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Abstract: The Eurasian woodcock (Scolopax rusticola) belongs to those bird species that make sys-
tematic migratory flights in spring and autumn in search of favorable breeding and wintering areas.
These specimens arrive in the Mediterranean Area from northeastern European countries during the
autumn season. The purpose of this study was to assess whether woodcocks can carry antibiotic
resistance genes (ARGs) along their migratory routes. Although the role of migratory birds in the
spread of some zoonotic diseases (of viral and bacterial etiology) has been elucidated, the role of these
animals in the spread of antibiotic resistance has not yet been clarified. In this study, we analyzed
the presence of beta-lactam antibiotic resistance genes. The study was conducted on 69 strains
from 60 cloacal swabs belonging to an equal number of animals shot during the 2022–2023 hunting
season in Sicily, Italy. An antibiogram was performed on all strains using the microdilution method
(MIC) and beta-lactam resistance genes were investigated. The strains tested showed no phenotypic
resistance to any of the 13 antibiotics tested; however, four isolates of Enterobacter cloacae and three of
Klebsiella oxytoca were found to carry the blaIMP-70, blaVIM-35, blaNDM-5 and blaOXA-1 genes. Our results
confirm the importance of monitoring antimicrobial resistance among migratory animals capable of
long-distance bacteria spread.

Keywords: antimicrobial resistance; migratory birds; Enterobacter cloacae; Klebsiella oxytoca; carbapenems;
ARGs

1. Introduction

Migratory birds travel along flyways to move from their nesting site (e.g., northern
Europe) to their over-wintering site (e.g., Northern Africa). There are numerous flyways
between Europe and Africa, but among these the Sicilian Canal represents a natural bridge
between both continents [1]. Sicily, due to its strategic position in the center of the Mediter-
ranean, is therefore the last stopping point in the autumn before the great Mediterranean
crossing, and the first stopping point in the spring on their return from Africa. The Eurasian
Woodcock is mainly a migrant, with the exception of the resident populations in France
and England. Wintering populations from the Fenno-Scandinavian, Russian and Southeast
Asian areas migrate to spend the winter in southern Europe and North Africa. Winter food
availability determines the need for migration; thus, populations nesting in northern and
eastern Europe must necessarily make long journeys in search of areas where food is abun-
dant, even in winter. Migration to wintering sites begins in September and is particularly
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intense in October and November. Many studies have confirmed a high degree of fidelity
to wintering sites, with only sudden climatic adversity causing individuals to move to new
sites [2,3]. This species is of great interest to hunters, with around 3 to 4 million individuals
hunted each year in Europe, 93% of which are hunted in France, Italy and Greece [4].
In most European countries, woodcocks are hunted during the autumn migration and,
in many eastern countries, they are also hunted in spring. The hunting season in Italy
begins in the second week of September and ends in December–January, depending on
the regional hunting calendar, and it is estimated that, on average, 1,000,000 animals are
shot each year [5]. Bird migration is a spectacular and natural phenomenon, but it can also
create dangers for public health by spreading infectious diseases across large geographical
scales [6]. Indeed, migratory birds are considered to be one of the vectors of the wide
geographical distribution of some important viruses (West Nile, Usuntu, Newcastle and
Highly pathogenic avian influenza) and could also spread several bacteria species (E. coli,
Salmonella spp., Campylobacter jejuni, Pasteurella multocida, Clostridium botulinum, Mycobac-
terium avium), including antibiotic-resistant bacteria (ARBs) [7–9]. An example of how bird
migration may play a role in the spread of pathogens and antimicrobial resistance was
provided by a molecular typing study that showed that several S. typhimurium strains from
wild birds in the southeastern US had the same virulence determinants as strains isolated
with songbirds in Wyoming [10].

Antimicrobial resistance (AMR) is a serious problem with major implications for
the health of both humans and animals, and the World Health Organization (WHO) has
estimated that, in the coming decades, deaths caused by antibiotic-resistant bacteria (ARBs)
will exceed those from other diseases if shared strategies on the responsible use of antibiotics
are not undertaken [11]. Moreover, the consequences of antimicrobial resistance have been
particularly severe when pathogens were resistant to antimicrobials of critical importance to
humans (CIA). This list includes antimicrobials belonging to several classes, including beta-
lactams and, in particular, third, fourth and fifth generation cephalosporins (ceftriaxone,
cefepime, cefazolin, ceftobiprole) and carbapenems, molecules that are among the most
widely used antibiotics in clinical practice [12]. Beta-lactams are the drugs of choice for
the treatment of enterobacterial infections. However, these bacteria can develop resistance
mechanisms, such as the production of β-lactamases, enzymes capable of hydrolyzing
the β-lactam ring, rendering the molecule inactive. The use of beta-lactams in clinical
practice generated a selective pressure that favored the recruitment of new beta-lactamases
among pathogenic enterobacteria, often mediated by transferable plasmids that facilitated
their spread. The first beta-lactamases detected in Enterobacterales from the mid-1960s
onwards were broad-spectrum enzymes of the TEM-1 and SHV-1 type, responsible for
acquired resistance to penicillins (ampicillin, ticarcillin, piperacillin) and narrow-spectrum
cephalosporins (cephalothin, cefazolin) in naturally susceptible species such as E. coli,
S. enterica and P. mirabilis [13]. The subsequent large-scale clinical use of beta-lactamases has
changed the selective pressure and led to the selection of point mutants of these enzymes,
which are also capable of hydrolyzing extended-spectrum beta-lactamases (e.g., TEM-3,
TEM-10, TEM-24, TEM-52, SHV-5, SHV12) and the recruitment of new beta-lactamases
that are naturally active on extended-spectrum cephalosporins (e.g., CTX-M, PER, GES,
VEB) [13]. The spread of the Enterobacterales strains producing these enzymes, collectively
referred to as extended-spectrum beta-lactamases (ESBLs), favored by the mobility of the
genetic elements encoding them, has taken on pandemic and multi-sectoral proportions in
a relatively short time, with veterinary and environmental implications.

ARBs have also been found in many environments and animals that are thought to be
unaffected by anthropogenic factors. In 2008, a Swedish group of scientists demonstrated
the presence of antimicrobial-resistant enterobacteria in cloacal swabs from wild animals in
Antarctica, demonstrating the phenomenon of the spread of AMR in confined environments
and ecological niches where anthropogenic pressure is limited [14]. Recently, a study was
carried out in Spain to investigate the presence of resistance in Enterobacterales from sev-
eral wild birds, which highlighted the importance of monitoring resistance to beta-lactams,
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quinolones and tetracyclines in these animals as well [15]. Thus, ARBs can colonize wildlife
through contact with sewage or animal manure, and this could be important for the global
spread of resistance genes, with serious implications for public health, ecosystem function and
animal disease. The persistence of bacteria with resistance genes in wild populations, even
in the absence of direct selection by antibiotics or continuous pressure from anthropogenic
disturbance, is still largely unknown [6]. This issue, with a focus on wild birds (particularly
waterfowl and birds of prey) and small woodland mammals, has received increasing attention
in the last years. AMR is a global health problem, and there is an increase in the levels of
bacteria resistant to molecules considered the last line of antibiotics for treating infections
caused by multi-drug-resistant bacteria (MDR) [11]. Wildlife may act as a bridge that facili-
tates the transfer of AMR between disconnected ecosystems, a feature that is also relevant
for migratory animals that regularly travel long distances [9]. Migratory birds are recognized
as potential key agents in the spread of antimicrobial resistance, as antimicrobial resistance
bacteria can colonize their gut through the ingestion of contaminated food or water, turning
them into environmental potential reservoirs and vectors of ARBs and antimicrobial-resistant
genes (ARGs) [16–18]. Furthermore, meanwhile, they can fly non-stop for up to thousands of
kilometers, spreading ARGs across continents [9,16,18]. Although the role of migratory wild
birds in the spread of AMR is widely recognized in several locations worldwide [9,18–20],
few studies have investigated the role of migratory wild birds in facilitating the spread of
ARGs in Sicily [20–22]. Some migratory species such as Scolopax rusticola arrived in Sicily
from countries where the percentage of beta-lactamase-resistant Enterobacterales is different, in
particular against carbapenems [11]. Indeed, as the regulations on antimicrobial use differ be-
tween countries, it follows that phenotypic resistance and resistance genes may have different
geographical distributions. The prevalence of ARBs in wildlife is influenced by many factors,
such as foraging strategies and the type of habitat in which the animal was sampled. The
volume and pattern of the non-human use of antimicrobials affected the occurrence of ARBs
in animals and on food, and thus human exposure to these bacteria [9,23]. There is sufficient
evidence to support the occurrence of direct and indirect routes of transmission of ARBs and
ARGs from the environment to humans or animals and vice versa [24]. Previous studies have
also demonstrated the transferability of ARGs between these reservoirs by comparing gene
sequences obtained from bacteria responsible for human infections caused by contact with
domestic and/or wild animals [25].

In this study, cloacal swabs of S. rusticola hunted in the province of Palermo (Sicily)
were screened to assess the presence of Enterobacterales harboring ARGs and thus the po-
tential role of these animals in the spread of AMR. Furthermore, to assess the transferability
potential of ARGs, the presence of class 1 integrons (int1) was also investigated. Class 1
integrons are linked to contaminated environments and their presence is considered an
indicator of anthropogenic pollution [26].

2. Results
2.1. Bacterial Isolation and Identification

Cloacal swabs obtained from 60 carcasses of S. rusticola were submitted for microbiolog-
ical examination at the microbiology laboratory of the Istituto Zooprofilattico Sperimentale
della Sicilia, Palermo, Italy, a public health institution. A total of 69 Enterobacterales isolates
were collected from these swabs and subsequently identified by 16S rDNA sequencing
analysis. The majority of isolates were identified as Escherichia coli (n = 60), followed
by Klebsiella oxytoca (n = 5) and Enterobacter cloacae (n = 4). E. coli was isolated from all
60 samples analyzed: it was the only species isolated from 52 of them, while the other
two species were also isolated from 8 swabs. Specifically, E. coli and K. oxytoca were isolated
from 4 samples, while E. coli and E. cloacae were isolated from 3 others samples. Finally, all
three species were isolated from one sample.
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2.2. MIC results and ARGs Detection

To assess the susceptibility of the 69 isolates, the MIC value of scaled-up dilutions
of 13 antimicrobials was determined. No isolates showed resistance to the antimicrobials
tested; however, some strains showed intermediate susceptibility to some antimicrobials
(Table 1).

Table 1. MIC values (µg/mL) determined for the 69 lactose-fermenting isolates.

Antimicrobial
Agent

Number of Isolates at the Indicated MIC Value (µg/mL)

0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024
Ampicillin 5 21 36 4 3

Azithromycin 69
Cefotaxime 66 3
Ceftazidime 67 2

Chloramphenicol 69
Ciprofloxacin 69

Colistin 69
Gentamicin 69
Meropenem 60 9

Nalidixic acid 69
Sulfamethoxazole 36 15 7 8 2 1

Tetracycline 52 17
Trimethoprim 66 3

Vertical lines indicate the tested dilutions of each antimicrobial. The gray fields show the cut-off values according
to CLSI M-100 and red bold indicates intermediate susceptibility isolates [27].

Specifically, three isolates of K. oxytoca showed intermediate susceptibility to ampicillin,
three isolates of E. coli to cefotaxime and two others to ceftazidime. Moreover, 9 strains,
5 isolates of K. oxytoca and 4 isolates of E. cloacae showed a cut-off for meropenem higher
than screening cut-off values for carbapenemase-producing Enterobacterales according to
EUCAST methodology.

The detection of ARGs and int1 using PCR revealed the presence of these genetic
elements in 7 out of 69 isolates. Specifically, the bacteria harboring resistance genes came
from 6 woodcocks, one of which, woodcock no. 23, was found to host two enterobacteria
with ARGs. The detailed results are showed in Table 2.

Table 2. Isolates harboring the ARGs targeted.

Strains ID Bacterial Species ARGs and int1 Detection

23b Klebsiella oxytoca blaOXA-1, blaVIM-35, int1
23c Enterobacter cloacae blaIMP-70, int1
24b Enterobacter cloacae blaNDM-5, int1
32b Klebsiella oxytoca blaOXA-1, int1
40b Klebsiella oxytoca blaOXA-1, blaVIM-35
58b Enterobacter cloacae blaNDM-5, int1
60b Enterobacter cloacae blaIMP-70, int1

The amplicons were sequenced to reveal the variants involved and, in particular, the
blaNDM-5, blaOXA-1, blaIMP-70 and blaVIM-35 variants were identified. Notably, int1, a genetic
element involved in gene transfer between bacterial strains, was present in all isolates
carrying one or more ARGs.

3. Discussion

Migratory birds are known to contribute to the spread of pathogens such as pan
zoonotic viruses including West Nile and Highly Pathogenic avian influenza [6]. Recently,
the role of these wild animals in the dissemination of AMR has also been examined, partic-
ularly given the global spread of AMR in natural environments. In this study, we assessed



Antibiotics 2024, 13, 234 5 of 11

the phenotypic sensitivity and detected the fecal carriage of carbapenems-resistant genes
on lactose-fermenting Enterobacterales isolated from the migratory European Woodstock
while stopping in Sicily on its migratory route. The 69 strains analyzed showed no pheno-
typic resistance to any of the 13 antimicrobials tested. However, four isolates belonging to
the bacterial species E. cloacae and three belonging to K. oxytoca were found to harbor the
blaIMP-70, blaVIM-35, blaNDM-5 and blaOXA-1 genes.

All Enterobacterales have the potential to acquire resistance to normally active drugs
through the acquisition of new resistance determinants by horizontal genetic exchange
(HGT) phenomena. In this group, HGT phenomena are frequent and often mediated by
plasmid transmission. In these bacteria, the main mechanism of acquired resistance to
beta-lactam antibiotics is the production of beta-lactamases [13]. According to Amber’s
classification, beta-lactamases are divided into three classes on the basis of molecular homol-
ogy. Class A comprises broad and extended-spectrum beta-lactamases, class B comprises
metallo-beta-lactamases, class C comprises AmpCs and class D comprises oxacillinases.
The use of these drugs in the clinical setting has promoted the recruitment of new resistance
determinants and new variants, which, over the years, have led to the selection of the
ESBL (extended-spectrum beta-lactamase) resistance profile capable of hydrolyzing the
beta-lactam ring of cephalosporins of generations III and IV. The therapy for infections
caused by Enterobacterales ESBLs is mainly based on the use of carbapenems, and, in
recent decades, the use of these molecules has further altered the selective pressure in the
clinic setting by favoring the emergence of enzymes that are capable of degrading these
drugs as well.

Various types of carbapenemases have emerged, among which one of the most common
is the serine-type ones represented by KPC and OXA-48 and the metallo-carbapenemases of
the NDM, VIM and IMP types; these enzymes, in addition to degrading carbapenems, are
active on most beta-lactam compounds.

The use of carbapenem drugs in Europe is reserved for the treatment of infections in
humans, while it is off-label and should be reserved for cases where therapeutic alternatives
are limited in animals [28,29]. However, in other countries, these antimicrobials are also
used in veterinary practice to treat infections in domestic dogs [30,31]. In 2021, carbapenem
resistance was recorded at rates of <10% in Northern European countries, while Eastern
European countries reported rates of 50% or more [32]. The movements of S. rusticola follow
two migratory routes: birds from Scandinavia and Norway normally move westwards,
reaching the British Isles or northern France, while those from Eastern Europe prefer to
follow routes pointing south or south-westwards, reaching southern Europe, Italy and
Africa [33]. For these reasons, the surveillance of AMR in these birds could contribute to
monitoring the spread of ARGs even between geographically distant countries.

ARGs can have the potential to reach the environment through diffuse sources of con-
tamination (areas of intensive agriculture, industrial districts, human activities distributed
throughout the territory) or through point sources, such as intensive livestock farming sites,
aquaculture, urban sewage and hospital effluents [34–36]. Moreover, antimicrobials and
ARGs are released into streams, lakes or the sea through treated water or into soils through
the use of sewage sludge as fertilizer for fields [23,37]. Although AMR surveillance is an
issue of global concern, there are considerable differences in AMR across countries and
environments [38,39].

In this study, we detected the presence of genetic determinants of carbapenem resis-
tance in E. cloacae and K. oxytoca isolated from feces of the migratory S. rusticola, which
originates from areas in Eastern Europe where the incidence of carbapenem resistance is
high (>25%).

The 69 strains analyzed in this study showed no phenotypic resistance to any of the
13 antimicrobials tested. However, four isolates belonging to the bacterial species E. cloacae
and three K. oxytoca were found to harbor the blaIMP-70, blaVIM-35, blaNDM-5 and blaOXA-1
genes. Specifically, the presence of genes coding for extended resistance to beta-lactams
(blaTEM and blaCTX-M) was not detected, but the presence of genes coding for resistance
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to carbapenems was detected. Indeed, the genes blaIMP, blaVIM and blaNDM belonging to
Amber class B, and blaOXA belonging to class D, were detected.

Although the study was based on a small number of samples, the presence of carbapen-
emase resistance genes in migratory birds is rarely reported [16]. Indeed, as components of
the gut microflora, the bacteria detected and the ARGs they harbored can be disseminated
in wild or human environments, where selective pressure may favor the development
of resistance.

As demonstrated, the presence of ARGs in a bacterial isolate does not necessarily lead
to the observation of phenotypic resistance [40,41]. Indeed, some authors have demon-
strated that the expression of resistance genes is related to various transcriptional regulatory
factors. Nevertheless, the presence of resistance genes is still a relevant fact because, al-
though silent, these genes can be exchanged within microbial communities where they can
find conditions suitable for their expression [42].

Finally, the detection of the int1 genetic element in these bacteria supports the role of
contamination of birds from human sources [26]. Although these wild migratory birds are
not treated with antimicrobials and thus should not be implicated in favoring selection for
AMR, they could act as disseminators of AMR across Europe and Africa if they carry and
spread AMR during their migration.

A limitation of this study, and of those conducted on wild animals in general, is the
difficulty of collecting samples, which does not allow us to assess the ARGs’ prevalence.
However, the detection of resistance genes in these animals, even if in a small number of
isolates, supports the role of migratory animals in the dissemination of ARGs of critical
importance for global public health. Furthermore, carbapenems are used in clinical practice
for the treatment of nosocomial infections and the presence of carbapenemase genes in
the environment is of concern. Future research should clarify the origin of the detected
carbapenem resistance, which could have been contaminated at origin or during the
migration route to Sicily.

The collection of sequences of genes resistant to these drugs, and their subsequent
molecular phylogenetic analyses, could help to clarify the origin of these genes in the
future and verify whether the presence of these elements in migrating birds is linked
to the occurrence of antibiotic resistance in the countries along the migratory routes of
these birds. Indeed, as the incidence of resistance to different antimicrobial classes is not
homogeneous between countries worldwide, monitoring migratory species could provide
useful information on how and through which pathways the global distribution of these
genes occurs.

4. Materials and Methods
4.1. Sampling and Bacterial Isolation

Sampling was carried out during the 2022–2023 hunting season, between September
and January, when Scolopax rusticola specimens come to over-winter in Sicily from Eastern
Europe. Specifically, cloacal swabs were collected from 60 carcasses of S. rusticola hunted
in Sicily, particularly from the PA1 and PA2 hunting areas of the province of Palermo
(Figure 1).

Therefore, for all sampled birds, the species were established by assessing morphological
characteristics (beak length, plumage and body size) and health status through post-mortem
examination. Swabs collected during the post-mortem examination were analyzed as part of
the routine activities of our institution, in order to detect the presence of zoonotic bacterial
species such as Salmonella spp., Campylobacter spp. and Listeria spp., etc., but also with the aim
of isolating commensal species belonging to the Enterobacterales family.
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Bacterial isolation is performed by enriching swabs in buffered peptone water (APT)
for 24 h at 37 ◦C and then inoculating onto the selected selective and differential media. For
the isolation of Enterobacterales, 10 µL of APT was inoculated onto McConkey agar (MC) and
incubated at 37 ◦C for 24 h. For the isolation of Salmonella spp., Campylobacter and Listeria,
a second enrichment was performed in Selenite Cystine and Rappaport Vassiliadis, Preston
broth and Half Freiser broth, respectively. After incubation at 37 ◦C for 24–48 h, 10 µL of each
broth was seeded on xylose–lysine–desoxycholate agar (XLD agar) and Brilliant Green
agar (BGA agar) for the isolation of Salmonella spp., on Karmali agar for the isolation
of Campylobacter spp. and on Oxford agar for the isolation of Listeria spp. [43]. After
incubation at 37 ◦C for 24 h, when available, one to three morphologically different colonies
were selected for each plate and purified on nutrient agar. All media used were supplied
by Oxoid (Milan, Italy). In order to identify pure isolates, they were first subjected to
phenotypic tests (Gram stain, catalase, oxidase, indole, sugar fermentation, urease and
Voges–Proskauer, citrate test) and then to 16S gene amplification and sequencing. Single
colonies of each isolate were grown in BHI broth for 24 h at 37 ◦C. The bacterial cells were
then pelleted by centrifugation (14,500× g for 5 min) and DNA extraction was performed
with the QIAamp® DNA Mini Kit (Qiagen, Hilden, Germany), in accordance with the
manufacturer’s instructions. An aliquot (2 µL) of the bacterial lysate was used to amplify
the internal 464 bp fragment of the 16S rDNA using DreamTaq DNA polymerase (Thermo
Fisher Scientific, Waltham, MA USA), with the forward primer CCTACGGGNBGCASCAG
and the reverse primer GACTACNVGG-TATCTAATCC. The PCR conditions were as
follows: initial denaturation at 95 ◦C, followed by 40 cycles of denaturation at 95 ◦C for
15 s, annealing at 55 ◦C for 30 s, extension at 72 ◦C for 30 s and polymerization at 72 ◦C
for 10 min [44]. After checking the product size by electrophoresis on a 2% agarose gel
(E-Gel™ Power Snap Electrophoresis Device, Thermo Fisher Scientific, MA USA), the PCR
products were purified and sequenced using the ABI Prism 3130 Genetic Analyzer (Applied
Biosystems, Foster City, CA, USA). Briefly, a reaction mix containing 1× concentration
of RRM (Ready Reaction Mix), 1× concentration of Big Dye Sequencing Buffer (Applied
Biosystems, Foster City, CA, USA), 0.3 pmol/25 µL (6 picomoles) forward or reverse primer,
30 ng DNA and water DNAase and RNAase free to a total volume of 20 µL was prepared.
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The PCR reaction for the sequence with BigDye was performed under the following
conditions: initial denaturation at 95 ◦C for 1 min, followed by 25 cycles involving a
denaturation step at 95 ◦C for 10 s, annealing at 50 ◦C for 5 s and extension at 60 ◦C for
4 min. The nucleotide sequences obtained were identified using the NCBI Nucleotide
BLAST system (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (accessed on 11 September 2023).

4.2. MIC Determination

The Minimum Inhibitory Concentration (MIC) (µg/mL) for 13 antimicrobials was
determined using Sensititre™ EU Surveillance Salmonella/E. coli EUVSEC 96-well plates
(Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instruc-
tions. Scaled-up dilutions (2-fold dilutions) of the following antimicrobials were then tested:
sulfamethoxazole (SMX, 8–1024), trimethoprim (TMP, 0.25–32), ciprofloxacin (CIP, 0.015–8),
tetracycline (TET, 2–64), meropenem (MERO, 0.03–16), azithromycin (AZI, 2–64), nalidixic
acid (NAL, 4–128), cefotaxime (FOT, 0.25–4), chloramphenicol (CHL, 8–128), ceftazidime
(TAZ, 0.5–8), colistin (COL, 1–16), ampicillin (AMP, 1–64) and gentamicin (GEN, 0.5–32).
Briefly, a 0.5 McFarland bacterial suspension was prepared in 5 mL of sterile water and
10 µL of this was inoculated into 11 mL of Müller–Hinton broth supplemented with cations
(Becton, Dickinson and Company, Hunt Valley, MD, USA). Finally, the broth (50 µL) was
added to the 96-well plate, which was then incubated at 37 ◦C for 24 h.

Results obtained from manual plate reading with Sensititre™ Manual Viewbox (Thermo
Fisher Scientific, Waltham, MA, USA) were interpreted according to CLSI breakpoints [27].

4.3. ARGs Detection

The DNA extracted was used to perform PCRs to detect the occurrence of six common
beta-lactamase resistance-related genes (blaTEM, blaCTX-M, blaOXA, blaIMP, blaVIM and blaNDM)
and the int1 genetic element. The PCR reaction mix contained a final concentration of 1×
DreamTaq buffer, 2 mM dNTPs, 0.5 µM forward primer, 0.5 µM reverse primer, 1.25 U of
DreamTaq DNA polymerase (Thermo Fisher Scientific, MA USA), 10 ng of genomic DNA,
and nucleic-free water to obtain a volume of 50 µL. All PCRs reaction were performed using
16S rDNA as amplification control. Amplification was carried out under the following
thermal conditions: denaturation at 98 ◦C for 10 min, followed by 40 cycles of denaturation
for 30 s at 98 ◦C, annealing for 1 min at the temperatures given in Table 3 and extension for
30 s at 72 ◦C, followed by a final extension of 2 min at 72 ◦C. The primers and annealing
temperatures used are shown in Table 3.

Positive controls consisted of 4 ATCC strains (BAA-3049 Escherichia coli, BAA-3079
Klebsiella pneumoniae and BAA-2468 Enterobacter cloacae) harboring the genes searched for,
while DNAase and RNAase free water was used as a negative control. Subsequently, 10 µL
of the PCR product was used for electrophoresis on a 2% agarose gel (E-Gel™ Power Snap
Electrophoresis Device, Thermo Fisher Scientific, MA, USA) to determine the product size.
Sequencing was conducted to confirm the bacterial identity of each isolate and to study the
ARGs variant obtained. Briefly, the fragments which were clearly visible on agarose gels
were treated with GFX PCR DNA and Gel Band Purification Kits (GE-Healtcare, Milano,
Italia) to inactivate primers, labeled with the BigDye Terminator v 3.1 RR-cycle sequencing
kit, purified by gel filtration on columns Illustra AutoSeq G-50 Dye Terminator Removal
Kit, (GE-Healtcare, Milano, Italia) and, finally, run on the ABI Prism 3130 Genetic Analyzer
(reagents and machine from Applied Biosystems, Foster City, CA, USA). The nucleotide
sequences obtained were compared with those reported in The Comprehensive Antibiotic
Resistance Database (https://card.mcmaster.ca/) (accessed on 17 October 2023).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://card.mcmaster.ca/
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Table 3. Primer ARGs and integrons used in this study.

Target Primer Sequence (5′-3′) Annealing
Temperature (◦C) Amplicon Size (bp) References

blaTEM
F ATTCTTGAAGACGAAAGGGC

60 661

[45]

R ACGCTCAGTGGAACGAAAAC

blaCTX-M
F CTATGGCACCACCAACGATA

60 585R ACGGCTTTCTGCCTTAGGTT

blaOXA
F ACACAATACATATCAACTTCGC

60 590R AGTGTGTTTAGAATGGTGATC

blaIMP1
F CTACCGCAGCAGAGTCTTTG

55 587

[46]

R AACCAGTTTTGCCTTACCAT

blaIMP2
F GTTTTATGTGTATGCTTCC

55 678R AGCCTGTTCCCATGTAC

blaVIM1
F AGTGGTGAGTATCCGACAG

55 261R ATGAAAGTGCGTGGAGAC

blaVIM2
F ATGTTCAAACTTTTGAGTAAG

55 801R CTACTCAACGACTGAGCG

blaNDM
F GGTTTGGCGATCTGGTTTTC

55 621R CGGAATGGCTCATCACGATC

int1
F GGCTTCGTGATGCCTGCTT

60 148
[47]

R CATTCCTGGCCGTGGTTCT

16S rDNA
F CGGTGAATACGTTCYCGG

55 142R GGHTACCTTGTTACGACTT
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