Coma Scale (GCS) scores range between 3 to 15, with a lower score
indicating more severe brain damage and a poorer prognosis. The GCS describes the level
of consciousness of an individual after acute brain trauma [6,7]. Nevertheless, across all TBI
severities, the consequences of TBI may lead to long-term disability, including cognitive
and motor function limitations/impairments, and decreased psychosocial health.

TBI-induced neuronal tissue damage manifests in primary and secondary injuries.
The primary injury stems from the initial mechanical impacts to the brain [8]. The primary
injury is considered an irreversible injury resulting from brain tissue compression, displace-
ment, stretching, shearing, tearing, crushing of the brain parenchyma, brain hemorrhage,
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and blood–brain barrier (BBB) disruption [8]. Following the primary mechanical insult,
the downstream sequelae of molecular events activate complex secondary injury patho-
physiological cascades such as excitotoxicity, intracranial hypertension, edema, elevated
calcium, metabolic dysregulation, mitochondrial dysfunction (energy crisis, antioxidant
depletion, and free-radical generation), inflammation, and ischemic injury, which occur
at the acute (i.e., minutes to hours) and sub-acute (i.e., hours to weeks) phases of progres-
sive TBI [9–12]. Consequently, brain functions are first disrupted at the injury site and
subsequently disrupted at distal interconnected regions. Despite the advancements in TBI
research, the precise mechanisms leading to the progression of TBI pathophysiology are
yet to be fully elucidated.

The chronic progression of post-TBI secondary injury responses (i.e., weeks to years)
further affects TBI patients’ neuronal ability to maintain their long-term physiological
and behavioral functions. TBI progression is linked to the etiology of many neurodegen-
erative diseases such as Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS),
Huntington’s disease (HD), Multiple sclerosis (MS), and Parkinson’s disease (PD) [13].
However, the specific epidemiological factors and pathophysiological mechanisms that
underlie this association between TBI and specific neurodegenerative pathologies remain
unclear. Notably, reports indicate a 63–96% increased risk of all-cause dementia following
TBI [14]. Additionally, the risk of PD may go up by at least 1.8 times following moderate
to severe TBI [14,15]. Meta analysis indicates an increased risk of ALS following TBI [16].
Additionally, patients with TBI have a higher risk of developing MS [17]. Furthermore, a
World War II study suggested that early-adulthood TBI increases the likelihood of develop-
ing AD later in life by 2.3 to 4.5 times, respectively, for moderate and severe injuries [14,15].
These reports suggest that TBI is a major risk factor for the onset of neurodegenerative
disorders in later life (Figure 1).
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Figure 1. Progressive pathology of TBI. The primary mechanical impact may lead to brain damage
in the form of brain hemorrhage, blood–brain barrier (BBB) breakdown and synapse loss, thereby
subsequent secondary injury processes beginning immediately after post-injury, and sometimes may
sustained over lifetime. During these acute (minutes to hours) and sub-acute (hours to weeks) pro-
cesses, mitochondria-centric mechanisms play a key role in the further progression of TBI pathology.
During the chronic (weeks to years) period of secondary brain injury, neurological behavior deficits
in terms of cognitive and motor functions are evident, and may further contribute to neurological
diseases such as AD, PD, HD, ALS and MS.

Much of our understanding of the pathobiology of TBI has arisen from animal models
that simulate features of human TBI. Multiple preclinical TBI models, including mod-
els of penetrating traumatic brain injury (PTBI), controlled cortical impact (CCI) injury,
blast-induced traumatic brain injury (BTBI) and closed head injury (CHI) have ascer-
tained that mitochondrial dysfunction is a common and immediate indicator of cellular
damage [18–21] that may even play a critical role in secondary excitotoxic post-injury
events. Several detailed previous reports have highlighted preclinical models and cellular
mechanisms of TBI [22–30]. Mitochondria-centered cellular mechanisms involve calcium
homeostasis, energy homeostasis, and redox homeostasis. Their imbalance subsequently
may prompt downstream cellular processes such as cell death pathways and neuronal
death and alter behavior outcomes in TBI.
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Mitochondria are key organelles in all eukaryotic cells and play a central role in
cellular energy homeostasis through the metabolism of carbohydrates, fats, and/or proteins.
Brain cells manage higher cellular energy (i.e., adenosine triphosphate, ATP) demands by
oxidizing their metabolic substrates through respiration and oxidative phosphorylation.
Mitochondrial dysfunction following TBI has been shown to be devastating for neuronal cell
survival [31–34]. Several time-course studies of mitochondrial bioenergetics in preclinical
models of TBI have suggested that mitochondrial energy failure is the key pathological
event that is initiated immediately (e.g., within 30 min) and remains evident for up to
2 weeks after injury [11,12,33–36].

Interestingly, under normal physiological conditions, intracellular calcium levels are
modulated by mitochondria to maintain cellular homeostasis at a certain threshold; how-
ever, rapid increase in cellular calcium following TBI may lead to excitotoxicity. Under
physiological conditions during ATP production, mitochondria also maintain calcium
homeostasis and regulate mitochondrial permeability transition (MPT) pore formation.
Several reports have identified impaired mitochondrial calcium-buffering capacity and
early mitochondrial MPT opening following acute and sub-acute phases of TBI [37]. There-
fore, mitochondrial MPT is considered as the “biological on/off switch” that determines
the fate of cells in response to noxious excitotoxic stimuli [38–41].

Additionally, mitochondrial dysfunction in response to secondary injury elevates
the oxidative stress response. Post-TBI oxidative damage leads to structural functional
alteration in cellular and subcellular components. This, coupled with the impairment of
mitochondrial bioenergetics, initiates a vicious cycle of free-radical formation and apoptosis.
In this review, we evaluate the detailed mechanisms of mitochondrial redox homeostasis
and discuss potential antioxidant strategies to mitigate oxidative damage following TBI. The
aim of this review is to provide a comprehensive overview of antioxidant therapy for TBI
to the scientific research community, categorized into different classes, and systematically
discussed in the following sections.

2. Mitochondrial Redox Mechanisms in TBI

Mitochondria are vital organelles present in all eukaryotic cells, that consume approxi-
mately 98% of body’s total oxygen supply. Efficiently utilizing this oxygen, mitochondria
produce energy through oxidative phosphorylation processes linked by respiration via
the electron transport chain (ETC) complex proteins. In normal physiological conditions,
oxygen slippage estimated from 3 to 5% can occur during the utilization of oxygen in
the mitochondrial ETC complexes I and III [42–44]. This oxygen slippage results in the
generation of the superoxide radical (O2

•−), a highly reactive unstable singlet oxygen,
which, in turn, can lead to the production of other reactive oxygen species (ROS). Mito-
chondria also contain antioxidants to manage elevated levels of free radicals as part of
normal repair mechanisms. Highly reactive superoxide (O2

•−) is rapidly converted into
less-reactive ROS, hydrogen peroxide (H2O2) by superoxide dismutase (SOD), which is
then further decomposed/neutralized into water by catalase (CAT) or peroxiredoxin (Prx)
or thioredoxin (Trx) complex enzyme systems. However, O2

•− also generates hydroxyl
(•OH) radicals through the Fenton reaction, which can be further converted to peroxynitrite
(ONOO−), and subsequently other reactive nitrogen species (RNS) such as nitrogen dioxide
and peroxynitrous acid (ONOOH). Normally, mitochondria maintain redox homeostasis
with antioxidant activities to scavenge ROS–RNS [45,46]. However, under pathophysiolog-
ical conditions, elevated levels of ROS–RNS have been observed as early as 30 min after
TBI [47,48].

Moreover, these harmful ROS–RNS molecules can further oxidize and damage cellular
proteins, lipids, nucleic acids, and extracellular matrix components. The oxidized protein
adducts, 3-nitrotyrosine (3-NT), protein carbonylation (PC), and the lipid peroxidation adduct
4-hydroxynonenal (4-HNE) are the hallmarks of peroxynitrite-mediated oxidative stress. Ad-
ditionally, ROS–RNS may further induce nuclear and mitochondrial DNA damage and affect
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gene expression responses. ROS–RNS overproduction may inducedamage to ETC subunits,
which may further exaggerate the vicious cycle of mitochondrial dysfunction.

Following TBI, higher redox footprints with respect to elevated free radicals (ROS–
RNS), together with altered lipid, protein, and DNA adducts have been observed during
the acute and sub-acute phases of secondary injury. If not mitigated, these elevated redox
mediators may further contribute to other chronic neurological disease pathologies. The
protective antioxidant defense system has potential to mitigate the TBI-induced oxidative
stress response is further discussed in detail (Figure 2).
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Figure 2. Generation and scavenging of reactive oxygen species (ROS) using the antioxidant defense
system. Electrons released from the mitochondrial ETC and produced by NADPH oxidases are
the major source of endogenous reactive oxygen species. The oxidative stress generated via this
mechanism can be countered via the antioxidant defense system. Oxygen (O2) is reduced to super-
oxide (O2•−), which can be reduced to hydrogen peroxide (H2O2) by superoxide dismutase (SOD).
Nitric oxide radicals (•NO) form the potent oxidant peroxynitrite (ONOO−) following reaction with
O2•−. The H2O2 can undergo the Fenton reaction and transformed into hydroxyl radicals (•OH) or
reduced to water (H2O) by catalase (CAT), or the glutathione (GSH)/glutathione peroxidase (GPx) or
peroxiredoxin (Prx) systems. The oxidized form of thioredoxin (Trx) is reduced back by the reaction
with Trx reductase (TrxR), while that of Grx is reduced back by GSH and terminal NADPH oxidation.
An oxidized GSH (GSSG) is reduced back to two GSH molecules through the enzymatic reaction
of GSH reductase (GR). Both Trx and Grx reduce protein disulfides. These enzymatic antioxidant
defense systems counter free-radical-induced stress, and maintain cellular redox homeostasis. The
reactive oxygen species may further lead to protein, lipid, and DNA damage.

3. Mitochondrial Antioxidants in TBI

TBI is a highly heterogeneous condition, with patients exhibiting diverse patterns
of injury, severity, and outcomes. Oxidative stress plays a crucial role in the develop-
ment of acute brain injury and acts as a key mediator in the secondary injury cascade
of TBI pathology. Oxidative stress leading to oxidative damage represents a state where
oxygen levels, combined with oxygen-derived free radicals overwhelm the scavenging
antioxidant system.

Following TBI, excitotoxicity occurs, where an excess of Ca2+ further promotes ROS–
RNS production. The increased ROS–RNS levels, coupled with depleted antioxidant levels
after TBI, lead to elevated oxidative stress, wherein protective mechanisms, such as antioxi-
dants, fail to control these radicals, resulting in oxidative stress and subsequent neuronal
death. Post TBI, various complications such as brain edema, mitochondrial dysfunction,
BBB breakdown, sensory–motor dysfunction, and secondary neuronal injury have been
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proposed to be linked to oxidative stress [49–51]. Our recent findings indicate decreased
mitochondrial antioxidants and increased oxidative stress markers during the acute phase
of TBI [37], a trend supported by numerous researchers highlighting the role of oxidative
stress following TBI [33,52–57]. This underscores oxidative stress redox mechanisms as
a valid therapeutic target for TBI. Furthermore, antioxidant intervention emerges as a
logical therapeutic approach for achieving neuroprotection after TBI. Both elevated free-
radical-mediated oxidative stress and depleted endogenous antioxidant responses have
been observed during acute and sub-acute phases preclinically; and only limited reports
have noted duringchronic phase of TBI [37,52,58].

Antioxidants are substances which scavenge or neutralize free radicals in cells, thereby
prevent oxidative damage. Antioxidants may be able to reduce the risk of the onset of
chronic diseases. Antioxidant therapy emerge as a novel approach to preventing and treat-
ing neurodegenerative conditions where oxidative stress acts as a major contributing factor
to the pathogenesis and/or progression of the diseases. There are two main approaches
by which antioxidant levels can be replenished in brain cells, and these may serve as
options for therapeutic interventions to limit free-radical generation and oxidative stress
responses. This, in turn, improves the balance of redox homeostasis after brain trauma.
In an injured brain, antioxidants may be able to modulate redox mechanisms through (a)
scavenging or detoxifying excessive ROS–RNS using natural or synthetic antioxidants and
restrict free-radical overproduction, and (b) modulating cell signaling pathways that favor
endogenous antioxidant synthesis and balanced redox homeostasis.

This review highlights each category of antioxidants that may serve as future thera-
peutic options to restrict/stimulate the mechanisms listed above and favor balanced redox
homeostasis following the secondary injury phases of TBI. Unfortunately, there are no
FDA-approved treatment options that are currently available to restrain multifaceted TBI
pathophysiology, leaving a critical gap unfilled. Therefore, more preclinical research efforts
are warranted to identify novel therapeutic targets. Additionally, repetitive injuries aggra-
vate secondary injuries and lead to early neurological deficit. Collaborative efforts between
preclinical and clinical communities under regulatory guidance of the FDA are ongoing to
conduct better-designed clinical studies, and gain rapid approvals of therapeutic products
for TBI. This review is intended to provide an overview on comprehensive information
about antioxidant therapy for TBI to the scientific research community, classified into
different categories (Figure 3), and discussed below.
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illustration, antioxidants are further classified into natural and synthetic ROS–RNS scavengers and
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enzymatic forms, whereas in the group of synthetic antioxidants, they are further sub-divided into
three categories, namely non-targeted cytosolic, mitochondria-targeted, and glutathione precursors,
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based on their sub-cellular target, pharmacological properties, and abundance. Examples of each
category of antioxidants are listed and discussed in detail.

4. ROS–RNS Scavengers

The ROS–RNS scavengers/detoxifiers are further categorized as natural (e.g., en-
dogenous enzymatic or non-enzymatic) and synthetic (e.g., drug molecules and dietary
supplements), as described below.

4.1. Natural ROS–RNS Scavengers

Among natural enzymatic antioxidants, the mitochondria-specific superoxide dismu-
tase (SOD) isoform (e.g., manganese SOD or Mn-SOD) plays a critical role in scavenging
mitochondrial production of O2

•− at the mitochondrial ETC complex I and III sites [59,60].
Another isoform of SOD (i.e., cytosolic copper–zinc SOD or Cu-Zn-SOD) scavenges O2

•−

in the cytosolic compartment. The mitochondrial ETC is a primary site of O2
•− generation;

therefore, scavenging O2
•− at the mitochondrial ETC level offers the greatest benefit. Cata-

lase (CAT) is an additional important ROS scavenger that neutralizes H2O2 and converts it
into water [61]. The redoxin family, including peroxiredoxin (Prx) and thioredoxin (Trx)
enzyme systems, together with other non-enzymatic reducing cofactors, nicotinamide ade-
nine dinucleotide phosphate (NADPH) and/or glutathione, also plays an important role in
scavenging ROS [37,61]. They help to convert H2O2 into water (Table 1, and Figure 2).

Chronic exposure to oxidative stress may further lead to activation of the first line
of antioxidant defense by increasing SOD-, CAT-, and GPx-mediated protective feedback
mechanisms that may be able to help mitigate oxidative stress responses to some extent.
Interestingly, we observed a depletion of SOD protein expression during the acute period
following PTBI [37]. Other studies have also detected diminished SOD activity during the
acute phase of TBI that remained low for at least several weeks post TBI [60,62]. Depletion
of SOD after TBI could make injured tissue more susceptible to increased O2

•− formation,
amplifying post-injury oxidative damage over time. In contrast, studies have reported
an increase in CAT during the acute and sub-acute phases following TBI; however, the
precise mechanism by which brain injury leads to increased CAT protein expression is
currently unknown [37]. Earlier studies have reported decreased SOD, CAT, and GPx
antioxidant enzyme activity in AD patients [63,64]. Interestingly, in an AD mouse model,
the overexpression of the SOD protein showed great promise in relation to improvement in
neurological outcomes [65]. Therefore, in therapeutic applications, SOD and SOD mimetics
have great potential to serve as a drug to ameliorate TBI-related oxidative damage.

The other class of natural antioxidants are the non-enzymatic antioxidants, which are
mainly acquired from dietary sources; these are also called natural ROS scavengers. The
most common dietarily derived antioxidants are Vitamin A (retinol), Vitamin C (ascorbate),
Vitamin E (α-tocopherol), carotenoids (carotene, zeaxanthin, lutein, lycopene, cryptoxan-
thin, retinoids), polyphenols, and flavonoids, among others.

Vitamin A is obtained from dietary sources such as green and yellow vegetables,
dairy products, fruits, and meats. Vitamin A can act as a chain-breaking antioxidant by
combining with reactive radicals before these radicals can propagate peroxidation in the
lipid phase of the cell and generate H2O2 [66]. Likewise, Vitamin C is acquired from dietary
sources such as fruits and vegetables, and is available as a dietary supplement. Vitamin
C has been used as an antioxidant to treat mitochondrial diseases; additionally, it can act
as an electron transfer mediator to bypass complex III in combination with Vitamin K at
the ETC [67,68]. The oxidized form of Vitamin C is transported into the mitochondria
via glucose transporter 1, which helps to maintain a healthy mitochondrial membrane
potential and inhibits mitochondrial membrane depolarization [69]. Additionally, Vitamin
C facilitates electron movement, favoring energy production [70]. Vitamin E is mainly
found in vegetable oil and its derivatives, nuts and seeds. Vitamin E interrupts the chain
reaction of oxidant generation and oxidative damage by capturing free radicals.
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Table 1. Natural ROS scavengers.

ROS Scavengers Properties and Mechanisms of Action
Enzymatic ROS scavengers

Superoxide dismutase (SOD) Enzyme. Converts superoxide radicals into oxygen and H2O2.

Catalase (CAT) Enzyme in the peroxisomes. Neutralizes H2O2 in water.
Glutathione peroxidase (GPx)
Thioredoxin system:
Thioredoxin (Trx),
Peroxiredoxin (Prx),
Thioredoxin reductase (TrxR)

Thiol-dependent enzymatic antioxidants. Neutralize H2O2 and are recycled by
nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor.

Non-enzymatic ROS scavengers
Vitamin A (retinol) or carotenoids Fat-soluble antioxidant. Donates electrons to neutralize free radicals.

Vitamin E (tocopherols and tocotrienols) Fat-soluble antioxidant. Scavenges lipid peroxyl radicals.

Vitamin C (ascorbic acid) Water-soluble antioxidant. Donates electrons to neutralize free radicals.
Scavenge superoxide.

Carotenoids Found in various fruits and vegetables. Of the ~600 types of carotenoids, some can
synthesize Vitamin A. Neutralizers of ROS.

Polyphenols Ubiquitously present in fruits and vegetables. Free-radical scavenger.

Flavonoids Phytochemicals present in plants, fruits, and vegetables. Scavengers of ROS.

Pycnogenol (PYC) Combination of bioflavonoids with robust capacity to scavenge free radicals.

Alliin Found in both natural and synthetic compounds. A bioactive compound derived
from garlic. Superoxide scavenger.

Allicin Synthesized from alliin. Inhibits superoxide, nitric oxide (NO) and
hydroxyl radicals.

Minerals (copper, zinc and selenium,
magnesium) Precursors to antioxidants that help regulate free radicals.

Coenzyme Q10 (CoQ10), coenzyme Q (CoQ) Lipid antioxidant. Essential component of the ETC. Protects cells from oxidative
damage.

Glutathione Tripeptide. Detoxifies ROS. Maintains redox balance.

NADPH NADPH, as a cofactor independently and with redoxins, plays a crucial role in
ROS detoxification.

Cytochrome C Endogenous heme protein located in mitochondria. Oxidized cytochrome C is able
to scavenge superoxide radicals.

Carotenoids are another class of antioxidants, and their main dietary sources are
red vegetables and fruits (carrots, tomatoes, apricots, plums) and green leafy vegetables
(spinach, kale). Indeed, carotenoids are important precursors of Vitamin A [71]. Carotenoids
are very efficient quenchers of singlet oxygen and potent scavengers of other ROS–RNS.
Similarly, polyphenol antioxidants (flavanols, anthocyanins, isoflavones, phenolic acid),
mainly found in fruits (apples, berries, grapes), vegetables (celery, kale, onions), legumes
(beans, soybeans), nuts, wine, tea, coffee, and cocoa, can be obtained from nutritional
sources. Polyphenol acts as an antioxidant via a direct ROS-scavenging mechanism and the
modulation of antioxidant enzymes. Flavonoids are phenolic structures containing natural
substances mainly found in fruits, vegetables, grains, bark, roots, stems, flowers, tea, and
wine. Flavonoids exert antioxidant, anti-inflammatory, and anti-cholinesterase activities.
Flavonoids act as potent inhibitors for several enzymes, such as xanthine oxidase (XO),
cyclo-oxygenase (COX), lipoxygenase, and phosphoinositide 3-kinase [72,73]. Pycnogenol
(PYC) is a combination of bioflavonoids that is extracted from the bark of the French
maritime pine tree (Pinus maritima), and has a robust capacity to scavenge free radicals.
The neuroprotective effects of PYC have been explored in a rodent model of TBI [74].
Additionally, alliin, a garlic-derivative compound, reacts with O2

•− and scavenges by
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utilizing the xanthine/xanthine oxidase system [75]. Allicin, a derivative of alliin, also
inhibits O2

•−, nitric oxide (NO•), and hydroxyl (•OH) radical production [75–77].
Some antioxidants are produced by cells that chelate and/or bind to redox metals,

thus protecting the cells against oxidative stress indirectly. Micronutrients such as metal
and trace elements (zinc, iron, selenium, and copper) possess antioxidant properties. Sup-
plementation with either selenium or zinc has been found to restore the alterations of
mitochondrial parameters, including ETC enzymes and antioxidant enzymes, in several
diseases [78].

The membrane-bound coenzyme Q10 (CoQ10) is an important antioxidant that is part
of the mitochondrial ETC. It shuttles electrons from complexes I/II to complex III. CoQ10
prevents the generation of free radicals and modifications of proteins, lipids, and DNA.
Thus, CoQ10 markedly regulates the cellular redox balance.

Among other non-enzymatic ROS scavengers, one of the key cellular antioxidants is
glutathione (e.g., γ-L-glutamyl-L-cysteinylglycine). Glutathione is synthesized from the
amino acids L-cysteine, L-glutamic acid, and glycine. Glutathione is an important antioxi-
dant which reacts with ROS using thiol-SH groups of cysteine. Glutathione is a ubiquitously
distributed tripeptide antioxidant abundantly present in all cells in millimolar concentra-
tions (~5 mM) [79]. The reduced form of glutathione (i.e., GSH) is involved in various cell
functions, including the detoxification of oxidized amino acids/proteins, the biosynthesis
of proteins and DNA precursors, amino acid transport, and the maintenance of redox
balance. During this process, the endogenously generated oxidized glutathione (GSSG) can
be recycled back to GSH by the endogenous Grx system. The GSH/GSSG ratio remains an
important indicator of redox homeostasis and imbalance in cell oxidative metabolism.

Another antioxidant, NADPH (e.g., nicotinamide dinucleotide phosphate), works
closely with glutathione and other redoxin enzymes to protect against ROS–RNS-induced
cell damage. In redoxin systems, NADPH serves as a cofactor, used for transferring and
preserving redox potential for multiple antioxidants such as glutathione, Prx, and Trx.
This NADPH-induced conversion reactivates the functions of antioxidant molecules. We
found that NADPH levels significantly decreased following TBI [37]. This reinforces the
importance of exogenous NADPH treatment following TBI to increase the effectiveness
of antioxidant proteins as the scavengers of oxidants. Additionally, in cells, endogenous
cytochrome C (Cyt C) may act as an O2

•− scavenger since it is reduced by O2
•− and

oxidized by H2O2 [80]. Cyt C seems to be an ideal antioxidant since Cyt C can regenerate
and avoid being damaged during antioxidant reactions [81].

Additionally, several dietary or nutritional supplements serve as conventional (non-
targeted) antioxidants in cells. However, all of these natural antioxidants have limited
effectiveness in scavenging mitochondrial ROS–RNS and oxidative stress due to their
limited ability to cross the mitochondrial biomembranes [82,83]. In the next section, we
compile a list of mitochondria-targeted synthetic antioxidants, which may serve as better
options to combat ROS–RNS and oxidative stress and may offer neuroprotection.

4.2. Synthetic ROS–RNS Scavengers

Novel synthetic ROS–RNS scavengers targeted towards preventing or minimizing
oxidative damage have contributed new insights into potential neuroprotective therapies
(Table 2). Superoxide (O2

•−) scavengers are important antioxidants due to their ability to
mitigate oxidative stress during the acute post-injury phase. One such synthetic compound
is Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), an ROS scavenger. MnTBAP is
both an SOD mimetic and peroxynitrite (ONOO−) scavenger [84,85]. Other compounds
that can donate electrons to O2

•− are ascorbic acid, cysteine (via the sulfhydryl group),
tiron, and carboxy-PTIO (a nitric oxide scavenger), which can also react with superoxide
radicals [86–94]. Tiron is a Vitamin E-analog antioxidant that can enhance NF-κB-dependent
gene transcription with an anti-apoptotic effect [95]. Carboxy-PTIO is an imidazole-derived
free-radical scavenging compound that inactivates NO• and NO2, subsequently reacting
with water to form nitrite and nitrate. Phenelzine (PZ) is an FDA-approved drug for
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the management of treatment-resistant depression, panic disorder, and social anxiety
disorder that functions as an MAO inhibitor [96]. PZ has aldehyde-scavenging properties.
PZ administration was also shown to significantly improve mitochondrial respiration
following TBI [96].

Table 2. Synthetic ROS scavengers and detoxifiers.

ROS Scavengers and Detoxifiers Properties and Mechanisms of Action
Non-targeted compounds

MnTBAP O2
•− scavenger. Possesses SOD- and catalase-like activity. Also scavenges

ONOO−.

Cysteine Amino acid. O2
•− scavenger.

Tiron Reduced and oxidized Tiron species. Reacts with O2
•− radical.

Carboxy-PTIO Specific NO scavenger. Reacts with O2
•− radical.

Phenelzine FDA-approved drug. MAO inhibitor. Aldehyde-scavenging properties partially
protect against oxidative damage.

Mitochondria-targeted compounds
MitoVit-E Vitamin E attached to TPP. Reduces mitochondrial oxidative damage.

MitoQ CoQ10 derivative linked with TPP. Scavenges mitochondrial ROS.

Plastoquinone (SkQ1) Targeted antioxidant. Scavenges mitochondrial ROS.

Edaravone Used clinically as a neuroprotective compound. Reduces oxidative damage and
lipid peroxidation.

Mito TEMPOL Cell permeable, stable nitroxide. SOD mimetic.

Elamipretide (SS-31) Cationic tetrapeptide freely permeable to the mitochondria. Reduces the
production of toxic ROS.

Cerium oxide nanoparticles (Nano-CeO2) Cerium atoms linked by oxygen atoms. Scavengers of ROS.

Metalloporphyrins Manganese and iron complexes. Synthetic catalytic antioxidants that mimic the
body’s own antioxidant enzymes.

Phenyl-tert-butylnitrone (PBN) Nitroxide radical. ROS-scavenging properties.
Glutathione precursors

NAC A cysteine prodrug. Replenishes intracellular glutathione level.

NACA N-acetyl cysteine (NAC) analog.Glutathione precursor.

D-NAC Dendrimer-tagged NAC. Serves as a prodrug to synthesize glutathione.

S-adenosyl methionine (SAMe) SAMe is processed stepwise into cysteine synthesis, and ultimately synthesize
glutathione.

Moreover, to overcome the limited effectiveness of natural ROS scavengers, several
synthetic mitochondrial ROS scavengers have been designed to cross the BBB and accumu-
late in neuronal mitochondria. These compounds are formulated to target mitochondria
at the injured region to neutralize ROS and promote the mitigation of oxidative damage,
together with improving bioenergetic function. The development of antioxidants capable
of restoring mitochondrial function following brain injury is highly significant since redox
homeostasis dysregulation is a critical factor in the cell death pathway during the acute,
sub-acute, and chronic phases of TBI. Also, specific mitochondrial targeting leads to more
precise and effective mitigation of redox homeostasis. We have compiled a list of such
covalently modified compounds in this table.

The synthetic mitochondrial-targeted Vitamin E compound (MitoVit-E) is created by
covalently attaching natural Vitamin E (α-tocopherol) to a triphenylphosphonium (TPP+)
cation. MitoVit-E facilitates the accumulation of TPP+ in the mitochondrial matrix against
the negatively charged mitochondrial membrane potential (∆Ψm). This unique feature
makes MitoVit-E an effective mitochondria-targeted ROS scavenger. By utilizing the con-
centration gradients of ∆Ψm, MitoVit-E decreases ROS production and apoptosis in aortic
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endothelial cells via peroxide-induced oxidative stress and apoptosis [97,98]. One disad-
vantage of Vitamin E is that it is not a catalytic antioxidant and therefore its scavenging
activity is not regenerated. Another well-studied mitochondria-targeted antioxidant is
mitoquinone (MitoQ), a ubiquinone derivative conjugated to the TPP+ cation that serves
as a potent reactive oxygen species (ROS) scavenger. MitoQ has structural similarity with
endogenous components of the mitochondrial ETC ubiquinone; therefore, it may help
in assisting efficient electron transfer through the ETC [99,100]. The active form of Mi-
toQ, i.e., ubiquinolis able to scavenge ROS and is being modified into its inactive form,
ubiquinone. This inactive form is continuously recycled back into its active form by the
mitochondrial complex II. This reduction–oxidation cycle enables MitoQ to maintain an
efficient chain-breaking antioxidant capacity. MitoQ treatment has been shown to inhibit
mitochondrial oxidative damage in rodent models of cardiac ischemia and reperfusion
injury [101]. The antioxidant properties of MitoQ were further demonstrated in several pre-
clinical models of TBI, where it increased the activity of antioxidant enzymes and reduced
oxidative damage [102,103]. Plastoquinonyl-decyl-triphenylphosphonium bromide (SkQ1)
is another class of mitochondria-targeted antioxidant [104]. In the case of SkQ1, the phos-
phorus cation bound to three phenyl rings (TPP+) is conjugated to plastoquinol via a decyl
linker. The binding of this cation to the phenyls ensures the ability of SkQ1 to penetrate
membranes [105]. A positive electrical charge leads to a thousand-fold accumulation of
SkQ1 in the mitochondrial membrane’s inner layer [105]. SkQ1 is able to reduce cardiac
ischemic injury, and is well known for lipid peroxidation inhibition [106–109].

Edaravone is a free-radical scavenger that can quench hydroxyl radicals and hydroxyl
radical-dependent lipid peroxidation. It is an FDA-approved compound for the treatment
of acute ischemic strokes and amyotrophic lateral sclerosis (ALS) [110]. Additionally, edar-
avone has shown promising beneficial effects in a wide range of diseases, such as PD, AD,
atherosclerosis, chronic heart failure, and diabetes mellitus [111–114]. Other potential syn-
thetic antioxidants designed to reduce oxidative damage effectively include Mito TEMPOL,
elamipretide (SS-31), cerium oxide nanoparticles (Nano-CeO2), metalloporphyrins, and
phenyl-tert-butylnitrone (PBN) [115–121]. However, their roles in TBI have not yet been
investigated. Research on the evaluation of ROS–RNS scavengers in TBI is ongoing, and
the field continues to explore novel approaches and compounds to mitigate oxidative stress
and improve behavioral outcomes following TBI [52,58,122,123]. Indeed, several preclini-
cal studies have shown the therapeutic efficacy of mitochondria-targeted antioxidants by
improving cognitive and functional recovery post TBI [122,123]. Thus, this strategy may
offer new hope for treating TBI patients.

Amongst synthetic ROS scavengers and detoxifiers, novel precursors of glutathione
play a significant role. Glutathione, a ubiquitous reducing sulfhydryl tripeptide, plays
a major role in ROS–RNS detoxification. Many studies have reported a depletion of
glutathione and its precursors, namely cysteine, methionine, and glycine, in brain tissue and
cerebrospinal fluid (CSF) following TBI [37,49,50,124]. Therefore, several strategies have
explored boosting glutathione levels following TBI to protect neurons against oxidative
damage. One approach is to administer glutathione directly. Glutathione injections have
been used in the past to boost glutathione levels in blood and skin; however, there was
no systemic study available to prove its efficacy [125]. Direct enhancement of glutathione
comes with its own challenges like short half-life, absorption, BBB permeability, and limited
brain bioavailability [125].

The de novo synthesis of glutathione is primarily controlled by the cellular con-
centration of cysteine. In keeping with this, NAC and its analogs, such as the cysteine
supplement, are effective at raising levels of glutathione in various neurological diseases
and injuries, preclinically and clinically [126–129]. Therefore, various glutathione prodrugs
or antioxidant supplements to boost innate glutathione levels have been investigated.

N-acetyl cysteine (NAC) is perhaps the most widely studied glutathione precursor
to act as an antioxidant. NAC has been approved by the FDA for treating hepatotoxic
doses of acetaminophen (Tylenol). Additionally, NAC has been widely used because of
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its mucolytic effects, taking part in the therapeutic protocols of cystic fibrosis. Over the
past decade, studies have documented the positive outcome of NAC treatment for many
CNS diseases, including TBI [130]. Additionally, NAC’s ability to replenish glutathione,
maintain cellular homeostasis, and support mitochondrial function has been successfully
demonstrated in TBI [131–135].

Clinical treatment with NAC has been shown to upregulate glutathione-centered pathways
in the CSF of severe TBI pediatric patients (ClinicalTrials.gov NCT01322009) [136–138]. NAC
treatment was evaluated in U.S. service members who had been exposed to a blast-induced
mild TBI [139]: the outcome of this study demonstrated NAC as safe and effective pharma-
ceutical agent for acute countermeasure. NAC treatment has beneficial effects on the injury
severity, and resolution of post-traumatic sequelae of blast-induced mild TBI (ClinicalTri-
als.gov NCT00822263) [139]. Furthermore, NAC’s neuroprotective effects are mediated
by both antioxidant and anti-inflammatory mechanisms [140–143]. These multimodal
neuroprotective properties of NAC may confer significant benefits on the complex and
heterogenous nature of TBI pathology.

The BBB permeability of NAC is limited by its physiochemical properties, such as
its acidic nature and negative charge [144,145]. Notably, numerous studies evaluating the
neuroprotective properties of NAC have yielded inconsistent results, which may be due to
its low bioavailability [144,145]. A potential strategy for overcoming the low bioavailability
of NAC is to use an NAC analog where the carboxyl group of NAC is neutralized, thus
making it more hydrophobic and increasing its BBB permeability [146]. In this regard, the
preparation of NAC analogs, such as N-acetylcysteine amide (NACA), is very attractive and
may have advantages over NAC in treating CNS pathologies due to the improved stability
and bioavailability [147]. For instance, there are studies reporting the neuroprotective effi-
cacy of NACA in neurological diseases including PD, AD, and HIV-associated neurological
disorders [148–150]. In the same line of effort, we have demonstrated that NACA effectively
reduces oxidative damage, maintains the glutathione level, and improves mitochondrial
bioenergetics following TBI [128,129,151]. Other studies have reported similar outcomes
in spinal cord injury (SCI) patients [129]. Thus, NACA may offer neuronal protection
by reducing oxidative stress and supporting cellular pathways to limit mitochondrial
dysfunctions following TBI.

To enhance NAC’s bioavailability and address neurological conditions, researchers are
investigating an alternative intranasal route for its direct delivery to the CNS via neuronal
pathways, thus minimizing the BBB permeability issues [152]. However, the optimal
dosing regimen for this intranasal route of NAC administration still needs to be further
investigated at the preclinical level for TBI.

Recently, researchers have used nanoparticle delivery systems, such as dendrimers,
to ensure targeted and effective drug delivery to the CNS. Hydroxyl-terminated polyami-
doamine (PAMAM) dendrimer, a dendrimer linked with NAC (D-NAC), has shown to be
a promising route of drug delivery to injury sites within the brain. In particular, D-NAC
has been investigated as a drug delivery system to target cells involved in neuroinflam-
mation [153]. In the presence of a brain injury, D-NAC traverses the BBB and localizes
specifically in activated microglia and astrocytes, and the extent of its uptake correlates
with the extent of the injury [154,155]. D-NAC also has been shown to be effective in
improving myelination and motor functions in cerebral palsy [156,157]. The protective role
of D-NAC has been established in ischemic brain injury, asphyxia brain injury [158–160],
and other CNS pathologies like choroidal and retinal neovascularization [161]. Collectively,
novel dendrimer-based delivery methods, such as D-NAC, appear to be promising avenues
for targeting therapeutic agents in CNS diseases.

Similarly, another compound that aids in restoring glutathione synthesis by recycling
its precursor cysteine is S-adenosyl methionine (SAMe). SAMe has been studied for its po-
tential neuroprotective efficacy in several CNS diseases [162,163]. Besides providing amino
acids during methyltransferase reactions for glutathione synthesis, SAMe serves as a key
metabolite in many biochemical reactions, and is available as a dietary supplement. Deple-
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tion of methionine and its crucial metabolites has been reported in TBI; therefore, restoring
methionine metabolites with SAMe supplementation may improve its outcome [124].

A thorough understanding of methods to replenish glutathione and the application of
innovative technology to advance targeted therapy in research is critically important when
considering therapies to combat TBI secondary pathogenesis. Similarly, the development of
neuroprotective formulations to enhance signaling pathways to upsurge innate antioxidants
as a potential tool for the therapeutic treatment of neurological diseases represents an
important goal for current neuroscience research.

5. Signaling Pathway Modulators for Cellular Antioxidant Synthesis

The initiation of redox homeostasis originates from extracellular or intracellular sig-
nals via nuclear receptors and mitochondria-mediated pathways. There are intra- and
extracellular signaling pathways that activate the protective mechanisms that particularly
trigger the endogenous synthesis of antioxidants. Inducers such as ROS, oxidative stress,
mitophagy, apoptosis, excitotoxicity, ischemic insults, calcium, neurotransmitters, exercise,
or therapeutic treatment (agonists/antagonists) may trigger the onset of signal transduc-
tion via modulating several transcription factors in the nucleus, thereby activating gene
expression of downstream protein expression. More specific to the current review topic,
there are several inducers listed below that may be able to modulate notable antioxidant
signaling pathways, such as the Nrf2, AKT, SIRT1, PGC1α, and mTOR signaling pathways
(Table 3). The Nrf2 pathway centers around the broad-reaching transcription factor Nrf2,
which modulates the transcription of a myriad of endogenous antioxidants. Protein kinase
B, a serine/threonine kinase (AKT), is the main mediator of the downstream effector pro-
tein phosphoinositide 3-kinase (PI3K). AKT serves as the central component in numerous
signaling pathways regulating cell metabolism, growth, proliferation, and survival. Thus,
activating AKT can help preserve typical mitochondrial function across several disease
conditions [164]. Additionally, AKT regulates Nrf2 to affect the transcription of pro- and
antioxidant enzymes and maintain the cellular redox state [165]. Likewise, SIRT1 is a
deacetylase that controls the expression of a multitude of antioxidants and oxidative stress
modulators like PGC-1α, which plays a major role in the antioxidant defense system. The ra-
pamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals,
and serves as a regulator of cellular metabolism, growth, proliferation, and survival. These
pathways, in turn, modulate gene expression and the protein biosynthesis of downstream
targets, such as antioxidants and mitochondrial biogenesis proteins. Thus, these pathways
may be able to modulate ROS–RNS levels, keep the redox balance in check, and maintain
cellular integrity. An overview of cell signaling pathways favoring cellular antioxidants
synthesis and neuroprotection is illustrated in detail (Figure 4) and discussed below.

Table 3. Signaling pathway modulators.

Pathway Modulators Properties and Mechanisms of Action
Nrf2 activators

Omaveloxolone (RTA-408) Synthetic compound. FDA-approved for the treatment of FA. Prevents Nrf2 degradation.

Dimethyl fumarate (DMF) Synthetic compound. Activates the Nrf2 pathway and AKT pathway.

Curcumin Derived from turmeric. Activates the Nrf2 pathway.

Sulforaphane Naturally found in cruciferous vegetables. Activates Nrf2 by inhibiting Keap1.

Epigallocatechin gallate (EGCG) Abundant in green tea. Activates the Nrf2 pathway and has antioxidant and
anti-inflammatory properties.

Quercetin Present in various fruits, vegetables and grains. Activates Nrf2 and SIRT1.

Oltipraz Synthetic compound. Activates Nrf2 by modifying Keap1.

Bardoxolone methyl Synthetic compound. Activates the Nrf2 pathway.
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Table 3. Cont.

Pathway Modulators Properties and Mechanisms of Action
SIRT1, PGC-1α, and mTOR modulators

Resveratrol Natural polyphenol compound. Most-relevant SIRT1 and mTOR modulator, AKT activator,
Nrf2 activator and PGC-1α activator.

Naringenin Natural citrus flavonoid. Modulates SIRT1.

SRT2104 Synthetic compound. SIRT1 activator.

1,4-dihydropyridine derivative Synthetic compound. SIRT1 activator.

Naphthofuran derivative Synthetic compound. SIRT1 activator.

Bisarylaniline derivative New synthetic analog. SIRT1 activator.

Berberine Small molecule isolated from various plants, mainly used in Chinese traditional medicine.
PGC-1α activator.

Metformin Anti-diabetic drug. Activator of AMPK, which further regulates PGC-1α.

Rapamycin/Sirolimus Bacterial origin natural product. mTOR inhibitor and increases antioxidant defense.

Everolimus Newly developed mTOR inhibitor. Rapamycin analog.

Temsirolimus Newly developed mTOR inhibitor. Rapamycin analog.
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Figure 4. Illustration of signaling pathway modulators involved in endogenous cellular antioxidant
synthesis. Extracellular stimulants such as mitophagy, ROS, and oxidative damage may lead to
the activation of cell signaling pathways such as AKT, PGC-1α, mTOR, and SIRT. These signaling
pathways are involved in upregulating endogenous antioxidant homeostasis by activating nuclear
antioxidant response element (ARE) signaling via the activation of common transcription factors Nrf-
2 and Keap1. Activation of the nuclear ARE gene upregulates mitochondrial biogenesis. Additionally,
ARE gene expression activation may also leads to activation of several mitochondrial antioxidant
transcription factors, thereby protein biosynthesis and protect cells against external stimuli. Increased
antioxidant levels further balance redox homeostasis by decreasing cellular ROS, oxidative stress,
and apoptotic cell death response together by improving the cellular antioxidant capacity and overall
health of mitochondria. By activating these pathways, therapeutic compounds may be further able to
offer neuroprotection following TBI and CNS diseases.
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5.1. Nrf2 Activators

One of the main cellular signaling and oxidative stress defense pathways is the nuclear
factor erythroid 2 (Nrf2)-dependent transcriptional mechanism. Nrf2 is responsible for
regulating an extensive panel of antioxidant enzymes involved in the detoxification of
oxidative stress. Several strategies have been proposed to activate this pathway to counter
ROS production and promote neuroprotection. Nrf2 is a transcription factor responsible for
regulating the expression of various downstream genes that modulate the oxidative stress
response through regulating the antioxidant response element (ARE). Thus, Nrf2-targeted
genes affect many vital antioxidants through ARE gene regulation, such as SOD, CAT, and
GPX, among others, which help in combatting ROS [166]. Additionally, Nrf2 downregula-
tion supports the decreased efficiency of mitochondrial oxidative phosphorylation. It is
widely thought that the Nrf2 pathway plays an important role in TBI pathogenesis, and
even in other neurological diseases like AD and PD [167–169]. In a mouse model of TBI,
Nrf2 was found to be downregulated in cortical tissue, leading to increased oxidative stress,
inflammation, and apoptosis [168]. Therefore, targeting and activating Nrf2 signaling is a
potential novel target following the oxidative stress-centered pathology of TBI. Owing to
its excellent therapeutic potential in CNS diseases in both preclinical and clinical settings,
recently, several Nrf2 activators have been approved by the FDA.

Omaveloxolone (RTA-408) and dimethyl fumarate (DMF) are both FDA-approved
Nrf2 activators used to treat various neurological conditions like FA and MS. Other Nrf2
activators like curcumin, sulforaphane, epigallocatechin gallate (EGCG), quercetin, oltipraz,
and bardoxolone methyl also hold promise as therapeutic agents due to their antioxidant
properties [170,171].

RTA-408 is one of the FDA-approved Nrf2 activators for treating FA, a progressive
neurodegenerative condition. RTA-408 affects the Nrf2 pathway by preventing Nrf2 ubiq-
uitination and degradation, leading to Nrf2 translocation to the nucleus and increased
antioxidant expression. RTA-408 therapy has been found to enhance mitochondrial function
and improve neurological symptoms, cognitive impairment, and neuroinflammation in
multiple preclinical and clinical models of CNS conditions like epilepsy [172]. RTA-408’s
efficacy in minimizing CNS pathology and its mitochondria-protective properties makes it
a potential candidate for treating TBI and other neurological diseases [173–175].

Similarly, dimethyl fumarate (DMF) is another Nrf2 activator approved by the FDA
for treating MS [176,177]. DMF influences the Nrf2 pathway by modifying Keap1, thus
promoting Nrf2 nuclear translocation. DMF also activates AKT pathways and thus pro-
motes neuroprotection [178]. DMF upregulates several antioxidants including glutathione,
bolstering the downstream antioxidant capacity in CNS conditions like MS, cerebral edema,
TBI, and intracerebral hemorrhage [179–183]. DMF treatment in clinical settings has shown
long-term efficacy in reducing relapse rates and minimizing lesion formation in relapsing
forms of MS [184]. Furthermore, DMF treatment was found to increase neuronal mito-
chondrial biogenesis via Nrf2 regulation along with improved mitochondrial function
and neurological symptoms in a preclinical model of MS [185]. Additionally, DMF has
shown to improve cognitive functions in animal models of AD and PD [186]. Together,
this evidence emphasizes that DMF has broader therapeutic applicationfor MS, and other
neurodegenerative diseases.

Several Nrf2 activators listed here exhibit potential health benefits. Curcumin, found in
turmeric, a commonly used spice in Indian cuisine and in traditional medicine, activates the
Nrf2 pathway, leading to increased antioxidant and detoxifying enzyme production [187].
Curcumin has shown to be effective against cancer, cardiovascular diseases, and various
metabolic and neurological conditions [188]. Sulforaphane, another compound, is mainly
found in cruciferous vegetables such as broccoli, cabbage, and brussels sprouts. It activates
Nrf2 by inhibiting the protein Keap1 [189]. It similarly enhances endogenous antioxi-
dants and detoxifying enzymes. Sulforaphane has shown therapeutic potential against
neurodegenerative diseases [190]. Epigallocatechin gallate (EGCG) is a catechin present
in green tea. It activates Nrf2, and it is known for its antioxidant and health-promoting
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properties [191]. Research suggests that ECCG may help protect neurons from oxidative
damage and improve cognitive function [192]. Quercetin, found in fruits and vegetables, is
an Nrf2 pathway activator that reduces inflammation and improves antioxidant defense
mechanisms. The therapeutic effects of quercetin have been investigated in cancer, car-
diovascular diseases, and neurodegenerative conditions [193,194]. Oltipraz, a synthetic
compound, activates Nrf2 and reduces oxidative stress in cancer, and additionally has
shown neuroprotective benefits [195]. Bardoxolone methyl, another synthetic compound,
activates the Nrf2 pathway and stimulates antioxidant enzyme production [196,197]. It has
been found to be effective against various disease conditions. Although Nrf2 compounds
have shown promising protective effects in various health conditions, further research is
warranted to confirm and fully understand their safety and efficacy.

5.2. SIRT, PGC-1α, AKT, and mTOR Modulators

There are other critical regulatory mechanisms in redox homeostasis, such as the
Silent Information Regulator (SIRT) genes, also known as Sirtuins, which stimulate an-
tioxidant expression of several enzymes. One of the members of the SIRT family, SIRT1,
is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that plays a wide
range of roles in transcriptional regulation, inflammation, cell survival, and repair mecha-
nisms. It guards against oxidative stress by activating the gene transcription of peroxisome
proliferator-activated receptor gamma coactivator-1α (PGC-1α) via the removal of the
acetyl group [198]. PGC-1α is a transcriptional coactivator that is able to upregulate
mitochondrial biogenesis, and plays a central role in regulating the oxidative stress de-
fense [199]. SIRT1 is described as a complex target for multiple strategies addressed for the
prevention/treatment of several chronic age-related diseases and CNS diseases. Natural
and synthetic SIRT1 modulators have been examined. This review examines compounds
of a natural origin that have recently been found to upregulate SIRT1 activity, such as
polyphenolic products in fruits, vegetables, and plants, including resveratrol, quercetin,
and curcumin.

Resveratrol is a natural polyphenol found in various plant sources, such as grapes,
berries, and peanuts, which acts as an antioxidant by activating SIRT1. SIRT1 is involved in
various cellular processes, including mitochondrial biogenesis [200–202]. Resveratrol also
activates the Nrf2 signaling pathway to ameliorate oxidative stress and improve mitochon-
drial function [203]. Moreover, resveratrol activates the PI3K/AKT pathway. On the other
hand, resveratrol modulates the recently identified mammalian target of the rapamycin
(mTOR) and Janus kinase/signal transducer and activator of transcription (Jak/STAT)
pathways to enhance antioxidant defense and positively modulate mitochondrial function.
Resveratrol has been suggested to influence mitochondrial dynamics by modulating the
balance between mitochondrial fusion and fission, thus regulating mitophagy. Proper
regulation of fusion/fission processes is crucial for maintaining mitochondrial health and
function. Therefore, resveratrol helps preserve mitochondrial integrity.

Moreover, resveratrol has been shown to be beneficial in neurological diseases like AD,
PD, HD, and ALS [201,202,204]. The evidence supports resveratrol’s role in attenuating
TBI-associated behavioral abnormalities, brain edema, and pathophysiology [205–210].
In a TBI preclinical model, resveratrol improved mitochondrial biogenesis and function
by activating the PGC-1α signaling pathway [210]. PGC-1α is central modulator of cell
metabolism, where it regulates mitochondrial biogenesis and oxidative metabolism, and
controls the expression of antioxidants. It is important to note that while numerous preclin-
ical studies and some clinical trials have explored the potential benefits of resveratrol, the
findings are often mixed, and the optimal dose and duration of resveratrol supplementation
for specific health conditions remain areas of ongoing research. Other compounds like
berberine and metformin which activate PGC-1α may be more useful in neurodegenerative
diseases conditions [211–214].

Despite the potential positive health benefits of resveratrol, it exhibits low CNS
bioavailability. This unfavorable pharmacokinetic profile of natural SIRT1 modulators has
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prompted the development of novel compounds that can positively modulate SIRT1 activity
and display better neuroprotective efficacy profiles. Numerous synthetic SIRT1 modulators
have been formulated, such as SRT2104, 1,4-dihydropyridine derivative, naphthofuran
derivative, and bisarylaniline derivative. However, studies to confirm the pharmacoki-
netic profiles of these compounds are ongoing. These compounds may have implications
in CNS therapeutic development. Additionally, mTOR modulators like everolimus and
temsirolimus might regulate ROS through mTOR-mediated antioxidant defense [215]. The
mTOR signaling pathway is at the core of many metabolic activities; its activation improves
oxidative stress adaptation by activating Nrf2-associated antioxidant signaling [216].

6. Challenges and Future Approach

Despite significant strides in characterizing TBI pathophysiology and identifying
therapeutic interventions, the landscape is marred by numerous clinical trial failures, even
after promising preclinical success [217–220]. Several conceptual and methodological
issues have undoubtedly contributed to the hitches in translating the preclinical results of
antioxidant therapy to a clinical setting. Major challenges lie in the inherent heterogeneity
of traumatic brain injuries, the complex and multifaced pathology of brain injuries, the
limited information on their molecular pathology, the clinical predictiveness/relevance of
animal models, the adequacy of pharmacological methodology, the ill-defined category of
TBI, and the outcome measures used. Herein, we reviewed some of these critical problems
and potential solutions.

The complex and multifaceted nature of TBI pathophysiology complicates treatment,
rendering it challenging to address comprehensively with a single targeted drug. A drug
targeting multiple components of the secondary TBI cascade may have superior potency
compared to a drug that has a single target. For instance, the Nrf2 pathway activator
discussed above broadly modulates intracellular and mitochondria-mediated oxidative and
inflammatory responses and may support multiple innate defense mechanisms against TBI
pathology. Therefore, any drug with pleiotropic mechanisms of action may be advantageous
for TBI research [221].

It has been suggested that the complex pathophysiology of TBI may even possibly
be addressed through a combination of therapeutic interventions [222]. The need for inte-
grated multitargeted treatments for TBI has been recognized [223]. At the mitochondrial
level, we have identified significant impairment of multitargeted homeostasis, including
bioenergetics, calcium, apoptosis, and redox mechanisms, post TBI [11,37]. Providing
acetate supplements such as glyceryl triacetate (GTA) and acetyl-L-carnitine (ALC) to
boost energy production could contribute to neuronal repair and recovery in the energy
deprivation-related pathophysiology of TBI [224,225]. Combining acetate therapy with
antioxidants may have additive or synergetic mitochondrial mechanism-targeted neuro-
protective efficacy compared to monotherapy in attenuating TBI pathology or promoting
recovery. Thus, an effective approach to interrupt post-injury oxidative brain damage
might involve the combined treatment of antioxidants with mechanistically complemen-
tary energy substrates that simultaneously provide a boost in their antioxidant capacity.
Ideally, numerous combination therapies should undergo preclinical testing, with the best
combinations chosen for further clinical exploration. An efficient and validated screen-
ing platform for candidate therapeutics, sensitive and clinically relevant biomarkers and
outcome measures, and standardization and data sharing across centers would greatly
facilitate the development of successful combination therapies for TBI [221].

There remains a strong need for rigorous studies to understand the temporal profile of
oxidative injury mechanisms following preclinical heterogeneous models of TBI, which may
identify novel targets for evaluating neuroprotective therapeutics. As the pathophysiology
of secondary injury evolves over time, antioxidant interventions must be able to adapt
to evolution in the molecular causes of injury; each compound is likely to have a unique
therapeutic time window based on the molecular timeline of secondary injury, during which
it is most effective and outside of which it may lack significant benefit [222]. Thus, it is
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crucial to determine the most efficacious therapeutic window for initiating each antioxidant
based on its physiochemical properties and molecular targets in TBI.

Many pharmacological methodological issues have limited the clinical application of
antioxidant therapies. Failure to demonstrate sufficient CNS penetration, inadequate dose
optimization, or failure to show effectiveness with the treatment delays common in human
studies represent some key issues. Nanotechnology, including dendrimers and structural
modifications like TPP, discussed earlier, offers excellent potential to increase the efficiency
and efficacy of antioxidant therapeutics as their customizable size, stealthy chemistry, and
multifunctionality allow them to enhance drug penetration through the BBB. One strategy
to improve the delivery of antioxidants to the brain involves the use of the nose-to-brain
route, with administration of the antioxidant in specific nasal formulations and its passage
to the CNS mainly through the olfactory nerve route [226,227].

Outcomes between individuals following TBI greatly vary, making antioxidant treat-
ment or other treatments for TBI so challenging [228]. The “one-size-fits-all” approach to
TBI medicine that has been followed for many years is questionable. Due to this, many
researchers have begun to investigate the possibility of using precision medicine techniques
to address TBI treatment [228]. TheFDA-approved novel biomarkers for TBI screening,
such as GFAP and UCH-L1, which are released from the brain into the bloodstream within
12 h of injury [229]. Notably, personalized stratification based on recently discovered
biomarkers can account for individual variability, forming a practical tool that can be used
to assist clinical decision making for early TBI diagnosis, and evaluation of therapeutics
intervention. This approach holds the potential to overcome the challenges posed by TBI
heterogeneity, offering a more tailored and effective strategy for treating TBI patients.
An increased understanding of additional biomarkers across the TBI spectrum is needed to
improve antioxidant precision medicine in TBI. We stress the importance of further research
into this area to improve the clinical efficacy of antioxidant therapy for TBI in the future.

7. Holistic Approach to Improve TBI Outcomes

A holistic approach to provide support that looks at the whole person, not just their
CNS health, should be taken into consideration for TBI management. TBI alone or in
combination with polytraumatic injuries (i.e., TBI + polytrauma) heavily impacts the body,
damaging the brain tissue and shifting homeostasis in many bodily systems such as the
immune system, GI system, lungs, heart, and gut microbiota [11,12,230]. This systemic
insult can result in changes throughout the body that can increase morbidity and even
mortality following TBI [231]. Herein, we reviewed a bidirectional relationship between
the gut microbiome and the brain, which also plays a role in TBI-associated pathology.
Damage to the brain alters the composition of the microbiome; the altered microbiome
affects TBI severity, neuroplasticity, and metabolic pathways through various bacterial
metabolites [232]. Significant changes in the gut microbiome within two hours following
a TBI was demonstrated in rats, and dysbiosis persisted throughout the study period of
7 days [233]. Furthermore, gut dysbiosis was associated with neuronal loss 3 months after
TBI [234]. Notably, emerging research indicates a potential link between the gut microbiome
and neurological health [232,233]. The interaction of the CNS and gut signaling pathways
includes chemical, neural, metabolic, immune, and endocrine routes, and imbalances
in these pathways have been associated with neurological disorders like PD, MS, and
AD [235]. Therefore, microbiota manipulation has been proposed as a treatment target for
such diseases [236]. While this field of research evolves, maintaining a healthy gut through
diet and lifestyle may positively impact outcomes following TBI.

The gut–brain axis suggests that a bidirectional communication between the gut and
the brain may influence neurological conditions. A balanced microbiome may contribute
to antioxidant production, potentially influencing our body’s ability to combat oxidative
damage [237]. Recently, it has been shown that the intake of antioxidant compounds might
modulate the composition of beneficial microbial species in the gut, and these commensal
bacteria often exhibit antioxidant properties [238]. Thus, the antioxidant supplements
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and balanced microbiome complement each other due to their mutualistic associations.
Probiotic-derived metabolites such as butyrate, propionate, and acetate may serve as al-
ternative energy sources for an injured brain and may improve mitochondrial function
following TBI [230,239]. Further supporting the benefit of antioxidants, polyphenol antioxi-
dants such as quercetin, resveratrol, and flavonoid intervention have shown to selectively
inhibit pathogenic bacteria in the gut [240]. Additionally, short-chain fatty acids (SCFAs),
the main metabolites produced in the colon by bacterial fermentation may contribute to
host energy production and ROS modulation [241]. Furthermore, the gut microbiota has
been shown to regulate key transcriptional co-activators, transcription factors and enzymes
involved in mitochondrial biogenesis, such as the PGC-1α, SIRT1, and AMPK genes [241].
Thus, metabolites produced by commensal gut microbiota, including the beneficial SC-
FAs, might influence key mitochondrial functions related to TBI pathobiology such as
energy production, mitochondrial biogenesis, and redox balance, making them a potential
therapeutic target.

Due to the high energy demands exist during the repair of an injured brain; and
growing our understanding of brain-gut microbiota crosstalks for the host’s overall health,
we have briefly highlighted the existence of interactions between the brain, gut microbiota
and mitochondrial redox homeostasis. However, the underlying mechanisms through
which antioxidants might influence the gut–brain axis to exert neuroprotection in TBI is yet
to be fully elucidated. This knowledge gap is of paramount clinical significance.

8. Conclusions

Emerging evidence indicates that mitochondrial homeostasis is central to the sec-
ondary injury cascade in TBI pathology, which lacks approved therapy. Loss of this
homeostasis, including redox imbalance, excitotoxicity, calcium overload, bioenergetics
failure, and apoptosis, are the main participants in mitochondria-centered damage follow-
ing TBI, contributing to neuronal death and long-term neurobehavioral sequelae. Thus,
mitochondria-targeted antioxidant strategies in TBI have been increasingly studied, as
their maintenance could potentially preserve neuronal homeostasis and crucial brain func-
tions. Properly selecting mitochondria-targeted antioxidants, greater understanding of the
underlying injury mechanisms, better-tailored treatments, and the application of novel
pharmacological methodology offer new insights into the successful management of TBI,
and its translation from bench to bed. Therefore, the antioxidants reviewed here could be a
viable therapeutic option to minimize secondary damage and improve the quality of life
after TBI. However, further research using antioxidants as a treatment for TBI is necessary
in order to move towards adding them into routine care for TBI.
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