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Abstract: In recent years, research on the discovery of natural compounds with potent antioxidant
properties has resulted in growing interest in these compounds due to their potential therapeutic
applications in oxidative-stress-related diseases. Argan oil, derived from the kernels of a native
tree from Morocco, Argania spinosa, is renowned for its rich composition of bioactive compounds,
prominently tocopherols, polyphenols, and fatty acids. Interestingly, a large body of data has shown
that several components of argan oil activate the nuclear factor erythroid 2-related factor 2 (Nrf2)
pathway, playing a crucial role in the cellular defense against oxidative stress. Activation of this Nrf2
pathway by argan oil components leads to the increased expression of downstream target proteins
like NAD(P)H quinone oxidoreductase (NQO1), superoxide dismutase (SOD), heme oxygenase
1 (HO-1), and catalase (CAT). Such Nrf2 activation accounts for several health benefits related
to antioxidant defense, anti-inflammatory effects, cardiovascular health, and neuroprotection in
organisms. Furthermore, the synergistic action of the bioactive compounds in argan oil enhances the
Nrf2 pathway. Accordingly, the modulation of the Kelch-like ECH associated protein 1 (Keap1)/Nrf2
signaling pathway by these components highlights the potential of argan oil in protecting cells from
oxidative stress and underlines its relevance in dietetic prevention and therapeutic applications. This
review aims to provide an overview of how major compounds in argan oil activate the Nrf2 pathway,
updating our knowledge on their mechanisms of action and associated health benefits.

Keywords: argan oil; Nrf2; tocopherols; polyphenols; fatty acids

1. Introduction

Our body naturally generates antioxidants to combat the harmful effects of free radi-
cals. However, an imbalance can result in excess reactive oxygen species (ROS) production,
leading to oxidative stress [1]. ROS can be generated by the internal metabolism or af-
ter external exposure [2,3]. The excessive production of free radicals can lead to various
disorders, including cardiovascular diseases, cancer, and inflammatory pathologies [4].
To combat this oxidative stress, organisms developed a complex system of antioxidants,
which can be divided into enzymatic, such as superoxide dismutase (SOD), glutathione
peroxidase (GPx), and catalase (CAT), and non-enzymatic, such as glutathione (GSH),
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ascorbic acid, and thioredoxin [5]. Nuclear factor erythroid 2-related factor 2 (Nrf2) is
the main redox-sensitive transcription factor that plays a crucial role in regulating gene
expression for molecules that have antioxidant properties [6]. In recent decades, there has
been growing interest in bioactive compounds that have a range of biological activities,
including anti-inflammatory, anticancer, immunomodulatory, and antioxidant effects [7,8].
In this context, argan oil has gained significant recognition for its unique composition and
its numerous health benefits. It is obtained from Argania Spinosa, an endemic tree in the
middle of Morocco [9]. Morocco produces 3000 to 4000 tons of argan oil annually, making
it the world’s leading producer [10]. Argan oil has traditionally been used for culinary,
medicinal, and cosmetic purposes. It is used for joint issues, skin, hair, and nails [11]. Our
research team has focused on exploring the antioxidative effect of argan oil and some of its
components [12–18]. The present work first provides a general review of the chemical com-
position of argan oil compared to other oils. Then, it delves into the antioxidant properties
of argan oil as well as its effects on lipid metabolism. Moreover, it describes on the main
redox-sensitive transcription factor, Nrf2, and its downstream signaling pathways. Finally,
it focuses on the action mechanisms of argan oil and its components on the Nrf2 pathway,
aiming to elucidate the antioxidative potential of compounds related to argan oil.

2. Composition of Argan Oil

Argan oil has a unique composition marked by elevated levels of linoleic and oleic
acids. Moreover, it is rich in polyphenols and tocopherols, which confer antioxidant proper-
ties. Additionally, argan oil contains other minor compounds such as carotenoids, squalene,
sterols, and xanthophylls. These compounds potentially contribute to the nutritional value
of argan oil, its health benefits, its organoleptic characteristics, and its shelf-life [19–21].

2.1. Glyceride Saponifiable Fraction

The glyceride fraction represents 99% of argan oil, with the majority (95%) being
triglycerides [22]. In contrast to other edible oils, an argan oil fatty acid analysis revealed
a predominance of oleic acid and linoleic acid, about 80%, showing a balanced amount
between monounsaturated and polyunsaturated fatty acids [23]. The proportion of oleic
acid in argan oil (43–49%) is higher than that of the oil of sunflowers, soybeans, maize,
grape seed, and sesame, whereas this content is lower than that of the oil of olives, almonds,
and peanuts (Table 1). Unlike the level of linoleic acid in argan oil, which ranges from
29 to 36%, this concentration is lower than that of the oil of sunflowers, soybeans, maize,
grape seed, and sesame, and higher than that of the oil of olives, almonds, and peanuts.
Additionally, argan oil is abundant in saturated fatty acids relative to other natural oils and
contains a small amount of linolenic acid.

Table 1. Comparison of fatty acid composition of argan oil with other natural oils.

Fatty Acids (%) C16:0
(Palmitic Acid)

C18:0
(Stearic Acid)

C18:1
(Oleic Acid)

C18:2n-6
(Linoleic Acid) References

Oils

Argan oil 12.72 5.45 45.97 34.75 [23]

Olive oil 9.7 2.6 73.6 11.3 [12]

Sunflower oil 2.54 1.96 16.33 76.96 [24]

Soybean oil Not determined 3.04 24.02 40.00 [25]

Almond oil 6.4 0.5 71.1 19.5 [26]

Peanut oil 8.77–12.03 3.20–4.38 39.14–56.99 27.07–42.94 [27]

Corn oil 12.94 2.12 31.97 48.97 [28]

Grape seed oil 7.2 4.8 19.9 68.1 [29]

Sesame oil 9.7 6.5 41.5 40.9 [30]
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The table below displays a comparison of the main fatty acid compositions between
argan oil and other natural oils. The values represent percentages of fatty acids in the total
triglyceride fraction.

2.2. Unsaponifiable Fraction

The unsaponifiable fraction represents 1% of argan oil and is characterized by a rich
composition of sterols and antioxidants such as polyphenols, particularly tocopherols [22].
The composition of the unsaponifiable fraction is mainly influenced by the geographical
origin of the argan tree and the process of extraction of the argan oil [31].

2.2.1. Polyphenols

The phenolic composition of argan oil (Table 2) is characterized by the presence of four
polyphenols, vanillic acid, syringic acid, ferulic acid, and tyrosol, with a predominance of
ferulic acid, which represents more than 94% of the polyphenol fraction [32]. Nonetheless,
the polyphenol content of argan oil (3263 µg/kg) is lower compared to olive oil (793 mg/kg);
however, it exceeds that of other edible vegetable oils [33]. Polyphenols present in the oils
are bioactive molecules that have antioxidant activity. They are primarily responsible for
the prevention of auto-oxidation of unsaturated fatty acids, which increases the shelf life of
these oils [34]. The pharmacological properties of argan oil are generally attributed to its
phenolic compounds.

The table below displays a comparison of the main polyphenol compositions of argan
oil and other natural oils.

Table 2. Comparison of polyphenol composition of argan oil with other natural oils.

Polyphenol Composition (µg/kg of Oil) References

Vanillic Acid Syringic Acid Ferulic Acid Tyrosol

Argan oil 67 37 3147 12 [20]

Olive oil 359 ND 51 19,573 [20]

Corn oil 4540 910 7830 ND [35]

Sesame oil ND 1850 ND 930 [36]
ND: Not Determined.

2.2.2. Sterols

Table 3 lists the five sterols found in argan oil. The two main sterols are schottenol
and spinasterol, while stigmatasol, stigma-8,22-dien-3-ol, and stigma-7,24-dien-3-ol are
found in trace amounts [31]. Both spinasterol and schottenol are absent from sunflower
and olive oils [20]. Based on previous studies, the sterol content of argan oil (Table 3)
remains unaffected by different extraction methods and fruit origins. However, seasonal
and regional variations cannot be excluded due to their influences related to the climate
and the soil characteristics, respectively [20].

2.2.3. Tocopherols

As natural antioxidants, four isoforms of tocopherols are found in vegetable oils:
α-tocopherol (vitamin E), β-tocopherol, γ-tocopherol, and δ-tocopherol [37]. Argan oil
contains double the amount of tocopherol as olive oil, with γ-tocopherol constituting the
majority at over 75% of the total tocopherols [9].
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Table 3. Chemical composition of argan oil sterols and tocopherols by different extraction methods and in different geographical origins.

Extraction
Method Extraction by Mechanical Press Artisanal Extraction Extraction by Organic Solvents

Roasting Roasted Argan Seeds Non-Roasted Argan Seeds Roasted Argan Seeds Non-Roasted Argan Seeds
Roasted
Argan
Seeds

Depuling Mechanical Manual Animal (Goat Dejections ) Mechanical

References [38] [39] [31] [40] [20] [41] [31] [31] [31] [31] [41] [41] [40] [40] [40] [40] [40]

Geographical
origin Agadir Taroudant Tizdi

Essaouira

Benaiznassen
Chtouka
ait baha

Tamanar
Essaouira

Tiout
Taroudant

Beniznassen
Oujda

Ait mzal
Chtouka
ait baha

Ighrem
Taroudant

Tizdi
Essaouira

Tiout
Taroudant

Tiout
Taroudant

Tamanar
Essaouira

Tamanar
Essaouira

Tamanar
Essaouira Ighrem Tamanar

Essaouira

Tocopherols mg/kg of oil

α-Tocopherol 44.5 ± 6.2 42.23± 2.52 26.6 37.2 35 16 ± 1.6 37.2 33.2 49.3 32.7 13 ± 1.3 30 ± 3.0 29.6 33.0 32.0 49.3 29.6

β-Tocopherol 3.1 ± 0.8 3.07± 0.40 1.1 1.2

γ-Tocopherol 616.9 ±
15.8

715.42 ±
7.8 631.3 701.1 480 382 ±

38.2 701.1 615.6 545.9 621.1 345 ±
34.5

283 ±
28.3 619.1 599.3 640.0 545.9 581.3

δ-Tocopherol 50.8 ± 6.8 103.22 ±
4.19 59.5 37.2 122 21 ± 2.1 37.2 38.0 38.7 50.9 32 ± 3.2 21 ± 2.1 50.2 46.4 45.4 38.7 56.3

Sterol mg/100 g of oil

Schottenol 46.66 48.47 142 44 ± 2.2 48.47 44.99 46.12 43.39 46 ± 2.3 45 ± 2.3 46.03 47.43 44.62 46.12 45.39

Spinasterol 37.07 35.44 115 39 ± 2.0 35.44 39.17 39.29 38.50 38 ± 1.9 42 ± 2.1 36.11 38.54 37.05 39.29 36.91

Stigmasta-
8,22-dien-3-ol 4.31 4.85 9 5 ± 0.3 4.85 4.77 5.40 4.57 5 ± 0.3 4 ± 0.2 4.08 3.01 4.21 5.40 4.99

Stigma 7,24--
dien-3-ol 4.81 2.57 6 ± 0.3 2.57 4.71 3.55 5.94 5 ± 0.3 5 ± 0.3 4.48 4.67 6.89 3.55 4.48

Campesterol 0.20 0.11 0.11 0.24 0.31 0.17 0.16 0.14 0.16 0.31 0.20
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Reported data reveal that the tocopherol content of argan oil can vary significantly
between extraction methods and even between fruits grown in the same region (Table 3).

The primary goal of Table 3 is to emphasize the differences in the chemical composition
(sterols and tocopherols) of argan oil based on its geographical origin and the extraction
method used.

2.3. Antioxidant Properties of Argan Oil

The unsaponifiable fraction components have demonstrated antioxidative proper-
ties [42]. In mice, following bacterial lipopolysaccharides (LPS) administration, argan oil
was able to restore the level of peroxisomal antioxidant enzyme activities, demonstrating
its hepatoprotective effect. Accordingly, in both the liver and brain, the LPS-dependent
increase in catalase activity, as well as in glutathione peroxidase (GPx) and superoxide
dismutase (SOD) activities, can be successfully abrogated by argan oil treatment [14,15].
The LPS-dependent non-enzymatic formation of glutathione in the liver and brain was
abolished by argan oil supply. Argan oil is also able to reduce the lipid peroxidation
level through malondialdehyde (MDA) measurement during brain and liver injury [15].
Furthermore, a recent paper reported the antioxidant potential of argan oil in mice against
iron-inducing oxidative stress in the liver, kidney, and brain. A similar effect was observed
in the cultured protozoan Tetrahymena pyriformis [13]. Furthermore, exposure to argan oil
modulates the peroxisomal antioxidant capacity by upregulating catalase and superoxide
dismutase expressions at the translational and post-translational levels [15]. These findings
underscore the protective role of argan oil against oxidative stress.

2.4. Effects on Lipid Metabolism

Fatty acid synthesis produces oils and fats, which are a source of energy [43]. They
are essential to an organism’s growth and development and especially in the regulation of
molecular signaling [44].

Indeed, altered levels and the metabolism of fatty acids can contribute to various
health concerns in humans, including insulin resistance, obesity, hyperlipidemia, and car-
diovascular disease. Therefore, it is critical that the body regulate its fatty acid levels [45].
This metabolic adaptation is performed mainly in the liver by the activation of the nuclear
receptor peroxisome proliferator-activate receptor (PPAR)-α. This PPAR isotype is predom-
inantly expressed in several tissues, such as the liver, heart, kidneys, brain, spleen, intestine,
and stomach. PPARα target genes are related to fat metabolism and lipid transport and
play an important role in fatty acid oxidation [46]. The ligand-dependent activation of this
PPARα [47] leads to the recruitment of the coactivator peroxisome proliferator-activate
receptor γ-Coactivator (PGC)-1α and then permits the regulation of the transcription of
genes encoding peroxisomal and mitochondrial enzymes involved in the hepatic pathways
of fatty acid β-oxidation (FAOx) [48,49]. Accordingly, it has been shown that argan oil has
a protective effect against the decreased expression of genes involved in hepatic gluconeo-
genesis and FAOx. This effect might be associated with the recovery of gene expression of
the nuclear receptor PPARα and its coactivator PCG-1α [50].

Among the classes of fatty acids identified as ligands for PPARs, unsaturated long-
chain fatty acids stand out, constituting a significant part, exceeding 80% in both argan oil
and olive oil. Indeed, these natural oils are rich in a monounsaturated oleic acid, which
represents 46% and 76% of the total composition of argan oil and olive oil, respectively [23].

Fundamental studies have shown that oleic acid has a beneficial impact on the cardio-
vascular risk and lipid profile [51]. Administration of this fatty acid to humans decreases
the concentration of LDL and TG [52]. Hence, the substitution of carbohydrates and
saturated fat with oleic acid led to a reduction in blood sugar and blood pressure accompa-
nied by an increase in HDL in diabetic patients [53]. These variations in the triglyceride
levels are attributed to the increased oxidation of fatty acids through the induction of β-
oxidation, a result of oleic acid’s activation of PPARα and the reduction in sterol regulatory
element-binding protein (SREBP) activity, thereby decreasing lipogenesis. Moreover, this
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dietary fatty acid activates PPARα and PPARγ to promote fat oxidation and reduce insulin
resistance, which consequently leads to a reduction in hepatic steatosis [54].

Fatty acid intake can effectively modulate liver lipid metabolism [51]. Thus, treatment
of mice with olive oil leads to the accumulation of hepatic triglycerides, partly due to
increased lipogenesis enzyme activity [55]. Conversely, inhibiting carnitine palmitoyl
transferase I (CPT-I) [56] and carnitine/acylcarnitine translocase (CACT) [57] reduces fatty
acid oxidation by impeding their transport from the cytosol to the mitochondria.

Polyunsaturated fatty acids are known to suppress hepatic lipogenesis, whereas
saturated and monounsaturated fatty acids have minimal to no effect on fatty acid syn-
thesis [44,58]. Additionally, an argan oil enriched diet prevents the hyperlipidemic effects
associated with LPS by inducing the expression of hepatic nuclear receptors, including
PPARα, Estrogen-related receptor (ERR) α, and their coactivator PGC-1α, thereby upregu-
lating their mitochondrial and peroxisome target genes involved in fatty acid oxidation [59].
This highlights the beneficial impact of argan oil on lipid metabolism.

3. Nrf2

The main redox-sensitive transcription factor, the Nrf2 protein, is a master regulator
for oxidative stress management in mammalian cells that maintains cellular homeostasis
through controlling the redox balance, xenobiotic metabolism [60], the metabolism of car-
bohydrates [61], lipids and iron [62], antioxidant and anti-inflammatory responses, protein
folding, and proliferation. Nrf2 was first discovered in 1994 [63]. It is transcribed from the
human NFE2L2 gene and belongs to the cap‘n’collar subclass (CNC) of the basic leucine
zipper transcription factor protein family (bZIP) along with five other nuclear factors:
NF-E2, Nrf1, Nrf3, Bach1, and Bach2 [64]. It has been mapped to the long arm of human
chromosome 2 (2q31.2) [65]. Nrf2 is expressed in all tissues, and especially in the organs
involved in detoxification processes and metabolism [66,67]. Nrf2 is characterized by an
extremely short cellular half-life of approximately 15 to 40 min through degradation by the
ubiquitin proteasome arsenal [68]. This short-lived protein is known for its pivotal role
in combating harmful ROS formation as well as associated inflammatory and metabolic
responses. Nrf2 orchestrates the expression cytoprotective gene encoding phase II detoxify-
ing enzymes [69,70] as well as the expression of genes involved in mitochondrial function
and biogenesis [71]. Nrf2 translocates into the nucleus, heterodimerizes with the Maf or
Jun protein, and then binds to its antioxidant response elements (AREs) to trigger the
transcription of cytoprotective genes [72]. Interestingly, the Nrf2 signaling pathway was
found necessary for hematopoietic cell differentiation [6], accelerating cell proliferation,
neovascularization, and the repair of damaged tissues [73]. Moreover, it upregulates the
expression of antioxidant genes, inhibits microglia-mediated inflammation, and improves
mitochondrial function in neurodegenerative diseases [67,74,75]. In addition, it has been
reported that Nrf2 expression loss is strongly associated with the metastatic behavior of can-
cer cells and tumor malignancy [76]. Altogether, Nrf2 is considered to be the pro-survival
factor that orchestrates the production of cytoprotective machinery components.

3.1. Nrf2 Structure and Function

The Nrf2 protein consists of 605 amino acids and features seven highly conserved
functional domains (Neh1-7), notably including the Neh2 domain at the N-terminal, which
is responsible for interacting with the negative regulator Keap1 [77]. This domain contains
DLG and ETGE motifs, with the latter exhibiting a higher affinity for Keap1 [78–82]. Disrup-
tion of the DLG motif suppresses Nrf2 ubiquitination [72,76], while lysine residues between
DLG and ETGE motifs are crucial for ubiquitin conjugation and Nrf2 stability [79,83]. Ad-
ditionally, serine residue ser40 facilitates Nrf2 nuclear translocation post-dissociation from
Keap1 [79] (Figure 1).
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[64,92,99]. KEAP1 cysteine residues (Cys151, Cys273, and Cys288) facilitate rapid Nrf2 
degradation, while the ATP-dependent segregase p97 also promotes Nrf2 degradation 
[100]. Alternatively, proteins like β-TrCP and HRD1 trigger Nrf2 ubiquitination and deg-
radation [101]. The oxidation of KEAP1 cysteines in noncanonical pathways leads to Nrf2 
release [101]. Nrf2 contains redox-sensitive cysteines, preventing KEAP1 binding [102–
104]. Several regulators, including p62, WTX, and DPP3, stimulate Nrf2 by binding 
KEAP1 [104–106]. Upon activation, Nrf2 translocates to the nucleus, heterodimerizes with 
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Figure 1. Structure of the protein Nrf2. Keap1: Kelch-like ECH-associated protein 1; Neh domain:
N-amino terminal end harbors; RXRα: Retinoic X receptor α; ARE: antioxidant response element;
s-Maf: small musculoaponeurotic fibrosarcoma factor; CHD6: Chromodomain helicase DNA binding
protein 6.

The Neh4 and Neh5 domains promote the interaction of Nrf2 with coactivators [80],
enhancing the transactivation of target genes [84]. Neh5 also regulates Nrf2 cytoplasmic
localization [85]. Neh7 serves as a repressive domain inhibiting Nrf2-RXRα binding [86],
while Neh6 negatively regulates Nrf2 stability [87]. Neh1 facilitates DNA binding of Nrf2
to antioxidant response elements (ARE/EpRE) [88–90], promoting gene expression and
downregulating pro-inflammatory mediators. The Neh1 domain contains a leucine zipper
for heterodimerization with the small musculoaponeurotic fibrosarcoma factor (sMAF) and
a nuclear localization signal for translocation to the nucleus [91–93]. The Neh3 domain in
the C-terminal region mediates coactivator interactions [80,84].

Keap1, a dimeric cytoplasmic protein, functions as a major Nrf2 inhibitor (Figure 2). It
contains an NTD, a BTB domain for Neh2 interaction, an IVR with an NES for cytoplas-
mic localization, a DGR with Kelch motifs essential for KEAP1-Nrf2 association, and a
CTR [83,94–97]. Keap1’s structure and function are crucial in regulating the Nrf2 system.
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Figure 2. Structure of the protein Keap1. NTD: N-terminal domain; BTB: 2-a broad complex, tram-
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3.2. Nrf2-KEAP1 Signaling Pathway

Nrf2 and KEAP1 are crucial for cellular defense mechanisms, maintaining redox
homeostasis, and controlling cell fate [98]. In physiological conditions, Nrf2 is ubiqui-
tinated by KEAP1/CUL3–RBX1 and degraded by proteasomes to keep basal gene ex-
pression [64,92,99]. KEAP1 cysteine residues (Cys151, Cys273, and Cys288) facilitate
rapid Nrf2 degradation, while the ATP-dependent segregase p97 also promotes Nrf2
degradation [100]. Alternatively, proteins like β-TrCP and HRD1 trigger Nrf2 ubiquiti-
nation and degradation [101]. The oxidation of KEAP1 cysteines in noncanonical path-
ways leads to Nrf2 release [101]. Nrf2 contains redox-sensitive cysteines, preventing
KEAP1 binding [102–104]. Several regulators, including p62, WTX, and DPP3, stimulate
Nrf2 by binding KEAP1 [104–106]. Upon activation, Nrf2 translocates to the nucleus, het-
erodimerizes with sMaf proteins, and binds to ARE sequences, inducing cytoprotective
gene expression [107,108]. Nrf2 regulates numerous genes related to vital cellular func-
tions [109,110]. After activation, Nrf2 is phosphorylated, leading to nuclear export and
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degradation [70,77,111–113]. Interaction with RXRα inhibits Nrf2 activity [114]. Transcrip-
tional and post-transcriptional regulation significantly affects Nrf2 activity [115].

3.3. Nrf2 and Oxidative Stress

Mammalian cells are regularly threatened by multiple stress sources within their
immediate microenvironment. Thence, they are commonly armed with a strong arsenal of
non-enzymatic compounds, such as glutathione (GSH), vitamin C (ascorbate), and vitamin
E (tocopherols) [116–118], and antioxidant enzymes (SODs, catalase, thioredoxins, perox-
iredoxins, and glutathione peroxidases) [119,120], participating in the adaptive regulatory
mechanisms to maintain the cellular and tissue homeostasis [79]. The presence of oxidant
molecules such as ROS and reactive nitrogen species (RNS) can generate an imbalance in
the redox status, which usually causes damage to cellular macromolecules (lipids, proteins,
and DNA). The consequences of this oxidative stress are cell death and the development of
metabolic and chronic diseases, including atherosclerosis, autoimmune disorders, diabetes,
osteoporosis, rheumatoid arthritis, and neurodegenerative diseases (Parkinson’s disease
and Alzheimer’s disease), among others [68,121]. In 1985, Sies defined oxidative stress (OS)
as “a disturbance in prooxidant-antioxidant balance in favor of the former” [122]. Dean Jones
added to this definition that OS is also the disruption of redox signaling circuitries [123].
In addition to their cytotoxicity, ROS have an important role in vital cellular functions. At
limited concentrations, they play a major role in proliferation, differentiation, inflammation,
immune function, autophagy, and stress response by acting as a second messenger [124].
However, an elevated concentration of ROS may activate oncogenes, inactivate tumor
suppressor genes, and promote mitochondrial malfunction [125]. As the redox master chief
regulator, Nrf2 is activated by a plethora of ARE inducers, known as stressors, including
oxidative and chemical stress provoked by hydrogen peroxide (H2O2) [126], NO [127],
tertiary butylhydroquinone (tBHQ) [128], and fumarate (DMF) [129]. Amid the natural phy-
tochemicals, silymarin, sulforaphane, curcumin, cinnamic aldehyde [130], and bardoxolone
methyl are the most well studied. Numerous studies have reported the efficient effect of
Nrf2 activation on the expression and production of several antioxidant enzymes to main-
tain the oxidative balance in eukaryotic cells (Table 4). In diabetic mice, the Nrf2/KEAP1
signaling pathway protects pancreatic β-cells by weakening oxidative damage through
the induction of its antioxidant enzymatic system, which inhibits apoptosis and prolif-
eration [131]. Accumulating evidence identifies the crosstalk between Nrf2 and NF-κB
signaling pathways to maintain redox balance and to regulate the cellular response to stress
and inflammation [132]. In age-related macular degeneration model, The H2O2 induced
levels of ROS and MDA, while the Nrf2-related antioxidant enzymes SOD, GPx, and the
reduced glutathione (GSH) were upregulated. These results were explained by the fact
that Nrf2 induces the expression of heme oxygenase-1 (HO-1), a potent antioxidant en-
zyme [133]. Similarly, Jung and al. reported that Nrf2 activation increases the cellular HO-1
level, subsequently impeding the degradation of IκB-α [134], which inhibits NF-κB nuclear
translocation [134,135]. Therefore, Nrf2 suppress the expression of NF-κB pro-inflammatory
target genes. In addition, the administration of α-mangostin, an Nrf2 activator, enhanced
antioxidant cell defense and reduced pro-inflammatory cytokines, including tumor necrosis
factor (TNF-α) and interleukin-1β and -6 (IL-1β, IL-6), and contributed to the restoration of
hepatic GSH, SOD, and catalase activities [136].
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Table 4. Nrf2 target genes and biochemical functions.

Enzyme Name Protein Symbol Biochemical Function

Alcohol dehydrogenase ADH

Antioxidant and detoxification
enzymes [137,138]

Aldehyde dehydrogenase ALDH

Aldo-keto reductase family 1 AKR1

ATP-binding cassette subfamily B/C ABCB/ABCC

Carbonyl reductase CBR

Catalase CAT

Cytochrome P450 CYP1B1

Epoxide hydrolase, microsomal EXPH

Glutamate-cysteine ligase GCL

Glutathione peroxidase GPx

Glutathione reductase GR

Glutathione S-transferase GST

Glutathione synthase GSS

Heme oxygenase-1 HO-1

NADPH-quinone oxidoreductase-1 NQO-1

Peroxiredoxins PRDX1

Prostaglandin reductase PTGR

Sodium independent cysteine glutamate antiporter SLC7A11

Sulfiredoxin1 SRXN1

Superoxide dismutase SOD

Thioredoxin TXN

Thioredoxin reductase TXNRD

UDP-glucuronosyl transferase UGT

Ferritin light/heavy chain FTL /FTH Iron metabolism [139]

Glucose-6-phosphate dehydrogenase G6PD

Bioenergetic function [140]
6-phophogluconate dehydrogenase PGD

Malic enzyme ME

NADP-dependent isocitrate dehydrogenase IDH

B-cell lymphoma BCL Apoptosis [141]

Autophagy protein ATG
Autophagy [141]

Microtubule-associated protein1A/1B-light chain 3B LC3B

Activating transcription factor ATF

Proteasomal degradation [142]Proteasomes PSM

Sequestosome (p62) SQSTM

4. Nrf2 and Argan Oil Compounds
4.1. Nrf2 and Oleic and Linoleic Acids

Oleic acid (C18:1n-9) and linoleic acid (C18:2n-6) are common unsaturated fatty acids
present in various dietary fat sources [143]. Argan oil contains a balanced ratio of oleic acid
(46.3%) and linoleic acid (34%), whereas olive oil is predominantly composed of oleic acid
(73%), with a lower linoleic acid content (11.3%). The oxidation of linoleic acid produces
metabolites with conflicting roles as both beneficial and detrimental components [144,145].
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One such product is 12,13-epoxy-9-keto-10(trans)-octadecenoic acid (EKODE), which ac-
tivates ARE in primary cells and IMR-32 human neuroblastoma cells, mediated by the
transcription factor Nrf2 [146]. A novel fatty acid metabolite, 10-oxo-trans-11-octadecenoic
acid, generated by gut Lactobacillus plantarum, increases Nrf2 levels and induces antioxidant
enzyme expression in mouse tissues and HepG2 cells [147].

Olive oil and its component hydroxytyrosol elevate Nrf2 activation and protein expres-
sion in fibroblasts, while oleic acid increases ROS production [148,149]. Roselle seed oil, rich
in linolenic (30%), palmitic (25,8%), and oleic acids (14.45%), enhances Nrf2 levels in rat liv-
ers exposed to paracetamol [150]. Oleic acid treatment increases Nrf2 expression in HepG2
cells, but it does not affect Nrf2 in steatosis-induced HL-7702 cells [151,152]. In a rabbit
model of acute respiratory distress syndrome, oleic acid does not alter Nrf2 levels [153].
However, oleic acid has been found to protect hepatic cells from H2O2-induced inflam-
mation and oxidative stress. Accordingly, supplementation with oleic acid upregulates
Nrf2 mRNA expression, contributing to its protective effects against hepatic ischemia-
reperfusion injury in mice, possibly through the inhibition of AKT/mTOR pathways [154].

4.2. Nrf2 and Ferulic Acid

Ferulic acid, a common phenolic compound, is abundantly present in numerous fruits,
vegetables, and vegetable oils such as argan oil [155] and olive oil [156] (Table 5).

Recently, several derivatives of ferulic acid with enhanced activity and improved
stability and toxicity have been identified, making them promising candidates for various
applications. Ferulic acid itself has demonstrated effectiveness in managing apoptosis,
fibrosis, inflammation, platelet aggregation, oxidative stress, and vascular endothelial
injury [157]. Studies consistently report the modulation of Nrf2 by ferulic acid at both
mRNA and protein levels, although specific mechanisms may vary across cell models.
For instance, in IPEC-J2 porcine enterocytes pretreated with deoxynivalenol, ferulic acid
exposure decreased cytoplasmic Nrf2 content while increasing its nuclear translocation,
accompanied by reduced Keap1 expression and elevated HO-1 expression, indicating
Nrf2 pathway activation to mitigate oxidative stress [158]. Likewise, in irradiated human
umbilical vein endothelial cells, ferulic acid facilitated nuclear Nrf2 translocation via
extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways, offering
protection against radiation-induced oxidative stress [159].

An increased nuclear accumulation of Nrf2 was observed in hepatocytes treated with
Nelumbo nucifera leaves, containing various phenolic compounds including ferulic acid,
suggesting Nrf2-mediated upregulation of antioxidant enzymes (i.e., CAT, HO-1, and SOD-
1) [160]. Ferulic acid also exhibited neuroprotective effects in SH-SY5Y neuroblastoma cells
by inducing HO-1 expression and promoting Nrf2 nuclear translocation [161]. In PC12
cells (derived from rat pheochromocytoma) exposed to lead acetate, ferulic acid induced
HO-1 gene expression and enhanced ARE promoter activity, indicating its potential for
treating lead neurotoxicity in children [162]. In rat livers, the administration of ferulic acid
increased the total Nrf2 protein expression and antioxidant gene expression, suggesting
Nrf2 accumulation and ARE activation post-treatment [163,164]. In addition, the admin-
istration of mice with the ethyl acetate extract of purple rice was found to enhance the
activities of GPx in mice livers and sera concomitantly to the increase in the Nrf2 expres-
sion. The characterization of this extract by ultra-high-performance liquid chromatography
tandem mass spectrometry determined quercetin and ferulic acid as the primary phenolic
compounds [165]. Moreover, the effect of the administration of ferulic acid was investigated
against retinal photooxidative damage in pigmented rabbits. The HO-1 mRNA and protein
levels were increased by ferulic acid after light exposure. In line with these modifications,
the treatment with this phenolic compound reinforced the light-induced increase in both
the Nrf2 protein and Nrf2 mRNA levels [166].

Ferulic acid treatment of carp resulted in a reduction in ROS formation caused by
difenoconazole and restored CAT activity and successfully repressed the transcript levels
of genes involved in the Nrf2 signaling pathway, including Keap 1, Nrf2, and HO-1.
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Consequently, FA restored the Nrf2 signaling pathway, thereby improving spleen function
and reducing oxidative stress [167]. In another study investigating the effect of ferulic acid
against methoxyethanol-induced testicular oxidative stress in rats, it was observed that
ferulic acid increased the activities of GPx, CAT, and SOD in the testicles. By contrast, it
significantly decreased the MDA level and Nrf2 expression [168]. Collectively, these studies
provide diverse perspectives on the Keap1/Nrf2/ARE signaling pathway regulated by
ferulic acid. While some studies support its activation, others contradict these findings,
highlighting the need for further research to clarify the underlying mechanisms and factors
governing ferulic acid’s interaction with the Nrf2 pathway.

In the case of increased antioxidant enzyme levels under oxidative stress, there are
distinct scenarios. In one scenario, ROS oxidize the main cysteine residues of Keap1,
triggering conformational changes that prevent Nrf2 binding and its transfer to the nucleus
and subsequent activation of ARE-mediated gene expression, including GPx, CAT, and
SOD. Another scenario occurs when the ROS attack exceeds the cellular defense capacity,
resulting in the inadequate production of protective enzymes. Alternatively, when ROS
attack and defense levels are balanced, cells increase the production of protective enzymes,
leading to increased antioxidant enzyme levels. Subsequently, as oxidative stress diminishes
due to ROS scavenging, the negative feedback mechanism reduces Nrf2 synthesis, resulting
in a decline in antioxidant enzyme levels below the limit of detection.

4.3. Nrf2 and Phytosterols (Schottenol and Spinasterol)

In the last few years, much attention has been given to phytosterol-enriched foods [169].
Phytosterols are structurally related to cholesterol and are mainly C-28 and C-29 carbon
steroid alcohols (Table 5) [170]. Schottenol and spinasterol (Figure 3) are two phytos-
terols mainly present in argan oil [15] and less in cactus seed oil [171]. To the best of
our knowledge, there have been no studies investigating the direct impact of spinasterol
or schottenol on the Nrf2 signaling pathway. However, we have recently explored how
oxidative stress is influenced by these two phytosterols. Given that Nrf2 plays a crucial role
as a transcription factor in cellular defense against oxidative stress, a potential association
between the Nrf2 signaling pathway and both phytosterols could be suggested. Specifi-
cally, schottenol has been found to increase mitochondrial membrane potential, indicating
mitochondrial hyperpolarization in BV2 cells [172] Additionally, phytosterol did not affect
the cell growth of SK-N-BE human neuronal cells [17]. Furthermore, both schottenol and
spinasterol reduced intracellular ROS and NO levels in the culture medium. Conversely,
they enhanced ACOX1 activity in microglial BV-2 cells and normalized CAT activity in both
wild-type and ACOX1-deficient microglial cells. These findings collectively suggest the
potential of schottenol and spinasterol to provide protection against oxidative stress [16].
Another oil derived from cactus seed demonstrated hepatoprotective and neuroprotective
effects against LPS-induced damage by restoring peroxisomal antioxidant and β-oxidative
capacities in mouse livers, thereby maintaining brain peroxisomal antioxidant activities,
including glutathione peroxidase and catalase [171].
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4.4. Nrf2 and Tocopherols

Tocopherols (Table 5) available in nuts, vegetable oils, and some oilseeds, come in four
lipid-soluble forms, α, β, γ, and δ, each with a distinct arrangement of methyl substituents
on the chromanol ring and hydrocarbon side chain [173].

The antioxidant capacity of tocopherol isomers depends on the of hydroxyl groups
and follows the order of α > β > γ > δ [174]. However, γ- and δ-tocopherols possess unique
antioxidant properties not seen in α-tocopherol [175]. Argan oil contains mainly γ- and
δ-tocopherol, with 81–92 g/100 g and 6.2–12.8 g/100g, respectively [176]. Interestingly, the
unsaponifiable fraction of roselle seed oil, rich in γ-tocopherol (150 mg/100 g), α-tocopherol
(58.7 mg/100 g), and δ-tocopherol (27.16 mg/100 g), raises the hepatic Nrf2 level in rats
treated with paracetamol, concurrently reducing MDA levels and increasing glutathione
(GSH) [150]. γ-Tocopherol treatment (25 µM) recovered cell viability in Hepa1c1c7 cells
subjected to hydrogen peroxide [177]. Moreover, Rosa rubiginosa L., rich in α- and γ-
tocopherols, was found to increase the hepatic Nrf2 level and increased its ARE binding
capacity in rats subjected to ischemia followed by reperfusion. In addition, the mRNA
expression of HO-1 was increased [178]. However, the elimination of α- and γ-tocopherols
from Rosa rubiginosa L. prevented its protective effect against high-fat-diet induced Nrf2
depletion in the livers of mice, contrasting with the beneficial effects observed when both
tocopherols were present [179]. In addition, it has been shown that γ-tocopherol decreased
MDA levels without changing Nrf2 expression in mice [180]. Exposure of Human Retinal
Pigment Epithelium to α-tocopherol followed by tert-butyl hydroperoxide increased Nrf2
expression 3.5-fold, while γ-tocopherol had no effect [181]. In rats, an enriched diet with
γ-tocopherol mixtures increased liver Nrf2 protein levels while maintaining Keap1 levels.
These findings collectively suggest that tocopherols modulate the Nrf2 signaling pathway
differently depending on the dosage and cell model [182].

Table 5. Biological activities of major argan oil compounds as Nrf2 pathway regulators in preclini-
cal studies.

Compound/
Structure

Effective
Concentration

Biological
Activities

Nrf2 Downstream
Genes Disease(s) Study Model References

1 Linoleic acid

1–10 µM Antioxidant NQO1 Oxidative stress

IMR-32
neuroblastoma cells
and cerebro-cortical

neurons

[146]

>1 µM Antioxidant NQO1, HO-1, and
GCLM Oxidative stress HepG2 cells [147]

>1 µM Antioxidant HO-1 Oxidative stress Murine dermal
fibroblast [148]

0.6, 4 and
8 mL/kg

Antioxidant;
anti-inflammatory HO-1 Inflammation Rats [150]

1 mM Antioxidant HO-1 Oxidative stress Mice [151]

2 Oleic acid 100 µM Antioxidant;
anti-inflammatory -

Hepatic
ischemia-reperfusion

(I/R) injury
Mice [154]

3 Ferulic acid

0–100 µM Antioxidant;
anti-inflammatory SOD, CAT

Oxidative stress,
inflammation, and

apoptosis
IPEC-J2 cells [158]

0.2–5 µM Antioxidant NQO1, HO-1, GCLM,
and GCLC Oxidative stress

Human umbilical
vein endothelial cells

(HUVECs)
[159]

50 mg/kg Antioxidant NQO1, HO-1, GST,
SOD, CAT, and GPx Oxidative stress Rats [168]

4
Alpha-

tocopherol
0.01 mL/g Antioxidant;

anti-inflammatory HO-1 Oxidative stress and
obesity Mice [179]

100 µM Antioxidant SOD Oxidative stress hTERT-RPE cells [181]
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5. Conclusions

When compared to other edible oils, Argan oil shows an unique composition, with
high levels of linoleic and oleic acids, as well as polyphenols, sterols, and tocopherols. Nrf2
is the main redox-sensitive transcription factor that regulates the expression of genes that
encode antioxidant molecules. This pathway plays a crucial role in controlling the cellular
antioxidant response against oxidative damage. Major argan oil constituents have been
shown to regulate the Nrf2 pathway, and their antioxidant properties highlight the natural
resource’s possible therapeutic uses in enhancing cellular defense systems and reducing
oxidative stress. This pathway plays a crucial role in controlling the cellular antioxidant
response against oxidative damage. The antioxidant qualities of argan oil are attributed to
its constituents, including fatty acids, polyphenols, and tocopherols. Such structurally di-
verse chemicals can scavenge free radicals, prevent lipid peroxidation, and enhance cellular
resilience. These findings underline the chemical basis that gives argan oil its antioxidant
properties and highlight its promising medicinal uses. Of note, minor components of
argan oil, such as alpha-linolenic acid (ALA), contribute to its nutritional profile and can
activate the skn-1/Nrf2 transcription factor, offering potential benefits at different levels by
inhibiting oxidative stress, promoting longevity, and exerting anti-inflammatory effects.
Moreover, the activation of the Nrf2 signaling pathway by gamma-linolenic acid (GLA)
can alleviate muscle atrophy and increase antioxidant defense mechanisms. Collectively,
this research highlights the interesting interplay between natural compounds and cellular
defense systems, making the natural argan oil a sustainable option for improving health
by curing oxidative-stress-related diseases. Future studies will further explore the dietetic
potential of argan oil, paving the way for comprehensive healthcare approaches.
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