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The Dresden in vivo OCT dataset for 
automatic middle ear segmentation
Peng Liu   1,2,3 ✉, Svea Steuer   3,4, Jonas Golde3,4,5,6, Joseph Morgenstern   1,3,7, Yujia Hu2, 
Catherina Schieffer7, Steffen Ossmann7, Lars Kirsten   4,5, Sebastian Bodenstedt   2,3, 
Micha Pfeiffer2, Stefanie Speidel   2,3, Edmund Koch3,4 & Marcus Neudert1,3,7 ✉

Endoscopic optical coherence tomography (OCT) offers a non-invasive approach to perform the 
morphological and functional assessment of the middle ear in vivo. However, interpreting such OCT 
images is challenging and time-consuming due to the shadowing of preceding structures. Deep neural 
networks have emerged as a promising tool to enhance this process in multiple aspects, including 
segmentation, classification, and registration. Nevertheless, the scarcity of annotated datasets of OCT 
middle ear images poses a significant hurdle to the performance of neural networks. We introduce the 
Dresden in vivo OCT Dataset of the Middle Ear (DIOME) featuring 43 OCT volumes from both healthy 
and pathological middle ears of 29 subjects. DIOME provides semantic segmentations of five crucial 
anatomical structures (tympanic membrane, malleus, incus, stapes and promontory), and sparse 
landmarks delineating the salient features of the structures. The availability of these data facilitates the 
training and evaluation of algorithms regarding various analysis tasks with middle ear OCT images, e.g. 
diagnostics.

Background & Summary
The air-filled middle ear cavity consists of the tympanic membrane (TM) and the ossicular chain that connects 
the TM to the inner ear. Functionally, it matches the impedance of air to the fluid-filled inner ear1. The function-
ality of the middle ear can be disrupted by a variety of conditions such as acute or chronic otitis media or trauma. 
Pathophysiologically, they result in impaired sound transmission due to perforation of the TM, fixation or dis-
ruption of the ossicular chain, or middle ear effusion. Patients perceive this as conductive hearing loss. Current 
diagnostic modalities, including otoscopy, audiometry and tympanometry, each focus on a single aspect of the 
pathology. Otoscopy provides a visual assessment of the TM, audiometry evaluates the frequency dependent 
level of hearing, and tympanometry only assesses the pressure-dependent compliance of the TM.

As an innovative imaging technology, endoscopic optical coherence tomography (OCT)2–4 enables the 
assessment of both the morphology and function of the middle ear in vivo by the non-invasive acquisition of 
depth-resolved and high-resolution images. In recent years, several groups therefore developed promising solu-
tions towards in vivo middle ear diagnostics5–7. Nevertheless, intrinsic limitations of OCT, e.g. the backscattered 
light intensity loss over tissue depth as well as the cumulative effect of preceding structures, reduce the signal 
quality of the target structures, e.g. the stapes, which are further away from the endoscopic probe. Additionally, 
the OCT volumetric data are usually noisy and often difficult to interpret, especially regarding the identification 
of deeper middle ear structures such as incus and stapes (see Fig. 1). As a flourishing technique, deep learning 
facilitates medical image analysis tasks, e.g. segmentation 8 and registration 9. Thus, the usage of machine learn-
ing in the case of middle ear diagnostics is promising, because it has the potential of simplifying the classification 
of middle ear diseases. Nevertheless, the current bottleneck of the development and application of deep neural 
networks in the field of middle ear diagnostics is the scarcity of publicly available OCT datasets in this field.
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In this paper, we introduce the Dresden in vivo OCT Dataset of the Middle Ear, which features 43 OCT 
image volumes from healthy and pathological middle ears of 29 subjects (see Fig. 2). Five essential middle 
ear structures are segmented including tympanic membrane, malleus, incus, stapes and cochlear promontory. 
Besides the segmentations, sparse landmarks depicting the salient anatomical features are provided for evaluat-
ing algorithms such as detection and registration. Seeing that voxel-wise annotation is a time-consuming task, 
even for an experienced clinician, we capitalized on the fact that structures like the tympanic membrane are well 
captured by the OCT volume and the morphological deviation of such structures between healthy ears is slight.

For this, the Human-in-the-Loop10–12 (HITL) approach has been proposed and proven to significantly reduce 
annotation effort while yielding promising results. Following the concept of HITL, we iteratively trained a seg-
mentation neural network namely nnUnet8 with an expert correcting the prediction of nnUnet at each iteration. 
Additionally, we included more pathological samples over the iteration, which vary a lot in morphology and are 
difficult for the network to segment, so that the learning challenges are reasonably distributed at each step. At 
the end of the HITL process, the network has been fully trained and is capable of segmenting OCT images from 
both healthy and pathological middle ears and can be used as a pre-trained model for images from the same and 
other modalities. In such a way, we alleviated the heavy workload and included more samples with various mor-
phology in the same time scale. The combination of the results from two human raters and the trained neural 
network rater is checked by the expert and became the final output.

Methods
This dataset consists of 43 OCT image volumes from both healthy and pathologic middle ears (see Table 1). For 
each image sample, the semantic segmentation of five anatomical structures including tympanic membrane, 
malleus, incus, stapes, and promontory is provided. Apart from these, sparse landmarks describing the shape 
and outline of the segmented structures are marked. Therefrom, sparse point correspondences can be retrieved 
and contribute to performing or evaluating algorithms of various tasks, e.g. multi-modal image fusion.

Image Acquisition.  The OCT volumes were collected between 11.2022 and 08.2023 from clinical daily diag-
nostics at the University Hospital Carl Gustav Carus Dresden. The subjects consist of two main types: healthy vol-
unteers and patients with age ranging from 22 to 66. This study is covered by the approval of the local Institutional 
Review Board (IRB00001473) at the TU Dresden (EK 252062017). All patients provided written informed con-
sent to data acquisition, scientific analyses and sharing. Data is anonymized in order to comply with ethical 
standards and the European Union’s General Data Protection Regulation.
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Fig. 1   Data acquisition system and data examples. (a) Endoscopic OCT device for middle ear data acquisition 
[adapted from Ref. 2, published under CC-BY 4.0 license]. (b) Example of B-scans of the acquired image 
volume combined with the appendant video image. The tympanic membrane is usually fully visible but ossicles 
including malleus, incus, and stapes are noisy and partially visible, * marks the glass-air interface artifact of the 
endoscope. (c) The translucent 3D model is reconstructed from the OCT segmentation, the points in various 
colors are the sparse landmarks delineating the salient shape feature of each structure. (d) Segmentation 
example of B-Scan: Tympanic membrane, malleus, incus, stapes, and cochlear promontory are segmented and 
overlayed to the image slice. Scale bars on the bottom right in (b) and (d) correspond to 1 mm in air.
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The image acquisition was performed using a custom-built endoscopic OCT system based on the system 
according to Kirsten et al.2 (see Fig. 1) with adaptations as described in Golde et al.13. A swept-wavelength laser 
source (SL132120, MEMS-VCSEL, Thorlabs) operates at a sweep rate of 200 kHz, has a center wavelength of 
1300 nm, and a wavelength sweep range of 100 nm. In the sample arm’s endoscopic probe, components included 
are a collimator, two galvanometer scanners for beam guidance, a dichroic mirror for additional visual imaging, 
and a lens setup featuring GRIN rod lenses. This configuration provides a working distance of 10 mm and an 
image depth range of approximately 8 mm corresponding to 1024 pixel providing an axial resolution of around 
15 μm. With the GRIN endoscope, most of the middle ear is accessed by scanning the proximal surface of the 
GRIN optics with 500 times 500 A-scans of which approximately 450 A-scans in both lateral directions cover an 
angular FOV of approximately ± 30°. This spans a field of view (FOV) of around 10 mm at the working distance 
and thus an approximated lateral resolution of 45 μm. Due to the imaging geometry, the acquired data shows 
a fan-shape distortion as visualized in Ref. 4. Note that, for the sake of preservation of the original information 
content, the distorted images are stored and act as the target of annotation instead of correcting the fan-shape 
distortion by geometrically rescaling the volumes using interpolation. Nevertheless, distortion correction can 
be applied to the data by the provided code such that an isotropic spatial sampling of 20 μm in each direction 
is obtained.

The measured volumes were processed according to conventional swept-source OCT processing, i.e., back-
ground correction, zero-padding, compensating occurring dispersion mismatch, filtering with a Hann window 
and applying the inverse Fourier transform, using a custom Matlab script (MATLAB R2022b, Mathworks). The 
acquired volumes were stored in the format of nearly raw raster data (NRRD).

To support the manual image segmentation by less noisy and speckled images, the OCT volumes were addition-
ally processed by applying a tomographic non-local means despeckling (TNode) algorithm by Cuartas-Vélez et al.14  
beforehand. However, the calculation for despeckling is time-consuming and, thus, not suitable for real-time 
application. Therefore, it was not applied to the data, which were used for the neural network training.
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Fig. 2  Overview of the comprehensive, segmented OCT dataset and corresponding video images consisting of 
both healthy and pathological ear data with six different types, including sclerosis, retraction, cholesteatoma, 
perforation, otitis media and reconstruction.Pathological samples contain an extensive variety of morphology 
and topology of the middle ear. Scale bars correspond to 1 mm in air.

healthy sclerosis retraction cholesteatoma perforation otitis media reconstruction

number of samples 30 1 2 3 2 1 4

Table 1.  Sample distributions. Our datasets cover a large variety of middle ear pathology including 6 types.
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Segmentation of Anatomical Structures.  For semantic segmentation of middle ear structures (tym-
panic membrane, malleus, incus, stapes and promontory), the open-source software 3D Slicer (version: 5.2.2, 
https://www.slicer.org) with the Segmentation Editor tool was employed. Three raters including a medical student, 
a biomedical engineer and an experienced clinician (expert) conducted the segmentation process following the 
provided segmentation protocol as a guideline (see Supplementary file 1).

In practice, pixel-wise segmentation for all image slices is time-consuming. For each OCT sample, it took 
at least five hours to segment the volume from scratch including a quality check. Thus, to reduce the workload 
of such a process, the Human-in-the-Loop approach was harnessed to train a deep neural network (nnUnet8) 
iteratively and to utilize the predictions of nnUnet as pre-segmentations for the other human raters to work on.

The HITL procedure is depicted in Fig. 3, which consists of two main phases. In the initial phase, 14 OCT 
images from healthy ears were segmented manually by an experienced clinician, which comprised the initial 
training set for nnUnet. Then in the next phase, the clinician corrected the predictions of the network trained 
from the last phase for unsegmented samples. These new image volumes contained more pathological samples 
compared to the last iteration. Together with the corrected segmentation masks, they made up the training set 
for the next iterations. As such, the loop was stopped when the segmentation loss on the test set with 5 samples 
was low and the prediction was qualitatively approved by the expert. The average time acquired for segmenting 
each sample was reduced from five hours each to 20 minutes on average. The number of samples for each iter-
ation is listed in the Table 2. Thanks to the HITL process, the two human raters were able to exploit the predic-
tion of nnUnet as pre-segmentation and perform correction until the segmentation accords with real middle 
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Fig. 3  Segmentation scheme.Left: nnUnet is trained following the Human-in-the-Loop strategy and acts as 
the third rater. The human raters who are an experienced medical student and a biomedical engineer further 
correct the prediction of nnUnet for the sake of saving effort. The final product is the fusion of the segmentation 
from three raters and checked by the expert. Right: scheme for Human-in-the-Loop, the expert creates the 
initial training set to train nnUnet and corrects the inference results on un-segmented samples. The corrected 
segmentation comprises the new training set for the next iterations.

Sample types

Training

Test Sum1st Iteration 2nd Iteration 3rd Iteration

Healthy 14 (100.0%) 7 (58.3%) 6 (50.0%) 3 30

Pathological 0 (0.0%) 5 (41.7%) 6 (50.0%) 2 13

Sum 14 12 12 5 43

Table 2.  Samples distribution of HITL iterations. Over the iterations, the percentage of pathological samples, 
which are difficult to learn compared to the healthy samples, was continuously increased.
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ear morphology. At the end of the HITL process, the segmentation results of the latest nnUnet were collected, 
which is the third rater for all samples. The results were checked by an expert clinician and then merged with the 
segmentation from two other raters using the STAPLE15 algorithm. The final segmentation mask was checked 
by a clinician.

Annotation of Sparse Landmarks.  Image segmentation extracts the critical information and simplifies 
the analysis of OCT images. However, due to the incompleteness of the structures, approaches like multi-modal 
image fusion can be carried out to reveal the absent parts and further facilitate the interpretation process. Thus, 
landmarks that describe the morphology of the segmented structures can provide more fine-grained information 
and act as a performance measurement for the results of fusion algorithms. In this paper, two biomedical data 
scientists annotated the sparse landmarks (see Fig. 1) of the segmented structures using 3D Slicer (version 5.2.2) 
with the Markup module. This annotation process is performed under the guidelines which are elaborated in 
Supplementary file 2. In the last step, the landmarks were checked and corrected by the expert and constituted 
the final output.

For the tympanic membrane, the annulus showing the boundary (about 20 points), and the umbo, which is 
the central point of maximum depression and marks the end of the manubrium, is annotated. Two landmarks 
are placed to show the short process of malleus and the malleus handle. Long process of the incus is usually partially 
visible, so corresponding landmark consists of two points, one is the most proximal visible point, and the other 
one is the distal tip of the long process of the incus, right above the incudostapedial joint. Furthermore, a single 
point is marked on the stapes due to the rare visibility. Note that all these landmarks are marked on the outer side 
of the epithelium or bones, and are done for the merged segmentation only.

Data Records
The DIOME dataset is stored at OpARA (Open Access Repository and Archive, https://doi.org/10.25532/
OPARA-279)16 and accessible without prior registration. The data folder structure is shown in Fig. 4. 43 
sub-folders for 43 OCT middle ear samples compose the first layer. Within each sample folder, three items are 
listed: a metadata YAML file describing the basic information of the current sample, e.g. if it is a left or right ear, 
and OCT measurement settings, as well as an OCT image volume in the format of NRRD, and an annotation 
folder containing all annotation-related items. Within each annotation folder, three NRRD files represent the 
segmentation results from three raters, and their merged results are saved under the folder next to them. Since 
the landmarks come along with the merged segmentation, a folder named “landmarks" is placed next to it, which 
contains six JSON files for the sparse landmarks.

Technical Validation
To merge the segmentation from the three annotators for each image volume, including two human raters and 
one segmentation neural network, the STAPLE15 algorithm was employed. It takes a collection of segmentations 
of an image and computes simultaneously a probabilistic estimate of the combined segmentation and is often 
applied in the biomedical field. To validate our segmentations from all three annotators, two metrics commonly 
used for measuring segmentation performance were calculated: 

•	 F1 score is a counting-based metric that measures the overlap between a reference mask and another input 
segmentation. The value of the F1 score varies from 0 to 1, where 0 means no overlap and 1 full overlap.

•	 Hausdorff distance showcases the maximum distance between two segmentation masks. As a distance-based 
metric, it usually works as a complement to the counting-based metric and focuses on the assessment of the 
segmentation boundary and shape. Here we normalized the Hausdorff distance via the diagonal of the 3D 
image volume. Close to 0 means less separation between the two segmentations, and close to 1 presents larger 
distance.

The results of the segmentation evaluation are listed in Table 3, where the anatomical structures are ordered 
based on the distance to the OCT probe. The values in each cell show the average F1 score and Hausdorff 
distances of all annotators on all anatomical structures. As indicated by comparing the table values, most of 
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Fig. 4  Folder structure of the dataset.From top to lowest level: 1) dataset folder. 2) sample numbers. 3) sample 
data. 4) segmentation data. 5) merged segmentation and corresponding landmarks. 6) landmarks data.
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the anatomical structures do not have large discrepancies, and the annotators agree with the merged results. 
However, with the increase in the distance to the probe (from top to bottom), a decreasing tendency of F1 score 
can be observed which corresponds to the decrease of OCT image quality over depths, e.g. larger noise around 
the stapes regions. Although the F1 scores of stapes and promontory are lower than other structures, particularly 
for annotator A1, Hausdorff distances are low enough to prove the rationality.

One interesting fact is the third rater, i.e. the neural network, outperforms the rater A1, the medical student. 
This proves the comparable capability of the neural network in segmenting OCT images against a human rater.

Usage Notes
The dataset was published under the Creative Commons Attribution (CC-BY 4.0) license. It can facilitate algo-
rithm development in various deep learning tasks, for example, semantic segmentation, pathology detection 
or classification, etc. On the one hand, it can be combined with OCT image datasets from other anatomy for 
fast learning of OCT data and to improve performance. On the other hand, integration with data from other 
modalities via image registration enables the knowledge transfer to promote the visibility and readability of 
target structures. For easy processing of the dataset and evaluation of the developed methods, basic functions 
including 3D model reconstruction, visualization, and metrics calculation are provided.

Code availability
Scripts for segmentation merging and visualization, statistics calculation and fan-shape correction are publicly 
available at https://gitlab.com/nct_tso_public/diome. All the scripts are written in Python 3.11 and are public 
under the MIT license.
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Structure A1 A2 A3 (nnUnet)

Tympanic membrane 0.89 (0.034) 0.97 (0.034) 0.90 (0.035)

Malleus 0.80(0.083) 0.82 (0.046) 0.87 (0.137)

Incus 0.85 (0.053) 0.90 (0.038) 0.89 (0.078)

Stapes 0.66 (0.031) 0.77 (0.006) 0.82 (0.025)

Promontory 0.65 (0.018) 0.83 (0.007) 0.78 (0.040)

Table 3.  Comparison between the segmentation of all raters including two human raters (A1, A2) and one 
neural network rater (A3). The F1 Scores and Hausdorff distance in parenthesis are calculated to quantitatively 
depict the discrepancy between the segmentation results of each rater and the merged ones. A1: medical 
student, A2: biomedical engineer, A3: neural network (nnUnet).
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