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Simple Summary: Large amounts of conventional insecticides are used to control insect pests in
agricultural production worldwide. New sustainable strategies, more specific and environmentally
friendly, are urgently needed to combat insect pests. RNA interference (RNAi) is a natural mechanism
of gene expression regulation that has been repurposed for biotechnological applications. Double-
stranded RNAs homologous to endogenous genes, which could be produced in the crop plant
or exogenously synthesized and applied onto crops, efficiently trigger gene silencing in insects,
reducing pest damage. Consequently, these molecules are envisioned as the new generation of
insecticidal compounds.

Abstract: Insect pests rank among the major limiting factors in agricultural production worldwide.
In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease
transmission. Large amounts of conventional insecticides are required to secure food production
worldwide, with a high impact on the economy and environment, particularly when beneficial insects
are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is
a natural mechanism gene expression regulation and protection against exogenous and endogenous
genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA
(dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types
of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-
transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly
based in Watson–Crick complementarity, have facilitated biotechnological applications based on
these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either
endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new
generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this
expectation, this article reviews current knowledge about the RNAi pathways in insects, and some
other applied questions such as production and delivery of recombinant RNA, which are critical to
establish RNAi as a reliable technology for insect control in crop plants.

Keywords: RNAi interference; insect pest; small RNA; double-stranded RNA; recombinant RNA;
RNA delivery

1. Introduction

In a current scenario characterized by the need of increasing plant production to meet
food needs of a world population in continuous growth and the rise of concerns about
the environmental impact of human activity, the development of innovative solutions is
required to optimize the crop yield, with improved nutritional properties and resistance to
all kinds of stresses. In this sense, insect pests destroy around 20% of the worldwide annual
agricultural production, with an estimated cost of around 470.000 million dollars [1,2],
considering both the productive losses and the increase in costs due to pest control systems.
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In addition, most plant viruses are transmitted by insects and are benefiting from the
emergence of new pests to increase their host range and geographic distribution, thus
reinforcing the need of vector-resistant plants to reduce viral diseases [3–5]. In the same
way, insects act as vectors of important human and animal diseases (with consequential
risk of zoonoses), such as malaria, dengue or chikungunya disease [6]. Integrated pest
management programs (IPMs) are currently being implemented, which along with good
agricultural practices and pest monitoring, combine various control strategies such as
baited traps with sexual pheromones or male lures, more eco-friendly new generation
pesticides or releasing of sterile insects and pest predators, parasitoids and pathogens [7].
The development of genetically edited plants capable of providing protection against
insects, by modifying mixtures of volatiles or expressing Bacillus thuringiensis entomotoxins
against specific pests, is also promising [8]. In this sense, an alternative that is arousing
great interest is the exploitation of the insects’ natural mechanism of RNA interference
(RNAi) for their control.

RNAi describes a series of mechanisms highly conserved in eukaryotes, regulating
gene expression and protecting against exogenous and endogenous genetic elements, such
as viruses, viroids, or transposons. RNAi is triggered by the presence in the cell of small
RNAs (sRNA) with high sequence homology to the genetic element to be regulated or
protected from. Silencing can occur at the transcriptional and post-transcriptional level; the
first involves epigenetic modifications in DNA and histones that repress the transcription
process, and the second, mRNA degradation or translational repression.

2. RNAi Discovery

The discovery of the RNAi mechanistic bases is attributed to the work of Andrew
Z. Fire and Craig C. Mello with the nematode and model organism Caenorhabditis ele-
gans [9], which earned them the 2006 Nobel Prize in Physiology or Medicine. Their work
established double-stranded RNA (dsRNA) as the main effector of RNAi silencing. They
called this phenomenon “RNA interference” to distinguish it from previous gene silenc-
ing techniques using antisense RNAs [10]. Their discovery served to explain previous
phenomena of unexpected silencing in various organisms. For example, in the nematode,
similar levels of silencing were achieved by using antisense and sense RNAs (the latter
frequently used as control in antisense strategies) [11,12]. Other examples were described
in plants and fungi, in which the use of transgenes to overexpress endogenous or ex-
ogenous proteins (with high sequence homology) sometimes resulted in the silencing of
these genes [13–17]. All these experimental procedures led to the cellular accumulation of
dsRNAs, and consequently, the activation of the RNAi machinery. This seminal work also
started a rapid race to identify this mechanism in other organisms, confirming its presence
in other eukaryotes, such as plants and animals (including insects and mammals) but not
in Saccharomyces cerevisiae [18–21], as well as to unveil the basic cellular components that
mediated the dsRNA-induced gene silencing. Ever since, RNAi has become a widely used
tool in basic biological research and inspired many biotechnological applications.

3. Three Different Pathways of RNA-Mediated Silencing

Several types of sRNA are capable of triggering RNAi responses, which follow dif-
ferent processing pathways and silencing strategies, although the proteins involved are
closely related. They include small interfering RNAs (siRNAs), microRNAs (miRNAs),
and P-element induced wimpy testis (PIWI)-interacting RNAs (piRNAs). sRNAs can be
exogenous (foreign genetic elements, such as viruses with dsRNA genomes, dsRNA repli-
cation intermediates or highly structured RNAs, or experimentally introduced RNAs) and
endogenous (genome-encoded and transcribed in the nucleus). An additional process
regulating gene expression has also been described, known as RNA activation (RNAa), in
which the machinery involved in RNAi has evolved to positively regulate the expression of
target sequences at the transcriptional level in many eukaryotes [22,23].
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3.1. siRNAs

The first major pathway, mediated by siRNAs (Figure 1), is triggered by the presence
of perfectly complementary dsRNAs or RNA hairpins in the cell cytoplasm. It is mainly
involved in silencing exogenous RNAs [24,25], although multiple subtypes of siRNAs
with endogenous origin (esiRNA) exist. esiRNAs can derive from transposable elements,
genomic regions with inverted repeats and from mRNAs with overlapping sequences
(natural antisense siRNA, natsiRNA) [26–30]. esiRNAs are involved in maintaining genome
stability [26–28] and regulation of gene expression in certain cellular processes, such as
energy homeostasis or the response to several stresses [31–33].

dsRNAs are recognized and processed by multidomain enzymes belonging to Dicer
and Dicer-like (DCL) family of proteins, dsRNA-specific bidentate endoribonucleases
that generate shorter double-stranded molecules called siRNA [34–37]. In Drosophila
melanogaster and presumably all insects, there are two different Dicer genes, Dicer-2 being
responsible for specifically producing siRNAs [38]. Drosophila Dicer-2 shares a common
architecture with human Dicer, with six general domains: N-terminal helicase, central
atypical dsRNA-binding domain (dsRBD), Platform/PAZ (Piwi, Argonaute, Zwille), two
tandem RNase III (RNase IIIa and IIIb) and C-terminal dsRBD [39,40]. This enzyme can pro-
cess dsRNAs according to their characteristics following two different mechanisms [40–43].
In the first mechanism, the helicase domain recognizes dsRNAs with blunt ends (that are
characteristic of viral infection) and consumes ATP to unwind and translocate the dsRNA,
placing its termini in the PAZ domain, processively producing siRNA from one end without
dissociating the dsRNA. In the second mechanism, the PAZ/Platform domain interacts
directly with dsRNAs containing 2 nt 3′ overhangs (that are characteristic of cleavage
by RNase III) independently of ATP. After each cleavage, the dsRNA dissociates, and its
protruding ends can be recognized again. Both mechanisms are typical, but not exclusive,
for the described molecules [44]. The recognition and cleavage of dsRNAs may also de-
pend on the involvement of dsRNA binding proteins (dsRBPs). For example, it has been
described that R2D2 (protein with two dsRBDs associated with Dicer-2) prevents Dicer-2
from processing miRNA precursors in vitro, increasing its affinity for long dsRNAs [42],
while Loquacious-PD (Loqs-PD) is necessary for processing certain esiRNAs but not for
viral siRNAs [45–48]. It has been proposed that Loqs-PD promotes the use of suboptimal
dsRNAs by altering the Dicer-2 dependence of terminal structures [43,44,49,50].

The length of the produced RNAs is characteristic of the Dicer protein, since it depends
on the distance between the PAZ domain and the active center of the RNase domains, acting
as a sort of molecular rule [51–53]. Thus, typical insect siRNAs are 20–22 nt long [54]. The
presence of two RNase III domains and their characteristic positioning generates 2 nt
overhanging 3′ ends, with 5′ phosphate and 3′ hydroxyl termini [42–50,55].

Only one strand of the siRNAs (called guide strand) becomes part of the RNA-induced
silencing complex (RISC), in which it establishes the specificity of the silencing process
by base complementarity with other RNAs [56]; the other strand (passenger strand) is
usually degraded [57–59]. Strand selection follows the thermodynamic asymmetry rule,
whereby the strand with its 5′ termini less stably paired with the complementary strand is
preferentially selected [60,61]. The selection occurs in the so-called RISC loading complex,
consisting of Dicer-2, R2D2 and possibly additional factors [62,63]. R2D2 interacts with
the more thermodynamically stable end of the duplex and tightly binds the 5’ end of the
passenger strand, restricting Dicer-2 to the opposite end of the siRNA duplex [64]. This
function can be replaced by Loqs-PD in certain esiRNAs [64,65].
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Figure 1. siRNA pathway in insects. Perfectly complementary long dsRNAs of exogenous or endoge-
nous origin (depicted in blue) are differentially processed in the cytoplasm by Dicer-2 depending
on the nature of their termini. Additional factors mediate the selection of suitable substrates in both
processes. siRNAs of 20–22 bp are generated. Dicer-2 and R2D2 (or Loqs-PD) select the guide strand
by sensing the relative stability of both ends. They transfer both chains to AGO2 in an open state,
which cleaves and removes the passenger strand (red). The guide (black) is methylated at the 3′ end,
and AGO2 is closed. AGO2 uses the guide strand to cleave complementary mRNAs (also in red,
depicted with 5’ cap and 3’ poly(A) tail), marking them for further degradation. The presence of
mismatches with the target prevents its cleavage, thus repressing mRNA translation. Inserts in the
right side show the domains of Dicer-2 and AGO2 (upper and lower, respectively). The characteristic
cleavage of Dicer-2 is shown in its corresponding insert. -me, -OH and -P, 3′ 2′-O-methyl, 3’-hydroxyl
and 5′-phosphate termini, respectively; 3′oh, 2 nt 3′ overhang termini; AGO2, Argonaute 2; C-dsRBD,
carboxyl-terminal dsRNA-binding domain; C3PO, component 3 promoter of RISC; dsRBD*, atypical
dsRNA-binding domain; Hsc70-Hsp90, complex of 70 kDa heat shock analog protein and 90 kDa
heat shock protein, respectively; L1 y L2, linker 1 and 2, respectively; Loqs-PD, Loquacious isoform
PD; MID, middle domain; N, amino-terminal variable domain; N-helicase, amino-terminal helicase
domain; PAZ, Piwi/Argonaute/Zwille domain; pre-miRNA, micro RNA precursor; R2D2, protein
with two dsRNA-binding domains associated with Dicer-2; RISC, RNA-induced silencing complex;
RLC, RISC loading complex; and siRNA, small interfering RNA.

The cellular effector of the silencing is a protein of the Argonaute (AGO) family [35,56,66,67],
which forms RISC together with accessory proteins and the RNA. In insects, two proteins
of the AGO subfamily have been described [66,68,69]. They are multidomain proteins orga-
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nized in two lobes: the N-terminal contains the variable N- and PAZ domains, connected by
a linker (L1); a second linker (L2) connects this lobe to the C-terminal lobe, which contains
the middle (MID) and PIWI domains [67,70–72]. Both lobes surround a central channel that
accommodates RNA. As with Dicer, AGO proteins have specialized functions, with AGO2
being involved in antiviral immunity and regulation mediated by esiRNAs [24,28,30,73,74].
However, the selection of the AGO protein may occur according to the identity of the 5′

terminal nucleotide of the guide strand and the presence and position of mismatches in
the sRNA, and not according to the Dicer that generates it. Thus, certain esiRNAs can be
loaded in AGO1, and miRNAs passenger strands in AGO2 [75–81].

The loading of the duplex requires Dicer-2/R2D2 (or Loqs-PD) and AGO2 [58,62,63,82,83].
Their interaction allows the MID domain to recognize and bind the 5′ phosphate end
of the guide strand, transferring the duplex [83,84]. Weaker interactions are established
between PAZ and the 3′ overhang end [67,85]. The duplex is then unwound, presumably
by the N and PAZ domains [63,73,86–88], and the PIWI domain cleaves the passenger
strand [57–59], which is rapidly removed by the C3PO (component 3 promoter of RISC)
endonuclease [89]. The 3′ terminal nucleotide is methylated at the 2′-O position by RNA
methyltransferase Hen1 [90], possibly to prevent its degradation. A complex of multiple
Hsc70-Hsp90 chaperones (70 kDa heat shock analog protein and 90 kDa heat shock protein,
respectively) also participates in the transfer [83,91,92], maintaining AGO in an open state
throughout the process, at the end of which it hydrolyzes ATP allowing AGO to acquire a
closed, mature conformation.

The PIWI domain is responsible for the endonucleolytic cleavage of the target mRNA
with base complementarity with the guide RNA. PIWI is similar in structure to RNase H,
which typically catalyzes the hydrolytic cleavage of RNA in RNA/DNA duplexes [70,93].
The cleavage generates 5′-phosphate and 3′-hydroxyl ends [94], resulting in an RNA
fragment without a poly(A) tail and another without a 5′ 7-methylguanosine cap, which are
degraded by exonucleases of the RNA surveillance machinery [95]. The AGO2-mediated
cleavage, both in the passenger strand and in target mRNAs, does not occur if there are
mismatches between the guide and its complementary strand, partially explaining the
differential loading of RNAs in both AGO isoforms [58]. In this case, the elimination of the
passenger strand is slower, and silencing is established by blocking protein synthesis.

3.2. miRNAs

miRNAs (Figure 2) constitute the most abundant type of sRNAs in animals, regulating
multiple biological processes, such as reproduction, development or immunity [96–99].
They are usually expressed as polycistronic RNAs from intergenic regions of the genome
carrying their own promoters or from intragenic regions co-expressed with the gene they
regulate [100]. They are generally transcribed by RNA polymerase II as primary transcripts
(pri-miRNA) with typical mRNA modifications (5′ cap and 3′ poly(A) tail) [101–103] and a
general hairpin structure with a long complementary double-stranded region flanked by a
terminal loop and two unstructured single-stranded segments (ssRNA).

The pri-miRNAs are processed in the nucleus [104] by the type-III ribonuclease Drosha,
with the help of Pasha, a dsRBPs with which it forms the Microprocessor complex [105–107].
The processing of pri-miRNAs is especially studied with the human counterpart of the
Microprocessor, probably occurring similarly in insects [108–113]. Two Pasha proteins
recognize and bind the terminal loop of the pri-miRNA, and their dsRBDs interact with
part of the dsRNA region. Drosha dsRBD binds the other half of the dsRNA, and additional
interactions are established with the terminal ssRNA-dsRNA region. Both Drosha and
Pasha contacts ensure the binding of suitable substrates, acting together as a molecular
rule and accepting RNAs with two ssRNA regions separated by a dsRNA of about 35 bp.
Additional RNA motifs may affect processing efficiency [114]. The two RNase III domains
of Drosha eliminate the basal single-stranded segments and part of the dsRNA (~11 nt),
generating miRNA precursors (pre-miRNAs), hairpins of about 70 nt with one of the
characteristic 2 nt protruding 3′ ends of miRNAs. As an alternative to this canonical
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biogenesis pathway, one subtype of miRNAs is derived from introns; thus, they are known
as mirtrons. For their maturation, they depend on the splicing machinery and debranching
enzymes but not on the Microprocessor, directly entering the pathway as pre-miRNAs with
a hairpin structure [115,116].

Biology 2024, 13, 137 6 of 33 
 

 

 
Figure 2. miRNA pathway in insects. miRNA-containing genomic loci are transcribed by RNA 
polymerase II generating long, partially dsRNA primary precursors (depicted in blue) that are 
trimmed into shorter hairpins by the Microprocessor complex Drosha/Pasha in the nucleus. This 
step is not necessary in the case of mirtrons, whose processing depends on spliceosomal and 
debranching machinery. The precursors are then exported into the cytoplasm where Dicer-1, aided 
by Loqs isoforms, eliminates the loop resulting in ~22 bp miRNA. The characteristic cleavage of the 
Microprocessor and Dicer-1 are shown. The miRNA guide strand (black) loaded into AGO1 induces 
cleavage-independent mRNA (in red, depicted with 5’ cap and 3’ poly(A) tail) degradation and 
translation suppression of the partially complementary mRNAs. -OH and -P, 3′-hydroxyl and 5-
phosphate termini, respectively; AGO1, Argonaute 1; E1/E2, exon 1 and 2, respectively; eIF4F, 
eukaryotic initiation factor 4F; Loqs-PA/-PB, Loquacious isoforms PA and PB, respectively; miRNA, 
micro RNA; MRE, microRNA recognition elements; Pol II, RNA polymerase II; pre- and pri-miRNA, 
precursor and primary micro RNA, respectively; and RISC, RNA-induced silencing complex. 

Figure 2. miRNA pathway in insects. miRNA-containing genomic loci are transcribed by RNA
polymerase II generating long, partially dsRNA primary precursors (depicted in blue) that are
trimmed into shorter hairpins by the Microprocessor complex Drosha/Pasha in the nucleus. This
step is not necessary in the case of mirtrons, whose processing depends on spliceosomal and de-
branching machinery. The precursors are then exported into the cytoplasm where Dicer-1, aided
by Loqs isoforms, eliminates the loop resulting in ~22 bp miRNA. The characteristic cleavage of
the Microprocessor and Dicer-1 are shown. The miRNA guide strand (black) loaded into AGO1
induces cleavage-independent mRNA (in red, depicted with 5’ cap and 3’ poly(A) tail) degradation
and translation suppression of the partially complementary mRNAs. -OH and -P, 3′-hydroxyl and
5-phosphate termini, respectively; AGO1, Argonaute 1; E1/E2, exon 1 and 2, respectively; eIF4F,
eukaryotic initiation factor 4F; Loqs-PA/-PB, Loquacious isoforms PA and PB, respectively; miRNA,
micro RNA; MRE, microRNA recognition elements; Pol II, RNA polymerase II; pre- and pri-miRNA,
precursor and primary micro RNA, respectively; and RISC, RNA-induced silencing complex.
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The next step in miRNA processing occurs in the cytoplasm [104]. Exportin-5 (Exp-5)
mediates pre-miRNAs translocation to the cytoplasm through the nuclear pores in combina-
tion with Ran GTPase [117,118]. The efficient transport of precursors by Exp-5 may depend
largely on the presence of 2 nt 3′ overhangs and, to a lesser extent, on the characteristics of
the apical loop, as occurs in mammals [119–121]. Release of pre-miRNA into the cytosol
requires hydrolysis of GTP by Ran GTPase. There, they are processed by Dicer-1 [38,75].
The PAZ domain recognizes and binds to the 3′ overhang generated by Drosha while
the helicase domain binds to the loop region [122], the latter being not functional in this
isoform [38]. The helicase senses the loop size while PAZ act as a molecular ruler measuring
the distance from the loop to the 3′ overhang. Thus, tandem RNase III domains only cleave
substrates with adequate distance between the 3′ overhang and the terminal loop [122]. The
cleavage removes the loop and generates the second 3′ overhang, resulting in ~22 nt RNA.
The PB isoform (and to a lesser extent PA) of Loqs is involved in the processing of most
but not all miRNAs, possibly stabilizing RNAs with unstable structures at the cleavage
site [123–127].

Next, the miRNA duplex is loaded onto RISC containing AGO1 [73], and the strand
selection occurs following the same rules as for siRNAs. Unlike siRNas, in which R2D2 or
Loqs-PD are required for AGO2 loading, Loqs-PB seems to be dispensable for the duplex
transfer to AGO1 [127], although it is unknown whether Dicer-1 by itself is sensitive to
the asymmetry or requires additional factors. The loading is dependent on ATP, possibly
to keep AGO1 in an open state. The duplex unwinds in a similar way as in AGO2, and
the passenger strand is removed without endonucleolytic cleavage, facilitated by miRNAs’
characteristic mismatches [88,128]. It is worth mentioning that miRNAs and their non-
mature forms can be edited, adding or modifying nucleotides that are critical for their
maturation, regulation and functionality [129,130].

In animals, the miRNAs recognition elements (MREs) are usually found in the 3′ un-
translated region (3′ UTR) of mRNAs [131]. Their interaction is usually imperfect but with a
characteristic pattern: nucleotides 2–8 of the miRNA 5′ end (called seed region) have perfect
complementarity with the mRNA and is sufficient for its function, although additional
pairing may participate in the process [132–134]. This short sequence allows a miRNA to
regulate several mRNAs and different miRNAs can act on a single mRNA [135,136]. In
D. melanogaster, both AGOs have cleavage activity; however, the catalytic rate of AGO1 is
limited by the inefficient dissociation of the reaction product [75]. Thus, AGO1 induces
silencing in several ways in which GW182 proteins generally participate by recruiting
cell factors and serving as scaffolding. It can inhibit translation by preventing the in-
teractions between the poly(A) tail and the 5′ cap that pseudocircularize mRNA during
translation, as well as preventing ribosomal recruitment by dissociating the eukaryotic
initiation factor eIF4F from the cap [137–139]. It can recruit deadenylases and decapping
enzymes [137,140–143], making the mRNA sensitive to the action of the exoribonuclease
5′-3′ XRN1 [144].

3.3. piRNAs

The piRNA pathway (Figure 3) is mediated by proteins of the AGO PIWI subfamily
(Piwi; Aubergine, Aub; and AGO3). It occurs mainly in the germ line and is associated with
RNAs originating from genomic repetitive intergenic regions and transposons (piRNA clus-
ters). Its main function is to maintain genomic integrity [145,146]. piRNAs also participate,
in germ and somatic cells, in processes such as fertility, maintenance and differentiation of
stem cells or defense against some viruses [147–151].

Unlike siRNAs and miRNAs, piRNAs are processed from single-stranded precur-
sors that are transcribed by RNA pol II and processed and exported as typical mR-
NAs [152,153]. In germline, the expression of precursors from bidirectional clusters is
common [146,154,155], involving the same polymerase but requiring specialized cell fac-
tors. Rhino recognizes these clusters, generally with characteristic modified histones
(H3K9me3), and uses Deadlock as a scaffold to recruit the Moonshiner transcription factor,
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Cutoff (which prevents transcript splicing and modification) and the mRNA nuclear export
factor complexNxf3-Nxt1, that mediates export of precursors to the cytoplasm [155–161].
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Figure 3. piRNA pathway in both, insects’ somatic and germline cells. In somatic cells, piRNA
precursors are transcribed from unidirectional piRNA clusters. Linear precursors are exported to
cytoplasmic perimitochondrial regions where Zucchini and in some cases additional exonucleases
generate single-stranded 23–32 nt piRNAs that are loaded on Piwi proteins and methylated at
their 3′ end. In germline, the expression of specialized transcription machinery also allows the
generation of piRNAs of both senses from bidirectional piRNA clusters. Protein-loaded sense piRNAs
participate in the generation of antisense piRNAs and vice versa (ping-pong cycle) in perinuclear
regions. Aub/AGO3 differentially load RNAs of both polarities that are also terminally trimmed and
methylated (sense in black, and antisense in red, respectively). Piwi-bound piRNAs enter the nucleus
where they transcriptionally regulate gene expression while Aub/AGO3 remain in the cytoplasm and
induce degradation of complementary mRNAs (also in red, depicted with 5’ cap and 3’ poly(A) tail)
and repressing translation. -me, -OH and -P, 3′ 2′-O-methyl, 3’-hydroxyl and 5′-phosphate termini,
respectively; AGO3, Argonaute 3; Armi, Armitage; Aub, Aubergine; Cuff, Cutoff; Del, Deadlock; M,
H3K9me3 epigenetic marker; Moon, Moonshiner transcription factor; Nxf3-Nxt1, mRNA nuclear
export factor complex; piRNA, PIWI-interacting RNAs; Pol II, RNA polymerase II; and Zuc, Zucchini.
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piRNA precursors accumulate together with proteins that intervene in their biogenesis
in perinuclear and perimitochondrial electron-dense regions in the germline but only in
perimitochondrial regions in somatic cells [162–164]. In germline cells, the 5′ phosphate end
of piRNAs is generated by Aub proteins containing antisense guide RNAs that recognize
and cleave sense precursors, or by the Zucchini (Zuc) endonuclease, possibly with the help
of additional factors such as Armitage, which recognizes conserved motifs with a moderate
preference to those that generate uridines at the 5′ end [165–169]. Only the second pathway
occurs in the somatic line, since the machinery required for generating complementary
piRNAs is not expressed. The 5′-phosphate intermediates generated in both pathways are
loaded onto Piwi proteins (somatic cells) and also in AGO3 (in germline) [146]. Mature
piRNAs are slightly longer than miRNAs and siRNAs (23–32 nt). The 3′ end of piRNAs
is generated by additional downstream action of Zuc or Aub proteins. In some species
such as silkworm, the 3′ ends are trimmed by a 3′-5′ exonuclease to generate optimal
RNAs to be fully accommodated by PIWI subfamily proteins [170,171]. In D. melanogaster,
it has been suggested that the Nibbler exonuclease is dispensable if the 3’ cleavage is
generated by Zuc, which would directly generate the appropriate end of the piRNA [172].
The maturation of the piRNAs concludes with the 2′-O-methylation of its 3′ end by the
Hen1 methyltransferase [90,173], probably being required for its correct interaction with
the PAZ domain, as in mammals [174].

In germline, sense precursors loaded to AGO3 serve as a guide for the cleavage of
homologous antisense transcripts [146,175]. The new molecule is recognized, loaded and
processed in Aub. piRNA-Aub, in turn, recognizes and cuts transcripts from the piRNA
cluster itself, generating new sense piRNAs, thus amplifying the silencing signal with the
generation of secondary piRNAs in the so-called “ping-pong mechanism”. Due to the
cleavage pattern, the molecules loaded in AGO3 have 10 nt homology to the antisense
piRNA, and most of them have an adenine in the tenth position. Also, the additional activity
of Zuc/Aub/AGO3 on the precursors generates new intermediates that can be processed
and loaded by other PIWIs, generating phased piRNAs that increase the sequence diversity
of piRNAs [165,167–169].

To carry out their silencing activity, Aub and AGO3 remain in the cytoplasm where they
mediate post-transcriptional gene silencing by cleaving target RNAs [146,175], repressing
translation and promoting mRNA degradation [176–178]. Conversely, Piwi develops its
function mainly in the nucleus, inducing epigenetic changes [179–181] and deadenylating
mRNAs in sites of active transcription of transposable elements [182].

4. dsRNA Cell Uptake and Systemic Distribution of the Silencing Signal

The mechanisms described in the previous section are known as cell-autonomous
RNAi, while non-cell autonomous RNAi encompasses the processes that occur before
and after it. These are the uptake of dsRNA from the extracellular medium (environmen-
tal RNAi) and the transport of the silencing signal to other cells (systemic RNAi) [183]
(Figure 4). Both processes require additional cellular machinery that seems variable be-
tween organisms; thus, less information is known about them. The following sections will
focus on those aspects that are relevant for the oral delivery of dsRNAs to insects.

Most of the knowledge about non-cell autonomous RNAi comes from C. elegans, in
which it is mediated by the endocytosis pathways and systemic RNA interference deficiency
(SID) membrane proteins. SID-2 is only expressed in the apical membrane of intestinal cells
and mediates the endocytic uptake of dsRNA from the intestinal lumen into the cells, not
being required for systemic RNAi; SID-1 is a ubiquitously expressed (except in neurons)
dsRNA-specific transmembrane channel that mediates endosomal dsRNA release into the
cytoplasm during environmental and systemic RNAi [184–187]. Two endosomal vesicle-
associated proteins, SID-5 [188] and SID-3 [189,190], are also required in both dsRNA
uptake and systemic distribution by mediating the import and export of vesicles containing
such dsRNAs.
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to distant cells through hemolymph depends on exosomal encapsulation, and it has been proposed 
that it may also be mediated by dsRNA binding to apolipophorins. The interaction with these 
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Figure 4. Proposed mechanisms of exogenous dsRNA cell-uptake, cell-to-cell and systemic move-
ment in insects. Scavenger receptor-mediated clathrin-dependent endocytosis is the main pathway
for cellular uptake of dsRNAs in midgut cells, although additional unknown factors may be involved
in this process. The uptake is dependent on the dsRNA size, and nucleases in the digestive system
may compromise the dsRNA stability. Unknown cellular factors mediate dsRNA egress from the
late endosome; inefficient endosomal escape induces dsRNA degradation after endosome-lysosome
fusion. In the cytoplasm, the dsRNAs mediate the silencing of endogenous host genes. dsRNAs,
RNAi machinery and RNA intermediates can be transported to neighboring cells through cytoplasmic
projections (TnTs) and possibly through tight junctions. Systemic movement to distant cells through
hemolymph depends on exosomal encapsulation, and it has been proposed that it may also be medi-
ated by dsRNA binding to apolipophorins. The interaction with these cellular components prevents
their degradation by the hemolymph nucleases. Alterations in plasma membrane composition may
be consequential in the uptake and distribution of the silencing signal. Chup-1/Tag-130, cholesterol
uptake protein 1; HF?, unknown host factor; RISC, RNA-induced silencing complex; siRNA, small
interfering RNA; TnTs, tunneling nanotubes; and vATPase, Vacuolar-type ATPase.

Other than C. elegans, SID-2 homologs have only been found within the genus Caenorhab-
ditis, in species resistant to environmental RNAi [185]. SID-1 homologous genes have



Biology 2024, 13, 137 11 of 31

been identified in most insects, except for those of the superorder Antliophora (Diptera,
Mecoptera and Siphonaptera) [191]. However, these genes may have more homology
with tag-130/CHUP-1, a SID-1 paralogue that does not participate in RNAi in C. elegans
but is involved in cholesterol internalization [192,193]. This protein has been indirectly
related to dsRNA movement by influencing the composition of the plasma membrane.
The effect on the uptake efficiency of altering the membrane fatty acids composition has
been demonstrated as an immunological mechanism to protect insects from subsequent
exposures to environmental dsRNA [194]. This is consistent with the elusive role of this
protein in insects, since there is no straightforward association between absence, presence
and number of Sid-1-like genes with the efficient uptake and systemic distribution of dsR-
NAs [192,195,196]. Therefore, other mechanisms must facilitate these non-cell autonomous
RNAi in insects.

Studies with D. melanogaster S2 cells showed the role of clathrin-mediated endo-
cytosis in the uptake of dsRNAs [197,198]. In addition, chemical blockade of pattern
recognition receptors disrupts uptake [197], and two scavenger receptors, SR-CI and
Eater, have been implicated as the main mediators of the process [198]. A similar role
for these receptors and clathrin-mediated endocytosis has been demonstrated in several
insect species [193,195,199–203], while Eater/SR-CI have also been involved in the clathrin-
independent phagocytosis of dsRNAs encapsulated in bacteria [204]. However, several of
these works show that silencing or blocking these receptors does not completely interrupt
the uptake. Therefore, it is likely that dsRNAs can be recognized by different receptors
that could differ between species. Similarly, the involvement of other clathrin-independent
pathways in the process cannot be ruled out, as has been seen to occur with some dsRNA
structures [203].

Interestingly, the recognition of naked dsRNAs by the insect uptake machinery is
length-dependent. It has been shown to be efficient for long molecules (greater than ~50 bp)
but not for short molecules such as siRNAs [197,205,206], which can be a disadvantage in
many dsRNA delivery methodologies. Another factor that limits the development of this
type of strategy is the variable capacity of RNases in the digestive tract of different insect
species to degrade exogenous dsRNAs [207–210]. Some insects also have extremely alkaline
midguts, thus inducing alkaline hydrolysis of dsRNAs. Similarly, efficient endosomal
escape of dsRNAs is required for developing the RNAi response. For example, some species
have low sensitivity to RNAi, at least in part, due to dsRNA entrapment in endosomes
and degradation after fusing with lysosomes [211,212]. Blocking the interaction of late
endosomes with lysosomes enhances si- and miRNA-mediated silencing in D. melanogaster,
while blocking late endosome formation limits silencing [213], thus restricting dsRNA
escape between late endosome formation and lysosomal fusion. The activity of the vacuolar
H+-ATPase has been related to dsRNA cell entry in several species [197,201,214]; however,
the mechanism mediating the endosomal escape is not exactly known.

In some insects, dsRNA delivery can result in the generation of a systemic response by
short- and long-distance RNAi signal movement. It is likely that the signal is transmitted
by direct intercellular contact through membranous protrusions called tunneling nanotubes
(TnTs) that allow the connection between cells. Viral infection in D. melanogaster cell cultures
induces the formation of these structures that transport dsRNA and components of the
RNAi machinery [215]. In addition, as occurs in mammals [216] movement of the RNAi
signal through tight junctions could be possible, although not yet demonstrated. Over
long distances, dsRNA movement appears to occur through hemolymph. In certain in-
sects, hemolymph nucleases efficiently degrade dsRNA [217–219], hampering the systemic
response and effectiveness of RNAi. dsRNA transport in the hemolymph is mediated
by carrier molecules, thus protecting it from degradation. The dsRNA-binding ability of
apolipophorins purified from the hemolymph of Bombyx mori [220] and Schistocerca gregaria
(and probably in species of the orders Orthoptera, Blattodea and Diptera) [221] has been
demonstrated, strongly suggesting a conserved mechanism in insects. Apolipoforins are
the protein components of lipophorin, hemolymphal lipoprotein complexes which function
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in lipid transport and are also part of the insect antiviral defense. Lipophorins are scav-
enger receptor ligands, and in ticks, these receptors have also been implicated in systemic
RNAi [199]. RNAs are also carried by extracellular vesicles. miRNA-containing vesicles
have been identified in D. melanogaster cell cultures [222], and their occurrence in vivo has
been proposed [223]. Furthermore, viral infection in this species generate viral siRNAs
that are packed in vesicles that circulate through hemolymph, systemically diffusing the
RNAi signal [224]. As for exogenously supplied RNAs, the encapsulation of long dsRNAs
and derived siRNAs has been shown in extracellular vesicles of Tribolium castaneum and
Leptinotarsa decemlineata cell cultures [225,226]. In the latter, some of the factors related to
endosomal generation and recycling pathways participating in the process were detailed.
The full extent of these mechanisms, as well as the possible involvement of additional
factors, have yet to be fully resolved.

Additionally, in some insects, the silencing effects are not restricted to the treated insect
but also appear in its progeny, even some time after the administration has stopped [227–230].
This is the so-called parental RNAi, of which most of the mechanistic details of the transfer
are unknown.

5. Sources of dsRNAs with Insecticidal Effect

The first strategy used to assess pest control by means of RNAi was to develop trans-
genic plants expressing specific dsRNAs for silencing [231,232] (Figure 5). Since then,
countless reports of plant-produced, dsRNAs-mediated gene silencing in insects have
been published, with the first commercial variety approved by competent Canadian, USA
and Chinese administrations (2016, 2017 and 2021, respectively). This is SMARTSTAX
PRO corn (Bayer), that produces dsRNA against the Snf7 gene of Diabrotica virgifera vir-
gifera [233]. Its commercialization is scheduled to start soon. However, multiple limitations
hold back the development of this kind of technology. On the one hand, generation of
genetically modified organisms (GMOs) is laborious, expensive due to the rigid commer-
cialization regulations [234], and currently have scant public acceptance [235]. On the other
hand, plant RNAi machinery recognizes the produced dsRNAs, generating siRNAs [236],
which can negatively affect their uptake by the insect. A possibility to circumvent this
problem consists of expressing dsRNAs in chloroplasts or other compartments lacking
RNAi machinery [237–239], although their accumulation is very size-sensitive [240,241],
and their usefulness with sap feeding Hemiptera is limited [242]. The use of RNAs with
structures resistant to the plant RNAi machinery, such as artificial pre-miRNAs, has also
been proposed [243].

Other approaches not requiring plant modification have been developed. Plants
infected with modified viruses have been widely used for screening potential RNAi target
genes [244–247], and similar viruses may also confer protection to plants against fungi
and nematodes [248,249]. The virus acts as a dsRNA factory during its replication in the
plant. The wide variety of vectors commonly used to produce molecules of interest with
minimal damage to plants makes them an interesting alternative. Similarly, insect-specific
viruses have been used to silence endogenous pest genes in functional genetics, and their
use for pest control has been proposed [250–255]. Replicating engineered viruses can be
useful in those cases in which the insect is resistant to environmental and systemic RNAi,
given its ability to transfer its genome into the cells, multiplying and establishing systemic
infections. Additionally, it would provide another layer of specificity as viruses can be
highly host-specific [253,255]. An interaction between both types of viruses is found in
the Flock House virus, which replicates in insects and plants [256–258]. Although viruses
represent an interesting insecticidal strategy, the cross-kingdom status of the silencing
suppressors encoded in both virus types must be considered [259,260]. In addition, the
environmental release of transgenic viruses can pose biosafety problems. An alternative is
the use of virus-like particles (VLPs) synthesized in vitro or in modified microorganisms
and plants, expressing the dsRNA of interest and viral capsid proteins that self-assemble
into virus-like structures enclosing the nucleic acids. VLPs are usually produced in plants
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to produce recombinant proteins, but also have been used to induce resistance against
viruses and insects [261,262]. Although they lack replicative capacity, they confer protection
to dsRNA and retain the potential to transfer dsRNAs to the cytoplasm, in addition to some
host specificity. Also, they lack silencing suppressors. With the perspective of continuous
production in the insect and host specificity, the use of bacteria and fungi able to parasitize
or symbiotize pest insects and modified for producing dsRNA has been studied [263–267].
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Figure 5. Proposed strategies for supplying dsRNAs to insects for RNAi-mediated pest control
in the field. dsRNAs can be produced in biofactories and used, alone or in combination with
nanomaterials (insert), with several application strategies. The use of plant and insect viruses,
VLPs derived from them, as well as other insect pathogens or symbionts, taking advantage of
their intrinsic characteristics, has been also studied. The development of nuclear and chloroplast
transformants allows the continuous production of dsRNAs in genetically modified plants. BAPCs,
branched amphipathic peptide capsules; CPPs, cell-penetrating peptides; DCL, Dicer-like proteins;
GM, genetically modified; HA, hydroxyapatite; LDH, layered double hydroxide; RNApol, RNA
polymerase; and VLPs, virus-like particles.

The exogenous application of dsRNAs as a non-transformative alternative for plant
protection was pioneered against viral diseases [268], while the use of dsRNAs pulverized
as a conventional pesticide was later proposed [269]. The RNA can also be internalized in
the plant by roots and petiole or trunk injection [270–273]. In these strategies, the dsRNA
enters the plant, but it is retained in the xylem and apoplast, thus not being processed by
the plant RNAi machinery. High-pressure dsRNA spraying has been shown to induce
systemic silencing of plant genes and confer resistance to fungi and insects [274–277],
in a process in which dsRNAs have also been detected in the phloem. These strategies
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require the production of dsRNAs in heterologous systems, as well as their purification
and encapsulation. mRNAs and dsRNAs for vaccines are produced by in vitro systems as
they are more quickly developed and entail fewer concerns regarding their production
in microorganisms. Similar systems are unfeasible for intensive use in the field given
the enormous quantities required and their high production cost [278,279], which would
increase crop production prices. In vivo production methods, using microorganisms as a
biofactory, are more attractive. The microbiological variety, easy handling, fast growth and
heterologous production capacity make them economically viable. The most widely used
procedure is the L4440-HT115(DE3) system [280,281] developed for the initial RNAi exper-
iments in C. elegans. It is based on the transformation of plasmid L4440, which contains
two opposing T7 promoters flanking the cDNA of the gene to be silenced, into a modified
Escherichia coli bacterial strain that lacks the dsRNA-specific endonuclease RNase III but has
the bacteriophage T7 RNA polymerase under the control of the inducible lac operon. Bidi-
rectional transcription results in two complementary ssRNA strands that hybridize; both
the whole bacteria or further dsRNA purification are feasible for RNAi strategies. Multiple
advances have been made on this type of system in order to increase performance, such as
the use of different strains and microorganisms (including their genetic modification), the
development of new expression vectors, the improvement of fermentation and extraction
methods, etc. [282–288]. To put these advances in perspective, researchers initially reported
the production of 4 µg of dsRNA per ml of culture with the L4440-HT115(DE3) system [268],
while other researchers recently achieved larger than 1 mg/mL using a modified strain
of Corynebacterium glutamicum expressing a high copy number L4440-derivative [286]. As
a result of these improvements and the advent of novel systems, the price per gram of
dsRNA produced has been reported to fall from over $12,000 in 2008 to about $1 today, and
up to half of that in cell-free systems [279]. Our research group has recently developed a
system to overproduce RNAs in E. coli based on the intrinsic properties of viroids [289–291],
obligate plant parasites with minimal genomes of non-coding, single-stranded but highly
structured circular RNA. Expressing RNAs of interest within the eggplant latent viroid
(ELVd) (+) RNA increases their half-life and accumulation in the bacteria due to the circular
viroid scaffold, compact and possibly associated with the ligase [289–291]. To produce
dsRNAs, the incorporation of a self-processing group-I intron cDNA between the inverted
repeat is needed to stabilize the expression plasmids, while the intron RNA is efficiently
excised from the final chimera, contributing to its compaction. An additional sequence of
the intron in a permuted configuration flanking the inverted repeat allows the production
of circular dsRNAs without the viroid scaffold [292,293]. This system is also interesting as
some viroids such as ELVd are the only known pathogens able to infect the chloroplast.
Lacking RNAi machinery, nucleus-expressed but chloroplast-accumulated chimeras could
be a potential new strategy for effective pest control. It is also worth highlighting that
although the use of perfectly complementary hairpins or dsRNA, both processed by the
siRNA pathway, is the most common methodology for insect control and genetic studies,
there are some examples of the miRNA and piRNa pathways being exploited for the same
purposes [243,294–297].

Naked dsRNA molecules are prone to degradation by several biotic and abiotic stresses
when used as pesticides. Furthermore, in some insects, they have a limited ability to be
efficiently uptaken and systemically distributed. Therefore, they are usually formulated in
combination with carrier molecules of different natures that increase dsRNA bioavailability
in cells. Most of these strategies are based on the advances made in human therapies,
and as a common feature, they have cationic surfaces that allow the interaction and en-
capsulation of the negatively charged phosphate backbone of nucleic acids, as well as the
interaction with the negatively charged cell membrane [298]. One common strategy is to
encapsulate dsRNA in liposomes, lipid bilayer spherical structures [299–303]. Multiple com-
mercial transfection reagents, with different lipid compositions, may be useful to improve
species-dependent recalcitrances; however, they are usually expensive and, in many cases,
potentially cytotoxic, and may affect beneficial insect species. Another widespread strategy
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is the use of the natural polysaccharide chitosan, due to its abundance, low cost, biocom-
patibility and degradability [303–306]. Extensive modifications to these natural polymers
have been made to improve their stability and cell delivery in pest control and other appli-
cations [307–309]. Several inorganic nanoparticles can also be used, such as hydroxyapatite,
silica, phosphate calcium, carbon allotropes or quantum dots [303,305,310–312]. They have
low toxicity and a high surface/volume ratio that allows efficient loading of RNAs. Usually,
they are functionalized or associated with polymers of synthetic origin, whose chemical
variety allow highly versatile particle designs, thus modulating cytotoxicity, dsRNA stabil-
ity in specific insect environments, cell uptake, etc. [313,314]. An inorganic nanoparticle
that does not need functionalization or association with other polymers is layered double
hydroxide (LDH), used in plants to provide resistance to virus, fungi and also for pest
control applications [315–318]. There are also two interesting protein alternatives. On
the one hand, branched amphipathic peptide capsules (BAPCs), bilayer structures very
similar to liposomes but made up of peptides. Protein nanostructures, such as BAPCs,
have been described as potentially more biocompatible and biodegradable than synthetic
polymers, and more stable than those composed of lipids and polysaccharides [319]. They
have been used to enhance the RNAi response in insects such as T. castaneum, Acyrthosiphon
pisum [320], and Spodoptera frugiperda [321]. In the latter case, clathrin-mediated endocyto-
sis and macropinocytosis uptake has been described, along with high endosomal escape
and an increase in dsRNA transcytosis to hemolymph, improving the systemic response.
On the other hand, peptides can be used as uptake mediators. Cell-penetrating peptides
(CPPs), both derived from natural proteins or engineered, are rich in basic amino acids that
can establish complexes with dsRNA or coat other nanostructures. Their variety allows
dsRNA cell internalization in several ways, thus overpassing recalcitrances to any specific
entry pathway, as reviewed extensively for human therapy [322]. This strategy has been
successfully used in insects, using a CPP fused with a dsRBD to improve the silencing
effect in Anthonomus grandis [323]. A similar improvement is obtained with the fusion of a
dsRBD with agglutinin in Spodoptera exigua [324].

Additional strategies propose increasing RNA bioavailability in cells by reducing
dsRNA degradation by combining it with nuclease inhibitors such as EDTA or divalent
ions [301,325] or chemically modifying the RNA [326], but also improving the endocytosis
process by altering the membrane composition with hydrogen peroxide or arachidonic
acid [194,327].

6. RNAi in Pest Control: Challenges and Future Directions

The current challenges for exploiting RNAi as an insecticidal strategy can be grouped
into (i) the variable efficiency of RNAi among pests, and (ii) the cost-effective production
of dsRNA.

It is well known that not all insects are equally susceptible to dsRNA, with enormous
differences between insects of different orders but also within closely related species. Addi-
tionally, variable silencing efficiency in the same insect is commonly obtained depending
on development stages, target tissues and/or delivery systems. Although progress has
been made in recent years to unravel the molecular determinants of the RNAi efficiency,
being a set of highly interrelated factors, they are still not fully understood. Despite sev-
eral exceptions reported, generally orthopteran, blattodean and coleopteran insects are
considered to be very susceptible to exogenous dsRNAs, while in hemipteran species, the
RNAi efficiency is highly variable, and lepidopterans and dipterans usually have much
lower efficiencies.

For efficient insect control, the appropriate target gene has to be selected. Silencing
and mortality have been described by affecting a wide spectrum of gene functions such as
energy metabolism, membrane transporters, detoxification, structural proteins, etc. Ideally,
gene silencing should lead to the death of the insect in the shortest time and with the
minimum dose of dsRNA. Thus, it must encode ubiquitously expressed proteins with a
short half-life originating from abundantly transcribed mRNAs with high turnover. An



Biology 2024, 13, 137 16 of 31

important detail is that under ideal experimental conditions, insect food intake is controlled
and restricted to sources with dsRNA, while in the field, the insect will have food sources
beyond those that supply the dsRNA, thus hampering the silencing process. In this scenario,
the timeframe in which compensatory upregulation of the target gene or paralogs that
could functionally supplement said gene would increase, allowing the compensation of the
silencing phenotype. The sublethal effects of RNAi on pests [328,329], as well as parental
RNAi, may become essential to reduce crop damage in the field; the mechanisms involved
in the latter process must be explored. However, it is also possible that sublethal treatments
could facilitate the appearance of refractoriness in some insects, protecting them from
subsequent exposures. Worryingly, the first case of resistance development after RNAi
treatment has been reported [330]. The resistance was located at a single autosomal locus
and inherited recessively; however, we are still clueless of how this resistance occurs and
how to minimize it. It is also important to mention that additional factors, such as the
environmental fate of RNA and its effects, including the repercussions on non-target species,
have to be taken into account. Reassuringly, a myriad of studies showed that pest-specific
dsRNAs do not seem to have a negative impact on unrelated species. It is expected that the
establishment of high-throughput strategies, along with -omics technologies, will provide
the tools to select the best target genes, and rational designs of the silencing strategies must
ameliorate some of the mentioned problems. For example, it is believed that increasing
homologous sequence of the dsRNA (and therefore, the diversity of derived siRNAs) can
hinder the development of resistance, while off-target effects can be reduced by selecting
less evolutionarily conserved sequences. In addition, the synergistic effects of targeting
multiple essential genes may be interesting to increase the likelihood of insect mortality,
avoiding functional supplementation and resistance development. We must also not forget
the benefits that the combination of RNAi with other control strategies can provide. In any
case, an adequate risk assessment is needed.

A determinant of RNAi efficiency is dsRNA degradation, partially explaining the
differences between delivery methods, as in some species, effective silencing by injection
is correlated with oral insensitivity. This is especially relevant in lepidopterans, hemipter-
ans and dipterans. Lepidopterans have the highest degradation capacity in insects and
express specific nucleases not seen in any other order, reducing the efficiency of RNAi
in these insects [209], while Hemipterans are the only reported order to degrade dsRNA
in saliva [210]. In addition, dsRNase expression can vary between life stages (resulting
in the stage-dependent silencing results). Several “RNAi-of-RNAi” studies showed that
silencing mRNAs of specific nucleases managed to increase the induced silencing [331–334].
Thus, co-delivering strategies have been proposed to extend the scope of this experimental
strategy to pest control. It would also be interesting to explore new rationally designed
RNA nanostructures to increase the half-life of the dsRNA (both in the field and within the
insect) [335–338], along with the previously mentioned use of nanoparticles or formulations.

Deficient dsRNA uptake limits RNAi responses in dipterans and in certain tissues of
orthopterans and hymenopterans, while impaired endosomal escape of dsRNA appears
to be limiting in lepidopterans. The mechanisms governing these processes, however,
are mostly unclear, possibly involving different mechanisms in different species, stages
and/or tissues. Thus, further work is needed to uncover the cell factors involved in how
to enhance the uptake. RNAi-of-RNAi strategies could be employed to co-silence factors
(such as tag-130/CHUP-1) that hinder RNA uptake if multiple rounds of feeding are go-
ing to be required for effective silencing; also, as certain factors are known that mediate
endosomal-lysosomal fusion [339], their co-silencing could minimize the fusion, thus in-
creasing the time frame of RNA entry into the cytosol. In this regard, small molecules
such as chloroquine have been reported to promote the cytosolic translocation of endocy-
tosed nucleotides for human therapeutics in vitro [340]. Again, novel dsRNA structures
could help in the uptake processes as previously reported [203], along with the use of
nanoparticles or formulations.
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Systemic distribution of the silencing signal is generally required to achieve pheno-
typic effects. But unlike nematodes, fungi or plants, the RNAi signal is not amplified as
many insects lack endogenous RNA-dependent RNA polymerases (RdRp) [341]. Thus,
all silencing derives from the initial introduced RNA, making adequate concentrations of
dsRNA essential, which can be difficult for its application as they are usually high. While it
has been speculated that RNA is possibly transported packaged in protective structures
such as exosomes, again, the mediators of this process are largely unknown. Extensive
research is needed to fully understand the cellular pathways involved and how it can be
hijacked to our favor with the use of nanocarriers, small molecules or novel strategies
to enhance dsRNA propagation. As an alternative for the most recalcitrant insects, it is
expected that potent and localized silencing in the dsRNA-capturing cells could reduce the
damage caused by insects. For example, disrupting the proper functioning of midgut cells
via RNAi could limit insect feeding and even induce death [342]. On a more positive note,
virus-infection-derived secondary sRNAs has been found in D. melanogaster [224], being
generated in hemocytes through viral DNA synthesis by endogenous reverse transcriptase,
followed by transcription and dicing, secreted in exosome-like vesicles and conferring
systemic protection. Therefore, it would be interesting to study its occurrence in other
insects and if this mechanism could be exploited to enhance the silencing signal.

The RNAi pathways described in Section 3 come mostly from studies in model species
such as the insect D. melanogaster, or the mammal counterparts, but the core enzymes have
been identified in an increasing number of species. Interestingly, its genes have suffered
duplications and deletions [191], and its basal expression varies between tissue and stage,
thus partially explaining RNAi variability [343–346]. Furthermore, Dicer and AGO of cer-
tain insects may be not equally functional due to different evolution of their structures. For
example, a recent study identified variability in certain conserved domains and loop regions
of the RNAi machinery, especially in Lepidoptera [347]. Even less known are the accessory
protein factors involved in siRNA; they may not be as conserved as the core enzymes, and
we may still not know factors relevant to the process. All these aspects could explain, for ex-
ample, the differential base bias in dsRNA processing between species, affecting the RNAi
efficiency [348]. Curiously, it has been proposed that in Lepidoptera (and to a lesser extent
in Diptera) the prevalence of viral infections has led to evolutionarily replace the siRNA
pathway as the prime antiviral strategy in favor of alternative defense mechanisms that
cannot be overcome by viral silencing suppressors (thus diminishing expression/function
of core RNAi factors and dsRNA uptake components, and increasing nucleases) [349]. In
sum, the mechanistic details of one species cannot be directly extrapolated to other insects.
Species-specific studies must be conducted to assess the basal expression (and possible
upregulation after treatment) of core siRNA enzymes to target (if possible) life stages and
tissues with the highest core expression as well as to identify variations in its mode of
function to tailor the characteristics of the trigger dsRNA molecules.

Finally, it must be mentioned that we are currently lacking a clear regulatory frame-
work that guides and facilitates the development of this new kind of pesticide. Approaches
such as plant transformation or modified insect viruses or symbionts can be quite restricted
by the rigid actual regulations. Thus, the main strategy available is the exogenous applica-
tion of RNA molecules. However, it is likely that we are still far from having the capacity to
profitably produce the enormous quantities of RNA needed to support global agricultural
production. The development of methods for overproduction of RNA has not historically
accompanied that of DNA and proteins, possibly due to the difficulty related with the
short half-life of RNA and the relatively minor role formerly attributed to these molecules.
It was not until recently that a true revolution in exogenous dsRNA production systems
began, achieving progressively higher yields at increasingly more affordable prices for
large-scale use as an insecticide. Therefore, it is expected that the extensive application
of RNAi strategies will come hand-in-hand with future and improved strategies based
on biofactories.
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7. Conclusions

Biotechnological applications based on RNAi may contribute to counteracting current
challenges imposed by insect pests in global food production. Endogenously produced in
crop plants or exogenously applied, properly engineered dsRNA molecules may substitute
classic insecticides to fight insect pests in a more specific, sustainable, and environmentally
friendly manner. However, for this to be true, we need to keep improving our knowl-
edge about the insect endogenous RNAi pathways, including RNA intake and systemic
movement, and to refine technologies for recombinant RNA production and delivery.
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