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Abstract: The peripheral nervous system undergoes sufficient stress when affected by diabetic
conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy
arises as the most common complication, leading to debilitating symptoms that significantly alter
the quality and way of life. The resulting chronic pain requires a treatment approach that does not
simply mask the accompanying symptoms but provides the necessary external environment and
neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the
peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered
by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite
outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from
human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling
can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods
of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine
secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well
as methods to optimize the clinical application of stem cells and derived secretory vesicles for
nerve regeneration.
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1. Introduction

Communication between the central nervous system (CNS) and the peripheral nervous
system (PNS) is essential for successful operation of the human body [1,2]. This crosstalk
occurs via chemical cues translated as electrical signals [1,2]. During embryonic develop-
ment, localized neural crest stem cells invaginate to form the brain and the spinal cord,
which expand from the neural tube [3]. Later, neural crest stem cells migrate to the dorsal
region of the embryo, differentiate into a mesenchymal lineage of PNS derivatives, and give
rise to efferent (motor) and afferent (sensory) neurons [3]. Efferent neurons receive signals
relayed as motor function, whereas afferent neurons return sensory information translated
to chemical signals by the CNS [1,2]. For efficient communication, an intricate network
of nerve fibers or axons is required to transmit signals that ensure the self-regulation of
bodily systems, the collection of sensory information, and the execution of motor func-
tion [1,2]. Axons within the spinal cord branch out and transmit signals from the CNS to
the peripheral regions [4]. An inhibitory or excitatory electrical impulse travels through
the dendrites to the cell body, then propagates down the axon to the synapse, where infor-
mation is relayed to the target area [5]. The propagation of the electrical signal is due to
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Schwann cells (SCs) forming protective segments of myelin sheath separated by nodes of
Ranvier to increase conductivity [4,6,7]. Axons within the PNS elongate throughout the
trunk and the upper and lower extremities, forming the somatic and autonomic nervous
system [1,4,8]. The somatic nervous system encompasses voluntary muscular functions
influenced by conscious decisions [1]. The autonomic nervous system governs involuntary
function including the regulation of survival instincts and functionality of the circulatory,
digestive, urinary, and reproductive systems [1,9]. Short-term and long-term trauma to the
PNS can be fatal, causing decreased function of autonomic systems, altered motor function,
inaccurate sensory input, and delayed sensory response from the CNS. When peripheral
nerves become damaged or diseased, communication with the CNS is disrupted, leading
to the most common neurological disease, peripheral neuropathy (PN) [10].

PN is estimated to affect approximately 8.8% of the world population by 2040, pri-
marily affecting older generations [11–14]. Those affected commonly experience muscular
atrophy, decreased sensation, mobility, balance, and coordination [13,15]. Other associated
symptoms include symmetrical pain, numbness, tingling, or burning sensations at the distal
end of the upper and lower extremities [12,16]. As the PN and associated pain continue to
escalate, affected people will experience increased risk of further injury due to muscular
weakness, altered gait cycle, decreased joint movement and range of motion, and in the
worst-case scenario, complete paralysis [13,17,18]. Depending upon the injury mechanism,
the recommended treatment approach for superficial injuries encompasses noninvasive
therapy. Once the nerve gap surpasses tensionless reconstruction, stem cell-based therapies
can provide supportive growth factors to accelerate the natural healing process, potentially
replacing conventional invasive therapeutic methods [2]. The intervention of stem cells
can assist in maintaining the cellular microenvironment and supplementation of secretory
vesicles compacted with regenerative growth factors necessary for reinnervation [19,20].
Thus, understanding the interaction of stem cells with an injured nerve is crucial to suc-
cessfully manipulate the cellular microenvironment, avoiding unethical complications [21].
Therefore, further investigation into the mechanisms guiding the regenerative influence
of stem cells and the increased production of secretory vesicles will effectively manage
chronic pain and treat neuropathy [22].

2. Mechanisms of Peripheral Neuropathies

Understanding the diverse etiology behind PN is beneficial to developing appropriate
diagnoses and courses of treatment [10]. The accurate identification of the specific condition
that attributes to neuropathy is difficult due to a variety of methods used in the diagnosis
and classification of origin [15]. Accounting for less than 30%, patients with idiopathic
neuropathy are diagnosed without an established mechanism of injury [12,13,23]. Based on
diagnosis, neuropathic symptoms are attributed to genetic or developed acquisition, axonal,
or demyelinated degeneration and acute or chronic injury progression [12]. According to
the method of nerve degeneration, PN can present in several forms such as distal symmetric
neuropathy (DSN), sensory neuropathy (SN), and autonomic neuropathy (AN) [10,12].

DSN, also known as length-dependent neuropathy, originates in the most distal por-
tion of the lower extremities and progresses symmetrically to more proximal regions of
the body [24]. On the other hand, SN negatively affects proprioception, which reduces
thermal and pain sensibility in the upper extremities and more proximal regions, eventually
causing complete loss of sensation in the lower and more distal extremities [24]. Finally, AN
affects the sympathetic and parasympathetic nervous systems, leading to the neurological
dysfunction of one or more organ system [25]. Alongside an in-depth diagnostic workup,
the various symptoms of each form of neuropathy can be utilized to identify the underlying
cause [10]. To complete a diagnostic evaluation, patient history, neurological examination,
assessment of symptom distribution, and further laboratory testing are required to cate-
gorize symptoms in preestablished clinical patterns [10]. However, multiple etiologies of
neuropathy can be active at once, highlighting the importance of early diagnosis, optimal
treatment, and preventative measures to further decrease the occurrence of PN [10]. Within
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this section, the most prevalent mechanisms of PN are summarized and the specific forms
and symptoms of neuropathy are detailed.

2.1. Diabetic Peripheral Neuropathy

Diabetes is prevalent in 6.4% of the worldwide population and is estimated to im-
pact 439 million individuals by 2030 [12,26]. Of all the diabetic patients, 30–50% suffer
from diabetic peripheral neuropathy (DPN). Type 1 and type 2 diabetes results from the
downregulation of insulin production and absorption, respectively, which disrupts glucose
regulation [27]. High levels of glucose in the vasculature affect cellular metabolism and
energy production in peripheral nerves, ultimately leading to DPN [14,26,28,29]. Typi-
cally, cellular respiration via glucose phosphorylation and glycolysis pathways provides a
mechanism of transporting electrons when converting between the oxidative nicotinamide
adenine dinucleotide (NAD+) and reductive nicotinamide adenine dinucleotide (NADH)
to produce adenosine triphosphate (ATP) in the mitochondria [27,30–32]. However, excess
glucose promotes an excess supply of NADH, leading to imbalanced NADH/NAD+ redox
signaling [30,32].

This imbalanced environment increases reactive oxygen species (ROS), negatively
affecting mitochondrial metabolism and respiration and insulin insufficiency [27,33–36].
Huang et al. investigated the correlation between hyperglycemia and mitochondrial dys-
function concerning neurodegeneration in streptozotocin (STZ)-diabetic rats [34]. As the
concentration of glucose increases and insulin uptake decreases, glycolysis discontinues, re-
sulting in ATP depletion, uncontrolled oxidative stress, the downregulation of neurotrophic
factors, decreased neurite outgrowth, and the induction of PN [27,30,34,37,38]. As repre-
sented in Table 1, DPN is categorized into five major categories based on the type of nerve
affected or where that effect occurs.

Table 1. Various types of diabetic neuropathy categorized into five major categories.

Form of DPN Description Reference

Focal Affecting 1 or a singular group of nerves
(i.e., carpal tunnel). [39]

Multifocal Peripheral
Neuropathy

Length-dependent motor/
sensory neuropathy. [24]

Autonomic Loss of involuntary bodily function. [40]

Diabetic Amyotrophy
(Proximal Neuropathy)

Unilateral or bilateral pain and sensory loss
and muscular atrophy in quadriceps, hips,

and gluteus maximus.
[24]

Idiopathic Neuropathy Undetermined etiology of neuropathy. [41]

Prevalent in more than 80% of patients affected by DPN, length-dependent neuropa-
thy is the most common, typically described as chronic and symmetrically distributed
pain, affecting first, more minor, then larger nerves until numb [14,23,24,42,43]. Focal
and multifocal diabetic neuropathies such as oculomotor dysfunction and carpal tunnel
are atypical, affecting a singular or small bundle of nerves within the cranial, trunk, or
limb regions [14,42,44–46]. AN mediates the dysfunction of the urinary, reproductive,
gastrointestinal, and cardiac systems, prevalent in less than 65% of both type I and type
II diabetics [14,23,47,48]. Finally, diabetic amyotrophy presents as acute anterior burning
when touched, pain, and muscular weakness in the quadriceps with spontaneous improve-
ment after months of deterioration [42]. Diabetic neuropathy affects everyone differently,
causing neurodegeneration in various forms within the central and peripheral nervous
systems [49]. The variation in injury distribution directs treatment toward eliminating the
underlying condition and managing developing symptoms [50].

Consequently, the development of chronic diabetic sensory and autonomic neuropa-
thy affects the individual’s overall health and finances. DPN requires therapeutic and
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financial support to adequately manage the emotional, social, and mental health burdens
of diabetes and DPN [38,51,52]. Poor adjustment to lifestyle changes necessary to maintain
glycemic and psychological control can result in blindness, kidney failure, amputations,
and increased risk of anxiety and depression [14,53,54]. To assist, appointments with
health care providers and medical specialists, equipment, medication, and living assistance
accumulates costly societal and direct expenses [14,55]. In the United Kingdom, DPN
has been estimated to cost approximately $£18 billion in direct and £25 billion in indirect
societal costs by 2035 [56,57]. Individually, DPN patients spend between $9632 and $24,702
annually, depending upon the form of neuropathy and severity of their condition [14,58].

2.2. Chemotherapy-Induced Peripheral Neuropathy

Cancerous cells are treated with antineoplastic agents that despite optimizing patient
survival, introduce life-threatening side effects that can hinder a healthy physical and
psychological way of life [59,60]. Depending on the type of chemotherapy, dosage, and
duration of treatment, approximately 40% of patients experience chemotherapy-induced
peripheral neuropathy (CIPN) [59,60]. CIPN includes progressive length-dependent senso-
rimotor and autonomic neuropathies caused by prescribed neurotoxic drugs. Chemother-
apy is an individualized course of treatment that works to eliminate malignant tumors
but also plagues the body with chronic toxicity and compromised immunity [60–62]. It is
required that oncologists consider pre-existing conditions and the drug’s unpredictable
side effects to prevent cancer remission [63,64]. Unfortunately, the utilized drugs are not
target-specific [65,66]. Both malignant and healthy cells are inhibited once exposed to the
maximum tolerated dose capable of reducing uncontrolled proliferation [67,68]. Although
there is a reduction in cancerous agents, the side effect of CIPN becomes more prevalent
due to the type, dosage, and administration of the drugs, especially in patients with pre-
existing conditions [64,69]. The drugs used to treat various types of cancer include platinum
compounds, taxanes, vinca alkaloids, immunomodulators, and proteosome inhibitors, as
summarized in Table 2. As a result, patients experience hair loss, bone marrow toxicity,
immunosuppression, decreased appetite, and induced nausea and vomiting [65,70,71].

Table 2. Description of the five types of drugs used when treating cancerous agents.

Drug Treated Condition CIPN Pathogenesis

Platinum Compounds Tumors in cranium, digestive, urinary,
respiratory, and reproductive systems.

Mitochondrial dysfunction.
Increased oxidative stress.

Voltage-gated K+ and Na+ hyperactivity.

Taxanes Tumors in breast, ovaries, prostate, lungs,
and bladder.

Mitochondrial dysfunction.
Increased oxidative stress.

Voltage-gated K+ and Na+ hyperactivity.
Altered functionality of skin-based receptors

(Aβ, C, and Aδ nerve fibers).

Vinca Alkaloids
Tumors in kidneys, liver, lungs, breast, and brain.

Hematological malignancies, testicular, and
non-small cell lung cancer.

Mitochondrial dysfunction.
Microtubule function inhibition.

Immunomodulators Example: thalidomide. MM, glioblastoma,
breast, and prostate cancer.

Inhibition of growth factors (VEGF, TNF-α,
NF-kB, b-FGF).
ROS activation.

Induced hypoxia and ischemia.

Proteosome Inhibitors Example: bortezomib. Progressive, relapsed, or
refractory MM.

Mitochondrial dysfunction.
Increased oxidative stress.

Increased apoptosis via release of Ca2+ in
endoplasmic reticulum.

Chemotherapeutic agents affect fundamental cellular processes including axonal
transport, mitosis, cellular movement, and the management of metabolic and oxidative
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stress [67,68,72–74]. Cellular communication is possible through the release of neurotrans-
mitters to the presynaptic terminal. Microtubules transport the chemicals along the axon
to the presynaptic terminal, which are then secreted as vesicles to receptors in the post-
synaptic membrane [1,75,76]. The action potential depolarizes the cellular membrane to
activate voltage-gated ion channels that release neurotransmitters via exocytosis [75,77,78].
Neurotransmitter receptors, located in the membrane of the postsynaptic neuron, receive
inhibitory or excitatory chemicals via endocytosis to process sensory information and
generate muscular contraction [79,80]. Platinum compounds, taxanes, and vinca alkaloids
disrupt microtubule function in axonal transport as well as cellular division and homeo-
static regulation [74,81–83]. Under oxidative stress, microtubules initiate the release of in-
flammatory cytokines, directly effecting signaling pathways such as the mitogen-activated
protein kinase (MAPK), regulated by stress-activated C-Jun N-terminal kinase (JNK) and
p38 MAPK [67,73,81,82,84–86]. MAPK pathways respond to external stimulus that influ-
ences cellular function such as proliferation, differentiation, and senescence [85–87]. The
activation of JNKs are the result of MAPK phosphorylation, further influencing cellular
growth, death, and survival [88]. Lower levels of p38 MAPK are closely related to the
autophagy of damaged organelles, playing an active role in cellular survival by tending
to homeostatic functions [84]. Chemotherapeutic agents rely on the hyperactivation of
p38 MAPK to inhibit cellular growth and activate genotoxic stress-induced apoptosis by
disrupting spindle assembly within mitosis [84,85,87]. Neurotoxic agents that promote
microtubule dysfunction and the disruption of homeostatic cellular signaling cause CIPN
since the chemical cues, proteins, and nutrients required for nerve communication are
inhibited [89,90].

2.3. Peripheral Neuropathy via Physical Injury

Physical injury to the nerve instantaneously alters the quality of life of those affected.
Trauma to the PNS includes repetitive physical movements, the mechanical deformation of
nerves, lacerations, and ischemia [91,92]. Complete recovery from such trauma depends on
the severity of the injury. According to the Seddon and Sunderland classification systems,
peripheral nerve injuries are divided into five categories [92,93]. To further understand
how various degrees of injury are organized, the structural composition of the nerve is
shown in Figure 1.
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The epineurium composes the outermost layer of connective tissue, grouping together
all fascicles of one peripheral nerve [94]. A bundle of nerve fibers forms a fascicle, sur-
rounded by the perineurium, which protects the nerve by providing it with tensile strength
and elasticity [95–98]. Each myelinated nerve fiber is surrounded by the endoneurium,
maintaining fluidic pressure between the endoneurial space and the surrounding envi-
ronment [93,96,99–102]. Beneath the endoneurium, SCs form a nutritional and protective
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layer of myelin sheath around the axon [101–103]. The axon conducts an action potential
from the cell body to the nerve terminal, modulating the release of neurotransmitters [104].
Between each segment of myelin, nodes of Ranvier propagate the transmission of electri-
cal impulses between nerves [101–103]. Once the myelin sheath is damaged, the rate of
electrical transmission decreases, often diagnosed as a form of PN [103].

Peripheral nerve injuries are classified into three primary categories by Seddon and
further defined by severity by Sunderland, as shown in Figure 2. Seddon’s method of
classification developed from observed nerve injuries during World War I, focusing on
conduction blocks, loss of axon continuity, and complete nerve transection [105,106]. How-
ever, Sunderland’s focused on the histological structure of each injury [105]. Seddon first
defines neuropraxia as the mildest form of nerve injury caused by blockage or compres-
sion [93,107]. Neuropraxias are equivalent to Sunderland’s description of first-degree
injuries [92,98,99]. First-degree injuries primarily block the transmission of electrical
impulses without permitting further injury to the axon. Seddon defines axonotmesis,
which is the severity of the axon, endoneurium, and perineurium, with little effect on
the epineurium [92,99,106,108,109]. Sutherland further describes axonotmesis as second-
and third-degree injuries [105,110]. Within second-degree injuries, the axon experiences
discontinuity, but the endoneurium and perineurium are still intact [2,98,105,111]. Third-
degree injuries damage the axon and endoneurium; however, the perineurium is com-
plete [105,106,110]. This process is attributable to the SC release of cellular signals and
the recruitment of macrophages to engulf axonal and myelin debris and begin regenera-
tion [112–115]. Seddon then defines neurotmesis, which is the loss of anatomical continuity
within the three layers surrounding the axon [93,109]. In this case, the event of axonal
regeneration without intervention is rare [93]. Sunderland describes neurotmesis as fourth-
and fifth-degree injuries. Within a fourth-degree injury, the axon, endoneurium, and per-
ineurium are discontinuous, but the epineurium, the outermost layer, is intact [2,110].
Without the guidance of the endoneurium and perineurium, the regenerating axons return
unorganized and are constricted by the development of fibrosis and scar tissue blocks.
Finally, fifth-degree injuries describe the complete severance of the nerve, requiring medical
interventions to treat [92,105,106,108,110].
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Beyond third-degree injuries, nerve regeneration becomes increasingly difficult due
to impaired axon recovery. Minimal interventions are necessary for complete axon rein-
nervation with returned functionality to treat first- and second-degree injuries [93,109].
When the injury is substantial enough to damage the perineurium or introduce a nerve
gap, surgical and noninvasive treatment methods are practiced to manage symptoms and
promote nerve regeneration [108].

2.4. Pathophysiology of Axonal Injury

To maintain neurons distant from the cell body to the synaptic terminal, dynein and
kinesin motors actively transport intracellular cargo along axonal microtubules within the
cytoskeleton [116,117]. The transport components include secretory membrane vesicles,
essential organelles (mitochondria, lysosomes, and lipids), and messenger ribonucleic acid
(mRNA) to maintain cellular polarity and migration [118–120]. Following axonotmesis,
Wallerian degeneration (WD) occurs at the distal end, causing the axon to self-degenerate
in preparation for reinnervation [2,7,121,122]. However, with the discovery of the Wallerian
degeneration slow (Wlds) gene mutation in mice, axonal degradation is recognized as an
active process [123,124].

Molecular homeostasis of the cellular environment is maintained by the neuropro-
tective properties of nicotinamide mononucleotide adenylyltransferase (NMNAT) and
the NAD+ regulation of gene expression and metabolic and signaling processes [125–127].
NAD+ serves as an essential catalyst for enzymes that regulate energy metabolism, the
management of ROS, and overall health of the cell [126,127]. The biosynthesis of NAD+
occurs in three primary pathways with varied precursors requiring several steps for syn-
thesis [128]. The Preiss–Handler pathway converts nicotinic acid (NA) into NAD+ in three
steps [126,128,129]. The de novo pathway synthesizes tryptophan (Trp) in 10 steps [126,128,129].
Finally, the salvage pathway can occur in a 2-step process with either nicotinamide (NAM)
or nicotinamide riboside (NR) [126,128–130].

The disrupted production of NAD+ is primarily associated with decreased phys-
iological and metabolic functions associated with age and the progression of neurode-
generative diseases, presenting a similar inflammatory response when an axonal injury
occurs [131,132]. Demonstrated by metabolic flux analysis, Sasaki et al. concluded that
axon fragmentation is induced when sterile alpha and toll/interleukin-1 receptor motif-
containing 1 (SARM1) activates an increase in NAD+ synthesis until depletion due to the
discontinuation of NMNAT2 [133]. Once NAD+ is consumed by SRAM1 via MAPK signal-
ing, the decreased supply of ATP further expedites WD [134]. However, the overexpression
of NMNAT or nicotinamide mononucleotide (NMN) de-amidase halts SARM1 activation,
proving neuroprotective abilities following injury [133].

To facilitate the microenvironment for regeneration, subsets of glial cells such as SCs,
astrocytes, microglia, and neural progenitor cells promote migration accuracy [135]. Via
axo–glial interaction, c-Jun and notch transcription factors within the MAPK kinase extracel-
lular signaling regulation pathway (MEK/ERK) promote the upregulation of transforming
growth factor-beta 1 (TGF-β1) and growth factor secretion in repairing SCs (rSCs) [20,136].
As the rSCs develop uninterrupted alignment, the growth of Büngner bands are direc-
tionally influenced for successful reinnervation [2,20,137]. This guidance is provided by
the influence of macrophages, fibroblasts, and SCs toward self-renewal [2]. Macrophages
secrete cytokines of two different phenotypes, pro-inflammatory (M1) or anti-inflammatory
(M2), further divided into four subsets (M2a, M2b, M2c, M2d) [138,139]. The fluctuating
levels of M1 and M2 macrophages influence the migration, proliferation, and secretion
patterns of SCs at the site of injury [138]. Until the fourth day post injury, M1 macrophages
engulf fragmented axons and myelin debris during WD [2,138,140,141]. Following the first
phase of regeneration, M1 macrophages are polarized to subsets of M2 macrophages to
further promote immunoregulation, tissue repair and remodeling, and long-distance axonal
growth [138,139]. As treatment progresses, hypoxic conditions promote M2d secretion of
vascular endothelial growth factor (VEGF) to extend blood vessels across gaps between
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nerve segments [138,140,142,143]. The regrown vasculature serves as guidance for bands
of Büngner to the target endoneurial tubes [19,138,140,142]. However, the probability of
connection without growth misdirection is slim [144]. Uncontrolled branching of growing
axons leads to misdirection from the target site [7]. The accumulation of dense scar tissue
and fibrosis resulting from fibroblast proliferation flares up inflammation, distracts axonal
regeneration, and endoneurial tube reinnervation [2].

3. Approaches to Peripheral Nerve Injury Treatment

The PNS is capable of self-regenerating at a rate of ~1 mm/day [2,7,20,92,98]. Grade 1
and 2 injuries will heal within a few months without assistance [2,7,98]. However, injuries
of a high caliber that traumatize the axon and surrounding connective tissue require
medical interventions to promote remyelination and active healing [93]. Prior to medical
interventions, the primary goal of diagnosis and treatment is to mitigate the underlying
mechanism of injury [138,139]. DPN and CIPN progressively alter the external environment
encompassing the nerve. To halt neuropathy progression and ensure treatment to the nerve
is not reversed, the elimination of toxic medication and nutritional deficiency is the goal.
Within personal injuries, the nerve trauma is more instantaneous, leading to a noninvasive
therapeutic approach or surgical procedure that will guide regeneration [2].

Noninvasive strategies that promote remyelination include over-the-skin electrical
stimulation, steroid hormone therapy, and pharmacological agents. Once a nerve expe-
riences interrupted stimulation to the neuromuscular junction, the release of neurotrans-
mitters for muscular contraction is halted [145]. Therefore, voluntary and involuntary
muscular contractions are impaired, increasing neuropathic symptoms [146]. To alleviate
pain and improve neuromuscular activity, the PNS is exposed to transcutaneous electrical
nerve stimulation (TENS) [147,148]. Electrodes are placed over the skin to stimulate the
nerve and induce muscle contraction [145]. The stimulation is modified between high
(>80 Hz) or low (<10 Hz) frequency, duration, and intensity depending upon the sever-
ity of neuropathic pain (NP) [147,149,150]. As a result, the clinical application of TENS
increases blood circulation and axonal transport, decreases inflammation, and reinnervates
muscle and nerve fibers [150,151]. Although TENS can alleviate NP, research supporting
the influence of TENS in nerve regeneration is limited [152]. In a separate study, TENS has
also been observed to reduce the axon count, disorganize cellular arrangement within the
tissue, and negatively affect the remaining nerves at the injury site [2]. Externally applied
stimuli hinder morphological development in nerve regeneration but positively effect
sensory-motor function [152]. Hormonal steroids influence the regulation of physiological
functions within the CNS and PNS [153]. These steroids modulate pain sensitivity while
providing neuroprotection and the maintenance of SC myelination when PNS nerve injury
occurs [153–155]. The utilization of estradiol in neuropathy management treatment directs
functional improvement and the regeneration of injured peripheral nerves [156]. In a
study by Calabrese et al., animals experiencing pain caused by DPN were treated with
testosterone metabolites [157]. DPN induces the expression of toll-like receptor member 4
(TLR4), which increases the production of inflammatory cytokines causing NP [157,158].
Once treated with testosterone metabolites, 3α-diol and dihydrotestosterone (DHT), pro
anti-inflammatory cytokines were counteracted, increasing the analgesic properties [157].

The pharmacological treatment of NP is focused on the management and relief of
symptoms [159,160]. Commonly, the combination of anti-depressants, anti-convulsant,
opioids, and natural products work to reduce the perception of pain resulting from neu-
ral hyperexcitation [159,160]. First-line drugs such as tricyclic antidepressants, lidocaine,
phenytoin, and capsaicin inhibit the transduction of voltage-gated channels, ligand-gated
channels, G protein-coupled receptors (GPCRs), and gamma-aminobutyric acid (GABA)
receptors [161]. Natural components including omega-3, curcumin, berberine, lycopene,
and naringin possess anti-inflammatory properties by inhibiting the expression of injury-
induced chemokines and cytokines [161]. Second- and third-line drugs such as opioids also
reduce NP, however, adverse side effects and a high dosage required for effective treatment
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discourages usage [161]. Once treated with natural or synthetically derived drugs, patients
commonly experience a placebo effect or a euphoric relief from pain, without treating the
original mechanism [159,160]. Alternatively, topical agents such as tacrolimus (FK506),
hyaluronic acid (HA), melatonin, lidocaine, and vitamin B12 actively support the alleviation
of NP [147]. Tarcolimus (FK506) counteracts neurotoxicity by increasing the expression
of growth-associated protein 43 (GAP-43), known for neuronal plasticity and regenera-
tion [162,163]. HA is naturally found in the extracellular matrix composition, stimulating
cluster of differentiation 44 (CD44) expression following a traumatic nerve injury [164,165].
HA can provide a suitable environment for nerve regeneration and recovery when top-
ically administered [165]. Lidocaine targets the mechanism of neurotransmitter release,
inhibiting the generation of an action potential required for nerve signal conductance [147].
Finally, vitamin B12 promotes myelination and upregulates gene transcription factors for
nerve regeneration and pain management [166]. However, this approach to treatment
is passive, lacking specificity to the various types of neuropathies and accompanying
symptoms [147,159].

Invasive techniques used to treat severe nerve injuries include nerve graft, allograft,
nerve transfer, and conduits. The U.S. Food and Drug Administration (FDA) has approved
conduits that are primarily constructed with collagen or hyaluronic acid hydrogels, or
synthesized with poly-glycolic acid (PGA), polycaprolactone (PCL), and polyvinyl acetate
(PVA), effectively re-establishing functionality (Table 3) [167]. In vitro and rodent-based
trials (in vivo) have occurred with a combination of natural and synthetic materials, explor-
ing manufacturing techniques for nerve injury treatment. Standard fabrication methods
include dip coating, solvent casting, freeze-drying, micro-patterning, and additive man-
ufacturing [168]. The dip coating, solvent casting, and freeze-drying methods produce
conduits with varying sizes and connectivity of pores, decreasing the transfer of nutrients
and metabolic waste [168]. With electrospinning and micropatterning, the fiber network
resembles the extracellular matrix (ECM) and allows for the strategic alignment of growing
axons; however, low reproducibility is a disadvantage [168]. Finally, additive manufactur-
ing is highly reproducible and can control specific morphological features depending on
the printing method and material used [168].

Table 3. Beneficial properties of each protein within the ECM.

Protein Properties Benefit to Neural Regeneration Reference

Elastin Highly elastic, water-
soluble, hydrophobic.

Promotes cellular adhesion, proliferation, stem
cell differentiation, the release of growth factors,

drug delivery.
[169]

Fibrinogen
Produces fibrin

network, composed of
polypeptide chains.

Facilitate stem cell proliferation, adhesion,
and differentiation. [170]

Laminin Abundant in native ECM.
Basement membrane. Facilitate

cellular attachment, differentiation, and
neurite outgrowth.

[171,172]

Silk Naturally occurring in ECM. Promotes oxygen and permeability. Biodegradable.
Supports SC and neuron growth and attachment. [173,174]

Collagen Abundant in native ECM. Fibroblast proliferation, angiogenesis, regulation of
pro- and anti-inflammatory response. [175,176]

Hyaluronic Acid Abundant in embryonic tissue
and ECM.

Maintains ECM, regulates binding proteins in
cellular adhesion, proliferation,

pro/anti-inflammatory response depending on
molecular weight.

[177]

Protein-based hydrogels and synthetic conduits are engineered with varied concentra-
tions of crosslinking agents to influence the biophysical and biochemical cues that promote
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cellular proliferation, the secretion of ECM components from seeded SCs, and the orga-
nization of regrowing axons [169,178,179]. Adjusting the crosslinking agent allows for
the effective treatment of severe injuries of a significant distance and large diameter [169].
Biophysical properties such as the porosity, stiffness, degradation, and biochemical com-
munication between protein binding sites and proliferating cells ensure nutritional support
as regenerating axons close the nerve gap [169,179–181].

4. Neurotrophic Support in Neuropathy Treatment

With natural or biomaterials acting alone, conduits lack the mechanical and structural
properties necessary to support axon regeneration. However, combining biodegradable
polymers with biological proteins produces a biocomposite conduit capable of regulating
the biochemical cues and growth factors necessary to support neurite outgrowth without
disrupting the surrounding connective tissue [117,178,182]. Growth factors are released
from the distal and proximal nerve stumps to generate axoplasmic fluid, forming a neo-
matrix of fibrin [167,180]. Nerve injuries with significant gaps and are large in diameter
have limited neurotrophic support; therefore, additional nutrients are required to see nerve
reinnervation to completion [180]. Recent studies support the seeding of stem cells and
growth factors within biocomposite conduits to enhance the neomatrix between nerve
stumps [108,183,184]. To further increase the probability of axon regeneration, neurotrophic
factors such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial
cell-derived neurotrophic factor (GDNF), and VEGF are released from SCs and localized
along the conduit [2,168]. Neurotrophic factors within conduits assist in promoting SC
migration, neuronal survival, and axon regeneration [168,173].

4.1. Stem Cell Differentiation

Stem cells are classified into two categories: embryonic (totipotent and pluripotent)
and nonembryonic (multipotent, oligopotent, and unipotent), based on where they are
derived [185]. Self-renewing pluripotent stem cells express transcription factors for the
blastula formation that generate the three germ layers: ectoderm, mesoderm, and en-
dotherm [186–189]. The ectoderm gives rise to the nervous system, the mesoderm gives
rise to connective and muscular tissue, and the endoderm gives rise to organ systems
throughout the body [190]. Multipotent stem cells, commonly derived from bone marrow,
adipose tissue, or dental pulp, experience differentiation into several cell types within one
designated germ line [186–188,191]. Once within a specific lineage, differentiation is flexi-
ble [185]. Due to increased plasticity, self-renewal, and proliferative properties, totipotent,
pluripotent, and multipotent stem cells are most advantageous in tissue engineering [188].
However, there are limitations associated, primarily moral objections when harvesting
embryonic stem cells and uncontrolled teratoma formation and immunorejection, once
clinically applied [187,188,192].

To harvest, tissue rich in stem cells such as the umbilical cord or placenta, bone marrow,
adipose tissue, and peripheral blood is first collected then filtered [188,193]. However,
neonatal-derived stem cells from the umbilical cord and placenta are considered unethical,
leading to the preferred use of mesenchymal stem cells (MSCs) and induced pluripotent
stem cells (iPSCs) harvested from connective tissue within the body [188]. Connective tissue
is preferred due to the accessibility, cost effectiveness, and abundance of MSCs, however,
the harvesting technique influences the survival and yield of the cells collected [194].
Compared to liposuction, syringe aspiration is the most effective because trauma to the
donor site is minimized, and the viability of the cells is maintained [194].

MSCs give rise to different mesenchymal lineages within the mesoderm based on the
specific stimuli and signaling required for differentiation [193,195,196]. MSCs are derived
from bone marrow and adipose tissue [193,195,197,198]. Cellular components of bone
marrow and adipose tissue include sympathetic neurons, SCs, macrophages, regulatory
T cells, neutrophils, fibroblasts, pericytes, and endothelial cells [195,197]. The positive
markers of CD90, CD73, CD105, and negative markers of CD45, CD34, CD14, CD11b,
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CD19, and human leukocyte antigen (HLA-DR) effectively distinguish MSCs from other
cellular components in the bone marrow (BM) and adipose tissue [193,194,198–202]. De-
pending upon the source, whether bone marrow or adipose tissue, the markers present
slightly differ [194]. To influence differentiation, MSCs are exposed to specific chemical
cocktails that upregulate Wnt signaling for osteogenic, chondrogenic, and cardiogenic
differentiation [196,197]. Wnt signaling is highly influential in stem cell division, pro-
liferation, migration, and fate determination to increase neurite outgrowth [5,203]. The
differentiation of MSCs to a true neuronal lineage is arguable since neurons and connective
tissue reside in a different lineage [190]. To encourage an altered lineage, the activation
of Wnt signaling promotes the expression of neuronal and glial cell markers in MSCs
after exposure to signals that will influence transdifferentiation [196,198]. The induction
medium is supplemented with fibroblast growth factor (FGF), Sonic Hedgehog protein
(SHH), retinoic acid (RA), and BDNF over 18 days [198]. Reverse transcription polymerase
chain reaction (RT-PCR) is used to confirm the gene expression of neural phenotypes [198].
Immunocytochemistry visually confirmed the morphological changes of neurite extension
typically exhibited by neural stem cells [198]. Within this study conducted by Urrutia
et al., RT-PCR and immunocytochemistry identified the expression of neuroepithelial
stem cell protein (NESTIN), β-tubulin III, synaptophysin, neurofilament light polypep-
tide (NEFL), neurofilament medium polypeptide (NEFM), dopaminergic neuron marker
(NURR1), calcium-binding protein B (S100B), and neurotrophin-3 (NT-3) [198]. Comparing
the multiple sources human MSCs were isolated from, neuronal markers were considerably
more expressed in adipose-derived mesenchymal stem cells (ASCs) than in BM-MSCs [198].

Identical to embryonic stem cells (ESCs), iPSCs are developed from reprogram-
med somatic cells or human fibroblasts by introducing growth factors [193]. In 2007,
Takahashi et al. reconditioned human fibroblasts to human iPSCs by utilizing a transcription
factor cocktail including octamer transcription factor 3 and 4 (OCT-3/4), sex-determining
region Y-box 2 (SOX2), c-Myc gene, and Kruppel-like factor 4 (KLF4), engineered initially
by Yamanaka for mice fibroblasts [204–206]. This discovery eliminates the need to transfer
the nucleus from somatic cells [206]. However, using c-Myc leads to the death of embryonic
stem cells [206]. Alternatively, Yu et al. demonstrated the successful reprogramming of
human MSCs to iPSCs using OCT4, SOX2, NANOG gene, and Lin28 gene [206]. The
addition of NANOG and LIN28 proved to increase the survival rate and recovery of repro-
grammed cells [206]. To verify similarities between iPSCs and ESCs, RT-PCR and Western
blot analysis identified comparable gene expressions and undifferentiated cell-surface
markers such as OCT3/4, SOX2, NANOG, FGF4, reduced expression 1 (REX1), and growth
and differentiation factor 3 (GDF3) [205,207]. Immunocytochemistry also showed consis-
tent morphology and proliferation between the embryonic and induced pluripotent cell
lines [205,207]. IPSCs can differentiate into mature neural progenitor cells and astrocytes
once introduced to a neural induction medium for 21 days [208]. Kang et al. mapped
the morphological, genetic expression, and electrophysiological profile changes endured
during iPSCs to neuron differentiation [208]. The morphology of differentiating iPSCs
detailed increased dendrites and the lengthening of axons following growth cone develop-
ment throughout 15 days [208]. Immunostaining confirmed the positive gene expression of
mature neurons including NESTIN, paired box 6 (PAX6), SOX2, class III beta-tubulin (Tuj1),
glial fibrillary acidic protein (GFAP), synapsin 1, and tyrosine hydroxylase (TH) [208]. The
genes identified also influence the upregulation of signaling pathways that regulate stem
cell proliferation such as MAPK, ligand–receptor interaction, and Wnt pathways [208].
The electrophysiological profile characterization confirmed the synapse’s successful for-
mation by recording excitatory postsynaptic currents [208]. Once the cellular membrane is
depolarized, the calcium (Ca2+) current, decreased membrane resistance, and increased
membrane capacitance are recorded, confirming signal conductance for effective neural
communication [208].

Based on the specific conditions the MSCs are transplanted to, complete neural differ-
entiation is not achieved, however, the phenotypic properties of glial cells are adopted [209].
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Once injected, MSCs promote angiogenesis, anti-inflammation, and neuroprotection during
the regeneration process through secretome expression by which cells exchange commu-
nicative signals [209]. Clinically, compared to MSC injections, the intravenous application
of paracrine secretions has gained popularity due to the ability to modulate injury symp-
toms and facilitate functional recovery [209]. As a cell-free therapeutic method, secretory
treatment voids the instability experienced with MSC differentiation and the safety risks
associated with stem cell transplantation [210,211].

4.2. The Application of Stem Cells in Neuropathy Treatment

Stem cell treatment of PN-induced chronic pain provides assistive interaction with
the damaged cells by inhibiting apoptosis and enhancing cellular survival during regen-
eration [181,212]. The primary mechanism of pain is attributed to the activation of the
Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) path-
way, p38-MAPK pathway, and Notch signaling once peripheral damage occurs [213].
In response to injury, nerve hyperexcitation from an immune-mediated response and
continuous infiltration of proinflammatory cytokines contribute to demyelination and
neuronal death [181,212,213]. By releasing anti-inflammatory, angiogenic, and nutritional
neurotrophic factors such as BDNF, NT-3, FGF, and VEGF, stem cells strongly regulate the
body’s natural immunoresponse when peripheral nerve damage occurs [181]. Transplan-
tation of BM-MSCs has been proven to upregulate the expression of anti-inflammatory
M2 macrophages, downregulate inflammatory M1 macrophages, and influence the MAPK
signaling pathway toward the native SC response to injury [181].

Preclinical trials have primarily focused on the successful delivery and retention of
stem cells in neurodegenerative diseases such as Parkinson’s disease, Huntington’s disease,
and ischemic stroke [214]. Traditionally, MSCs have been introduced systemically via
intracerebral, intravenous, arterial, and nasal infusion to activate neurogenesis in diseases
affecting the CNS [212,213]. Stem cells can cross the blood–brain barrier (BBB), allowing
effective migration toward damaged brain tissue [215]. The intracerebral application of
MSCs in ischemic stroke has proven to reduce inflammation, inhibit further destruction
of the BBB, and promote neurogenesis [215]. However, the limitations of this method
compromise the success of treatment due to cell clusters trapped in the respiratory and
circulatory system [212,215]. Alternatively, the intravenous and intraarterial application
is safer but less effective as many cells do not cross the BBB and develop into blood clots
or occlusions that lead to further damage [215]. Intranasal administration allows for the
successful migration of stem cells via the olfactory system with MSC detection in brain
tissue [215]. Proving their success in neurodegenerative diseases affecting the CNS provides
gateway access to pain modulation and neuropathy treatment within the PNS [213].

MSC transplantation to the PNS improves neuropathic symptoms by inhibiting de-
structive mechanisms while maintaining nerve function and axonal regeneration [213].
Various studies, outlined in Table 4, support MSC mediation of oxidative stress, ROS
formation, neural inflammation, and apoptosis through the secretion of neurotrophic
factors [213].

Table 4. Studies that utilized MSCs in neuropathic treatment.

MSC Source Neuropathy Treated Title of Study Reference

hUC-MSC DPN
Human umbilical cord-derived mesenchymal stem cells
prevent the progression of early diabetic nephropathy

through inhibiting inflammation and fibrosis.
[216]

BM-MSC DPN

The bone marrow-derived mesenchymal stem cells
(BMSCs) alleviate diabetic peripheral neuropathy
induced by STZ via activating GSK-3β/β-catenin

signaling pathway.

[217]
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Table 4. Cont.

MSC Source Neuropathy Treated Title of Study Reference

ASC DPN

Treatment with adipose tissue-derived mesenchymal
stem cells exerts anti-diabetic effects, improves

long-term complications, and attenuates inflammation
in type 2 diabetic rats.

[218]

hMSC CIPN
Nasal administration of mesenchymal stem cells
prevents accelerated age-related tauopathy after

chemotherapy in mice.
[219]

BM-MSC CIPN Bone marrow-derived mesenchymal stem cells alleviate
paclitaxel-induced mechanical allodynia in rats. [220]

MSC CIPN
Nasal administration of mesenchymal stem cells

reverses chemotherapy-induced peripheral neuropathy
in mice.

[221]

ASC CIPN
Adipose-derived stem cells decrease pain in rat

model of oxaliplatin-induced neuropathy: Role of
VEGF-A modulation.

[222]

hASC and hUC-MSC
Neuropathic

symptoms via partial
sciatic nerve ligation

Intravenous administration of human mesenchymal
stem cells derived from adipose tissue and umbilical

cord improves NP via suppression of neuronal damage
and anti-inflammatory actions in rats.

[223]

ASC Peripheral nerve injury
repair for NP relief

Role of adipose tissue grafting and adipose-derived
stem cells in peripheral nerve surgery. [194]

Yu et al. investigated the effect of multiple intravenous infusions of ASC on systemic
inflammation and the long-term complications brought on by type 2 diabetes [218]. This
study aimed to demonstrate the long-term therapeutic potential of ASCs in pain manage-
ment and interruption of injury progression [218]. Diabetic rats were treated with ASC
infusions once a week for 24 weeks. Blood glucose levels gradually decreased to normal
levels throughout treatment after each MSC infusion [218]. Insulin sensitivity increased
due to the restoration of islet b cells, which is necessary for a proper pancreatic negative
response to glucose [218]. MSC treatment also alleviated inflammation due to an increased
expression of M2 macrophage phenotypes, effectively combating the development of fi-
brosis, which negatively affects other essential bodily systems [218]. Similarly, Xiang et al.
concluded that treating MSCs in diabetic rats reduced the expression of proinflamma-
tory interleukin-1b (IL-1b), IL-6, and tumor necrosis factor (TNF-α) and reduced the M1
macrophage secretion of TGF-β within the kidneys [216]. Xiang et al. also observed the
secretion of anti-inflammatory and anti-fibrotic factors that effectively improved renal
function and inhibited the harmful progression of DPN [216]. Within CIPN, the admin-
istration of MSCs reversed the pain in mice exposed to chemotherapeutic medications
known to negatively affect mitochondrial function and increase oxidative stress [220,221].
After 24 days of MSC treatment, mitochondrial respiration was restored, attributed to the
increased MSC and M2 macrophage expression of IL-10 signaling [221]. The limitations of
the systemic administration of MSCs are still an issue, requiring an abundant amount of
MSCs in the hope that they stay viable, successfully differentiate, and accurately treat the
desired target site [220,224].

As previously stated, the intravenous transplantation of MSCs for nerve regeneration
increases the risk of complications that limit treatment capabilities. MSCs undoubtedly
promote healing, however, the retention of neural differentiation and capability of effective
treatment is not guaranteed [225]. The decreased survival rate requiring multiple injection
and the risk of vascular obstruction contributing to stroke encourages research into a more
optimal therapeutic approach [225]. Alternatively, the secretome produced from MSCs has
been explored due to the production of extracellular vesicles [225]. Extracellular vesicles



Biomedicines 2024, 12, 489 14 of 37

(EVs) are secreted organelles from the parent cell, compacted with cargo that promotes
regenerative function, induces angiogenesis, and regulates cellular communication [224].
EVs range in size and function including apoptotic bodies (>1000 nm), microvesicles
(100–1000 nm), and exosomes (50–150 nm) [226,227]. The variety in size requires differ-
ential centrifugation to isolate a pure sample [224,228]. The cargo of EVs is potent with
proteins, lipids, mRNA, and microRNA (miRNA), which promotes an enhanced regen-
erative potential such as the type of cell they are derived from (Figure 3). EVs derived
from a specific lineage of stem cells replicate mechanisms of intracellular communication
and signaling mediation as the parent cell to encourage regenerative properties [227,228].
For example, EVs derived from differentiated neural MSCs have been shown to stimulate
angiogenesis, neurite outgrowth, and regeneration and inhibit inflammation, oxidative
stress, and apoptosis [224,229].
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4.3. Potential of MSCs Secretome in Nerve Regeneration

Naturally, exosomes within the PNS regulate synaptic activity via neurotransmitters,
modulate intracellular and cell-to-cell communication, and facilitate the exchange of bio-
logical information to maintain homeostatic conditions [228,230,231]. The primary mode
of communication is through the transportation and selective delivery of mRNA, miRNA,
and proteins from the donor to the recipient cell. The EV transfer of mRNA facilitates
the paracrine exchange of genetic information [224]. MiRNAs are crucial in stimulating
gene expression and facilitating cellular proliferation, differentiation, migration, and apop-
tosis [224]. The delivery of proteins is essential for managing tissue regeneration and
providing a mechanism for the EV surface to interact with cellular receptors for targeted
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delivery [224]. The primary methods of EV uptake include phagocytosis, receptor-mediated
endocytosis, and direct fusion with the cellular membrane [227,232]. However, efficient EV
consumption depends on the biophysical and mechanical properties that allow the proper
interaction for tissue absorption [227]. The size, elasticity, stiffness, and Young’s modulus
of EVs differs per source of the parent cell [227]. Modification of the EV surface increases
migration through the ECM and enhances the attraction of specific surface proteins to
cellular receptors for more effective delivery [227].

4.3.1. EV Biogenesis and Transport

The biogenesis of EVs is attributed to the endosomal sorting complex required for
transport (ESCRT) mechanism complex, which guides endosomes through the early and
late stages of development before exocytosis (Figure 4) [233]. Subunits of ESCRT pro-
mote cargo organization and internalization during intraluminal vesicle (ILV) forma-
tion, dictated by the expression of seven primary proteins: tumor susceptibility gene
101 (TSG101), Alix, chromatin modified protein 4C (CHMP4C), vascular protein sorting-
associated (VPS) protein 4B, vacuolar protein sorting-associated protein (VTA1), hepatocyte
growth factor-regulated tyrosine kinase substrate (Hrs), and signal transducing adaptor
molecule (STAM1) [233–235]. Once organized within late-endosome development, the
Golgi apparatus then supplies ILVs with major histocompatibility complex (MHC) class
I and II molecules, growth factor receptors, and RNAs, encompassed by multivesicular
bodies (MVBs) [233,236]. The MVBs are then transported to the cellular membrane, guided
by cytoskeleton, microtubules, and Ras-associated binding guanosine triphosphates (Rab
GTPases), then secreted as exosomes via exocytosis [233,234]. Rab GTPases are crucial
during the transport of MVBs to the cellular membrane, specifically Rab27a and Rab27b,
during MVB docking and intracellular trafficking [233]. The mechanism by which the
cells receive cargo includes ligand–receptor interaction, binding to target receptors on the
cellular membrane, membrane fusion, and complete exosome internalization via endocyto-
sis [227,232,233,236]. EVs contain surface markers on the phospholipid bilayer membrane
that are attracted to specific sites for targeted delivery [224,226,227,229].
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Figure 4. Biogenesis of exosomes. (1) Internalized cargo from the cellular membrane via endocytosis
is sorted into (2) early endosomes. (3) ESCRT, tetraspanins, and lipids guide early endosomes through
late endosome/MVB maturation, (4) which is concentrated with ILVs. (5) The Golgi apparatus then
supplements ILVs with nucleic acids, RNAs, proteins, and MHC II molecules. (6) MVBs are then
transported to the plasma membrane via the cytoskeletal and microtubule network. (7) During
the transportation process, Rab GTPases guide the docking and fusion of MVB with the plasma
membrane. (8) ILVs are secreted as exosomes via exocytosis.
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Within neuropathy treatment, incorporating EVs enhances the repair environment
with neurotrophic factors such as GDNF (SC recruitment), insulin-like growth factor
1 (IGF-1), TNF-α, and TGF to promote the regeneration of damaged tissue and improve
functional recovery [180,237]. The primary source of EVs is derived from BM-MSC and
ASCs due to easy access, nonimmunogenic response when transplanted, and the phenotypic
alteration of immune-mediated cells responding to injury [237–239]. Due to the therapeutic
capabilities of BM-MSCs and ASCs, derived exosomes from each respective stem cell are
favorable in drug delivery and the treatment of neuropathy, neurodegenerative diseases,
and cancer [237].

4.3.2. Targeted Transplantation of EVs in Neuropathy Treatment

Within neuropathic treatment, the transplantation of exosomes derived from MSCs
directly targeted to the injury site will activate signaling pathways that promote angio-
genesis, immune response regulation, and the management of the extracellular environ-
ment [240,241]. The mentioned effects, which are also highlighted in Table 5, are attributed
to the cargo within exosomes. Once EVs are applied to damaged cells, the cargo uptake
leads to the downregulation of key factors that negatively affect the quality and health
of the cells within the injury site. For example, Song et al. isolated EVs from healthy
cortical neurons containing miR-NA-181-3p, which have been shown to suppress neu-
roinflammation via targeting the CXCL1 gene in astrocytes [242]. Alternatively, EV cargo
isolation from damaged PC12 cells containing miRNA-21-5p, known to cause chronic neuro-
inflammation, upregulated the expression of proinflammatory factors following EV uptake
in BV2 cells [243]. The RNA within EV cargo is critical to their therapeutic effect. MiRNA-
133b, a regulator of tyrosine hydroxylase production and dopamine transporter, is the best
understood MSC-EV mediated treatment regarding cerebral injury [244]. Researchers have
transferred MSC-EVs to injured neurons, successfully promoting neural plasticity and neu-
rite outgrowth due to its role in post-transcriptional gene regulation and neuroprotective
upregulation [244,245]. However, a more directed approach to treatment will accelerate the
healing capabilities associated with EVs. The uptake of EVs continues to be a challenging
obstacle to overcome. When injected intravenously, EVs primarily accumulate in organs of
the reticuloendothelial system such as the liver or spleen [246]. A further understanding of
site-specific EV uptake is needed, specifically toward neuropathy treatment.

Table 5. Studies that utilized exosomes in neuropathy treatment.

Exosome Source Neuropathy Treated Title of Study Reference

hMSC DPN

Treatment of diabetic peripheral neuropathy with
engineered mesenchymal stromal cell-derived exosomes

enriched with microRNA-146a provide amplified
therapeutic efficacy.

[237]

hBM-MSC DPN
Exosomes derived from atorvastatin-pretreated MSC

accelerate diabetic wound repair by enhancing angiogenesis
via AKT/eNOS pathway.

[240]

hBM-MSC DPN
Melatonin-stimulated MSC-derived exosomes improve

diabetic wound healing through regulating macrophage M1
and M2 polarization by targeting the PTEN/AKT pathway.

[241]

SC-EV DPN Exosomes derived from Schwann cells ameliorate
peripheral neuropathy in type 2 diabetic mice. [247]

CEC-sEV CIPN
Small extracellular vesicles ameliorate peripheral

neuropathy and enhance chemotherapy of oxaliplatin on
ovarian cancer.

[238]

hBM-MSC-EVs CIPN
Bone marrow mesenchymal stem cells and their derived

exosomes resole doxorubicin-induced chemobrain: Critical
role of their miRNA cargo.

[248]
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Table 5. Cont.

Exosome Source Neuropathy Treated Title of Study Reference

hUC-MSC Microglial activation
of NP

Huc-MSCs-derived exosomes attenuate NP by inhibiting
activation of the TLR2/MyD88/NF-kB signaling pathway

in the spinal microglia by targeting Rasad2.
[249]

MSC Microglial activation
of NP

Mesenchymal stem cell-derived extracellular vesicles
carrying miR-99b-3p restrain microglial activation and NP

by stimulating autophagy.
[250]

BM-MSC
NP via sciatic
nerve chronic

constriction injury

Exosomes carried miR-181c-5p alleviates NP in CCI
rat models. [251]

MSC NP via spinal
neuroinflammation

Extracellular vesicles derived from mesenchymal stem cells
alleviate neuroinflammation and mechanical allodynia in

interstitial cystitis rats by inhibiting NLRP3
inflammasome activation.

[252]

hUC-MSC Alleviate
inflammatory pain

Huc-MSCs-derived exosomes attenuate inflammatory pain
by regulating microglia pyroptosis and autophagy via the

miR-146a-5p/TRAF6 axis.
[253]

Once applied, the uptake of EVs may occur via five different mechanisms including
clathrin-dependent and independent endocytosis, caveolin-mediated invagination, lipid
raft-mediated endocytosis, phagocytosis, and macropinocytosis [233]. Clathrin-mediated
endocytosis occurs by forming a clathrin-coated vesicle due to deformation in the plasma
membrane cytoskeleton [233,254]. The inward budding vesicle is separated from the mem-
brane by dynamin-2 and then further developed through the endocytic pathway [233,254].
Similarly, caveolae-mediated invagination creates a membrane specifically concentrated
with glycoproteins and cholesterol, recognized as caveolae [233,254]. Lipid-raft mediated
endocytosis is an invagination process that is enriched in cholesterol, sphingolipids, and
glycosylphosphatidylinositol (GPI)-anchored proteins, promoting the formation of early en-
dosome [233]. Phagocytosis internalizes EVs into a large vacuole through the rearrangement
of the membrane cytoskeleton, identified by the phagocytic marker, lysosomal-associated
membrane protein 1 (LAMP-1) [233,254,255]. Alternatively, macropinocytosis promotes
the rearrangement of the cytoskeleton into lamellipodia to engulf nonspecific EVs into
lysosomes [233,255]. Each method of internalization can co-exist and co-occur [233]. To
specifically direct EVs toward damaged nerves for neuropathic treatment, utilizing EVs
derived from the parent cell known to be directly involved in nerve injury treatment
may influence the targeting capabilities [256]. Common EV markers identified for neu-
ronal regeneration, EV biogenesis, and uptake by neuronal cells include CD81, CD9, and
CD63 [257,258]. Further research on the surface protein and chemical dependence is needed
to understand which mechanisms govern EV uptake toward neuropathy treatment.

SCs play an influential role in the maintenance of the PNS. The plasticity of SCs al-
lows the transdifferentiation from mature myelinating SCs to immature SCs, then rSCs
that initiate the neuroinflammatory response causing NP [259]. Following the dissipation
of injured nerve fragments, rSCs supply neurotrophic factors for axonal regeneration,
alter the phenotype of immune-responsive M1 macrophages to anti-inflammatory M2
macrophages, and guide Büngner bands to the target site [239]. Due to their crucial role in
nerve regeneration, recent studies have explored the application of rSC-derived exosomes
in neural regeneration and neuropathic treatment [239]. Further investigation strives to
identify the miRNA composition with rSC-derived exosomes directly influencing axonal
growth [260]. El-Derany et al. treated CIPN with exosomes derived from BM-MSCs, suc-
cessfully identifying exosomal miRNAs (miR-21-5p, miR-125b-5p, miR-199a-3p, miR-24-3p,
and let-7a-5p) secreted to the damaged nerves [248]. López-Leal et al. demonstrated in-
creased neurite outgrowth once rSC exosomes transferred miRNA21 to damaged tissue,
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directly activating the expression of c-Jun, SOX2, and the modified regulation of regen-
erative molecules via the phosphatidylinositol 3-kinase (P13K)/protein kinase B (AKT)
signaling pathway [239,261,262]. C-Jun expression activates the repair mechanism of SCs,
and SOX2 activates the immune response while inhibiting myelinating factors of rSCs [261].
The PI3K/AKT pathway is active in cellular proliferation, cellular survival, cell cycle pro-
gression, cellular plasticity, glucose metabolism, and protein synthesis [262]. Targeting
the PI3K/AKT pathway has been explored as a viable option to regulate diabetics and
diseases affecting the nervous system [262]. For example, Li et al. successfully alleviated
NP induced by chemotherapeutic agents through the supplementation of resveratrol via
the PI3K/AKT signaling pathway [263]. As a result, mitochondrial dysfunction improved
due to the reduction in oxidative stress and successfully alleviated NP symptoms [263].
Concerning SC function, the PI3K/AKT pathway, which regulates the tuberous sclerosis
complex (TSC), activates the mechanistic target of rapamycin complex 1 (mTORC1), playing
an important role in the myelination of axons and mRNA protein translation for cellular
metabolism, growth, and proliferation [264–268]. Along with the Erk1/2 signaling pathway,
this pathway is also influential in SC development and transdifferentiation in response to
pathological conditions [267,268].

Of the three types of SCs, the expression of rSCs and derived exosomes is most bene-
ficial in the axonal regeneration and management of NP [261]. However, the utilization
of rSC exosomes is limited regarding the number of EVs produced, the loading efficiency
of desired cargo, and retention once applied clinically [224,239]. The process of EV iso-
lation has not been optimized to generate large enough quantities to support complete
regeneration [224,237]. Additionally, nonfunctional components within EV cargo hinder
effective treatment, requiring an abundance of EVs at the injury site [224,239]. Finally, the
retention of rSC phenotype expression is unstable [239,269]. Once the injury gap length
and time required for reinnervation become extensive, the secretion of neurotrophic fac-
tors fades as the cell-to-axon biochemical cascade no longer encourages a regenerative
microenvironment [269,270].

4.4. Methods to Increase EV Production

The clinical application of EVs requires mass production and an optimal isolation pro-
tocol to ensure that sustainable quantities are obtained [211]. Traditional two-dimensional
(2D) cultures produce a low yield of EVs and batch-to-batch variability between cellular
passages [211]. A 2D culture does not actively represent the native environment in which
cell-to-cell and cell-to-matrix interactions naturally occur within the ECM [271]. To mimic
accurate cellular behavior, three-dimensional (3D) culture conditions allow cells to form
aggregates for the increased production of EVs [272]. Furthermore, 3D aggregates enhanced
by dynamic cellular agitation have been proven to allow for the large-scale production
of EVs with an enhanced expression of therapeutic cargo [211,272–274]. Through shear
stress, the expression of ESCRT-independent/dependent biogenesis markers significantly
increased alongside EV production within the PBS Vertical-Wheel Bioreactor compared to
the 2D culture [273]. As a result, the EVs isolated from the 3D culture expressed upreg-
ulated therapeutic miRNA secretion consistent with angiogenesis, wound healing, and
neuroprotection [273]. Jeske et al. compared the effect of shear stress within the PBS
Vertical-Wheel Bioreactor to 2D static culture, investigating the secretion and cargo profile
of hMSC-derived EVs [273]. Western blot analysis presented an upregulation in exosomal
markers HRS, syntenin-1, CD81, and CD63 in the bioreactor groups compared to the 2D
group [273]. Finally, the miRNA cargo within the 3D bioreactor groups, compared to the
2D groups, showed an upregulation in EVs that would effectively promote wound healing
such as miR-10, 19a, 19b, 21, 30b, 92a, 126, and 132 [273]. Therefore, culture expansion and
increased EV production rely on improving culture conditions, enhancing the external en-
vironment, and stimulating signaling pathways that influence cellular secretions [211,271].
Alternatively to the PBS Vertical-Wheel Bioreactor, the spinner flask and rotating wall
bioreactors mildly support scaling up for clinical application; however, various limitations
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discourage utilization. For example, a horizontal impeller is used to agitate the media in
spinner flask bioreactors. However, this application of shear stress results in turbulent flows
and nonhomogeneous shear zones within the reactor, generating aggregates of different
quality [275,276].

Alongside scaling up EV production, the ability to store generated EVs effectively
while ensuring a nonsignificant drop in quality is also a limiting factor in the clinical utiliza-
tion of EVs. EVs are typically stored in PBS or media at 4 ◦C or −80 ◦C, as suggested by the
International Society for Extracellular Vesicles [277]. However, in 2018, these suggestions
were redacted due to the impact of EV preservation and long-term storage on the stability,
concentration, and overall function [278]. These storage methods have been shown to
significantly decrease EV yield within seven days of storage [279]. The buffer selection,
temperature, and storage techniques greatly influence the EV shelf life to optimize current
storage techniques.

Regarding a storage buffer, Kawai-Harada et al. developed an EV storage buffer
consisting of trehalose and BSA-supplemented PBS-HEPES buffer [279]. This buffer showed
better cargo protection than the standard storage techniques without sacrificing any loss in
targeting ability, size, or EV morphology [279]. While a promising alternative to standard
storage methods, the study on the effects of the EV storage buffer is limited to 7 days.
A clinically applicable method would need long-term storage of months to years. This
EV storage buffer has yet to be tested on EVs derived from stem cells, as Kawai-Harada
et al. utilized HEK293T cell-derived EVs, and it is unlikely that the necessary cargo
for neuropathic treatment is stored within these EVs. Therefore, the effects the storage
buffer could have on stem cell-derived EV cargo quality are unknown. Another study
by Görgens et al. addressed EV storage conditions for up to two years, concluding that
buffers composed of trehalose and human albumin showed significant improvement in
EV preservation for samples stored at −80 ◦C [280]. While MSC-derived EVs were studied
within this research, the data are inconclusive compared to those of the HEK293T cells
utilized. Particle concentration saw a significant improvement after storage, regardless of
temperature. Cellular uptake and cargo quantification were not investigated with these
EVs. Another limitation, regardless of the storage solution, is that multiple freeze–thaw
cycles have been shown to induce membrane disruption and re-micellization, with effects
being significant after as few as two cycles [281,282]. Other avenues such as lyophilization
and temperature dependency have also been explored with varying levels of success and
conflicting results [281,283,284]. These alternative methods share the same limitation of
short-term analysis, with no studies testing for the effects on EVs over extended periods.
For EVs to be clinically ready, the enormous hurdles of successful scale and proper long-
term storage protocols must be addressed to ensure the quality and repeatability of EVs
between stocks.

The influence of the external environment on cellular gene expression directly alters the
protein synthesis and behavior of the cell [285]. Specifically regarding ESCRT-dependent
and -independent biogenesis markers, the upregulation of HRS, TSG101, Alix, sphin-
gomyelin phosphodiesterase 2 (SMPD2), SMPD3, melanocyte including transcription factor
(MITF), STAM1, and GTPases Rab27a and Rab27b expression effectively increases the
exosome yield [234,273]. ESCRT-dependent exosome biogenesis markers, HRS, TSG101,
and Alix, promote endosomal budding, selective cargo sorting, and MBV formation toward
exosome release [235]. The ESCRT-independent biogenesis markers include the vital role
of lipids and tetraspanins such as CD9, CD63, CD37, CD81, CD82, and CD53 during cargo
sorting and exosome budding [235]. Ceramide is a lipid that is essential in the formation
of ILVs, generated by the enzyme neutral sphingomyelinase 2 (nSMase2) [234,235]. As
one of the primary mechanisms of exosome formation, upregulating nSMase2 expression
alongside increased metabolic activity effectively promotes ceramide function within the
ESCRT-independent pathway [234]. Once formed, GTPases Rab27a and Rab27b promote
the transport and binding of MVBs for release [233,235]. The influence of external stimulus
toward increased EV production has been accurately identified in the upregulation of
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essential exosome biogenesis markers. Wang et al. demonstrated the upregulation of
MSC-derived exosomes without increasing the cellular volume [234]. The introduction
of norepinephrine, fenoterol, N-methyldopamine, and forskolin to the MSC culture in-
creased exosome production 3-fold [234]. The additional molecules effectively enhanced
the nSMase2 promotion of ceramide expression as well as Rab27a and Rab27b, correlating
the increased production of exosomes to an abundance of cargo [234,235]. Similarly, the
microcarrier-based expansion of hMSCs within 3D PBS Vertical-Wheel Bioreactors com-
pared to base 2D cultures effectively increased the exosome yield 2.5-fold, an upregulation
of EV biogenesis markers, and the enhanced expression of neuroprotective microRNA [273].
Aside from environmental cues, direct stimulation of the signaling pathways that con-
trol the endolysosomal pathway charged with EV production may produce the largest
yield [271].

Electrical Stimulation Promoting Transdifferentiation and EV Production

Electrical stimulation (ES) is a form of neuromodulation commonly used to stimulate
damaged nerve fibers that induce chronic pain in spinal cord injuries and peripheral
neuropathy [286]. The neuronal response to ES is induced neuroplasticity, which alters the
synaptic release of neurotransmitters, cellular behavior, and overall response to injury [286].
Similarly, the cellular response to an electrical field promotes cellular signaling to initiate
hMSC transdifferentiation toward a neural lineage and increases exosome production for
therapeutic applications, evident in Table 6 [287,288]. Neural-like differentiation, neurite
outgrowth, and increased exosome production are attributed to low-level ES combined with
growth factors and mechanical cues from the external microenvironment [212,288,289].

ES catalyzes the role of neurotransmitters and receptors in cellular signaling, subse-
quently increasing the production of EVs [288]. Limited understanding of the relationship
between ES and cellular signaling further promotes the investigation of ES on the natural
SC response to peripheral nerve injury [290]. Enhanced neural excitation directly alters
voltage-gated ion kinetics across the cellular membrane and the synaptic release of neu-
rotransmitters that influence pain modulation and cellular functionality [286]. Hu et al.
electrically stimulated dorsal root ganglion (DRG) cells with 100 mV/mm, which effectively
increased cellular proliferation as well as the production of glutamate [291]. Glutamate is
an excitatory neurotransmitter that mediates the peripheral nerve communication, cellular
signaling, and SC secretion of exosomes [290]. Once ES is applied, excess glutamate binds
with ionotropic glutamate receptors, causing an influx in Ca2+ [290,291]. As a result, Hu
et al. highlighted the direct correlation between an upregulation in Ca2+ ion concentration
and the increased secretion of EVs [288,291]. Similarly, Zhang et al. exposed cardiac-MSCs
(C-MSCs) to low-level ES from 2 to 72 h. There was a significant increase in the nSMase2
protein levels, crucial to EV biogenesis and release [292]. Compared to C-MSCs (control),
C-MSCs (ES) produced a 38% increase in EV particles/mL concentration and diameter [292].
Alternatively, with high voltage and exposure time, the hyperactive rate of nerve action
potential proved to be damaging to the cell [291]. A complete understanding of ES on the
cell has yet to be fully understood; however, ES has been confirmed to alter cellular energy
metabolism, morphology, phenotype, and Ca2+ expression [291,292]. The optimization of
ES parameters is necessary to ensure cellular proliferation and the secretion of glutamate
and EVs without causing cellular damage or the ability to produce quality EVs. Fukuta
et al. isolated EVs from electrically stimulated B16F1 and 3T3 Swiss Albino cultures that
effectively increased the particle quantity without compromising the exosome quality [288].
Compared to cultures unexposed to ES, Western blot analysis reflected an insignificant
difference in the expression of EV markers CD9, HSP70, and CD81 [288]. The low-level ES
permits a Ca2+ influx to activate exosome biogenesis and Rho GTPase involvement in the
mechanism of cellular exocytosis [288].

The effect of ES can be further enhanced by materials known to possess the ideal
biophysical and conductive properties for enhanced EV secretion and MSC neural differen-
tiation. For example, graphene is commonly used in scaffold manufacturing, implant de-
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vices, and substrates for cellular differentiation [256,293,294]. Despite graphene’s benefits,
complex material production places its viability into question. Guo et al. utilized a reduced
graphene oxide (rGO) microfiber scaffold to enhance electrical stimulation toward neural
differentiation. Further modifications incorporated poly(3,4-ethylenedioxythiophene) (PE-
DOT), a biocompatible conductive polymer, within the rGO microfibers due to negatively
charged carboxylic acid groups. This composite material is bioactive due to rGO and is
highly conductive due to the PEDOT, with no significant effect on mechanical proper-
ties [212]. Compared to rGO microfibers, rGO–PEDOT hybrid microfibers maintained
99% cellular viability, and increased MSC adhesion and proliferation over five days of ES
exposure. Finally, immunostaining and quantitative PCR (qPCR) results expressed Tuj1
and GFAP markers toward neural differentiation [212]. This is attributed to the enhanced
electrical–cellular interface and the mechanical and topographical features that influence
MSC morphology and gene expression [212].

ES has been shown to enhance the MSC microenvironment for differentiation. To
mimic these physiological conditions in a closed system, Naskar et al. fabricated lab-on-a-
chip microfluidic devices. They utilized polymethylmethacrylate (PMMA) as the material
because it is noncytotoxic, biocompatible, and autoclavable for sterilization [287]. Con-
duction within the closed microenvironment is possible with pressure sensitive adhesive
(PSA) tape and two stationary electrodes. This design allowed for a uniform electric field
to stimulate the entire cell population simultaneously. ES was shown to strengthen the
differentiation of C2C12 cells to neural-like cells due to the electrophysiological analysis of
Ca2+ depolarization.

Electroconductive substrates have also been developed and implemented for local-
ized ES during cell proliferation and differentiation. Many conductive polymers were
investigated due to their potential as substrates for biological and medical applications,
one of the most promising polymers being polyaniline (PANI). It was previously shown
to be an excellent matrix that supports cardiac myoblast and nerve cell proliferation and
differentiation [295–297]. Thrivikramn et al. attempted to understand the behavior of
hMSCs grown on PANI films with tunable conductivity combined with ES. Results showed
that the intermittent delivery of low-level ES (100 mV/cm) at 24-h intervals created distinct
morphological changes, enhanced cytoskeletal elongation, and the expression of early
neural markers such as NESTIN and beta-tubulin III, providing further evidence of the
benefit of ES on both neural differentiation and cell proliferation [289].

Table 6. Electrical stimulation to promote transdifferentiation or increased exosome production for
peripheral nerve injury treatment.

Title of Study Cell Culture ES ES Duration ES Method Reference

Intermittent electrical stimuli for
guidance of human mesenchymal

stem cell lineage commitment
towards neural-like cells on

electroconductive substrates.

MSCs DC; 1 mV–2 V 10 min/day, 3 days

Parallel
stainless-steel

electrodes
PANI film

[289]

Neurogenesis-on-Chip: Electric
field modulated transdifferentiation

of human mesenchymal stem cell
and mouse muscle precursor

cell coculture.

hMSCs
Murine myoblast

DC
~8 ± 0.06 mV/mm 20 h/day for 9 days

Microfluidic device;
graphene oxide (GO)

microfiber
[287]

Effectiveness of electrical
stimulation on nerve regeneration

after crush injury: Comparison
between invasive and non-

invasive stimulation.

Sciatic nerve
crush injury

25 Hz, 1–3 mA,
0.1 ms pulse width

30 min/day
5 times/week for

6 weeks

Implanted wireless
cuff electrodes [298]

Low level electricity increases the
secretion of extracellular vesicles

from cultured cells.

Murine
melanoma cell

line, B16F1
0.34 mA/cm2

60 min
Immediate EV

isolation

Two Ag–AgCl
electrodes with

2.5 cm2 surface areas
[288]
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Table 6. Cont.

Title of Study Cell Culture ES ES Duration ES Method Reference

The frequency-dependent effect of
electrical fields on the mobility of
intracellular vesicles in astrocytes.

Rat astrocytes 5 mV/mm; 2 Hz
5 min of constant
voltage; 0.1 nms

pulse 600 total pulses

Stimulus isolator
A365 with

1 KΩ resistor
[299]

Electrical stimulation increases the
secretion of cardioprotective

extracellular vesicles from cardiac
mesenchymal stem cells.

Cardiac MSC 1.5 V/1.8 cm

2–72 h;
1.5 V/1.8 cm voltage,

0.5 Hz frequency,
pulse width at 5 ms

Cultured-cell pacer
system (IonOptix) [292]

The molecular mechanism of cellular differentiation and increased EV production
following ES exposure is inconclusive [299]. However, various studies have concluded on
the increased mobility of secreted vesicles that transport vesicular cargo, neurotransmitters,
neuromodulators, hormones, and peptides [299]. Ang et al. concluded that the effect of ES
may not directly alter the EV, but the external factors that depict cytoskeleton and motor
protein functionality surrounding the vesicles [299]. ES generates an action potential that
increases the expression of Ca2+, neural marker proteins, cellular signaling pathways, and
exosomal paracrine communication, effectively promoting enhanced cargo produced by
MSC-derived EVs [287,300].

Naskar et al. applied a direct current (DC) of low-level ES of ~8 ± 0.06 mV/mm for
20 h/day for nine days to a hMSC and murine myoblast coculture within a microfluidic
device [287]. The microfluidic device mimicked native biochemical cues and the directional
orientation of the ECM to promote neural differentiation [287]. As a result, the appro-
priate microenvironment and ES profile successfully promoted the hMSC expression of
NESTIN, Tuj1, and MAP2 and intracellular calcium-signaling, signifying neuronal synaptic
activity [287]. The condition media also facilitated exosome mRNA protein translation
from differentiated neural hMSCs to the myoblasts, exhibiting neural-like phenotypes
and morphology [287]. DC stimulation at a low frequency has repeatedly demonstrated
successful neural differentiation, increased exosome production, and enhanced axon re-
generation [298]. Enhancement of the external environment further amplifies the method
by which ES promotes nerve regeneration [212,289,300]. Biocompatible, electroconductive
materials such as carbon, graphene, and PANI, enhanced with electrodes, are strategically
engineered to mimic the ECM and induce cellular signals congruent with neural differenti-
ation. However, the long-term integration of various biocompatible materials with the host
tissue for additional manipulation of the external cellular environment requires further
investigation. The studies incorporating biocompatible and electroconductive materials
were conducted in vitro in controlled environments. However, Leng et al. successfully
utilized carbon nanotube bucky paper in vivo to transplant human retinal pigment ep-
ithelium cells within the subretinal space of rats [301]. This study explicitly emphasized
that minimal material manipulation is suitable for short-term host interaction. However,
functionalization of the material surface is required to extend material capabilities beyond
the retina [301].

Depending on the cell type and expected outcome, the parameters for electrical stimu-
lation can range in frequency, direction, magnitude, and current. Therefore, optimization is
challenging. However, the primary comparison between low- and high-level frequency
and an alternating current (AC), DC, and pulsed current contributes toward an optimized
protocol per cell type. An AC flows bidirectionally, causing the charge’s magnitude to
periodically reverse [300]. A DC produces a consistent and directional charge, effectively
guiding the cellular migration toward the anode or cathode [300].

Similarly, a PC, which can be a direct or alternating current, produces a unidirectional
or bidirectional current, allowing a dynamic range of electrical frequency, strength, and
duration [300,302]. Cellular directional migration during ES stimulation, otherwise known
as electrotaxis or galvanotaxis, is influenced by the polarity of the activated intracellular
signaling pathways and Golgi apparatus [300,302,303]. However, this phenomenon is



Biomedicines 2024, 12, 489 23 of 37

cell-type dependent, with MSCs and iPSCs directed toward the anode and neural stem cell
(NSC) migration toward the cathode [302–304]. To investigate cellular viability concerning
ES duration and current, ASCs stimulated with direct and pulsed currents within a custom
agar-salt electrotaxis chamber were exposed to 1200 µA for 3, 6, and 9 h [302]. There
was a direct correlation between increased DC exposure and decreased cellular viability.
However, the exact duration of pulsed current ES revealed minimal cell death while actively
maintaining directional migration toward the anode through Golgi polarization [302].

Regarding frequency, the cellular response to low-level ES includes increased EV
production, the upregulation of neural phenotype markers, and extended neurite out-
growth [288,289,300]. This is ultimately beneficial for neuropathic and nerve injury treat-
ment. Alternatively, the high-level frequency that approaches the voltage capacity of the
cellular membrane, especially for an extended duration, contributes toward decreased
cellular proliferation, viability, and membrane integrity [300,302]. The method and param-
eters by which the ES was applied differed for each experiment. Each ES chamber was
custom-built, thus decreasing the ability to reproduce results quickly. Although the ES
parameters were different, favorable results were consistently produced when applying
low-frequency levels.

5. Discussion

Damage to the PNS results from physical injury or demyelinating mechanisms that
severely alter the microenvironment encompassing the nerves. The current state-of-the-art
treatment methods for neuropathic injury do not effectively treat nerve degeneration but
instead mask the associated chronic pain. Treating physical damage by nerve graft remains
the golden standard; however, donor site morbidity diminishes its success. The transition
to artificial nerve grafts utilizing biocompatible and biodegradable materials is a favorable
alternative. However, the probability of complete nerve regeneration becomes less than
likely as the nerve gap surpasses three centimeters, thus extending the time required for
complete regeneration.

The three stages of SC differentiation mediate the pathophysiology of injury response.
Once fragmented cellular debris is cleared, rSCs and distal and proximal nerve stumps
supplement neurotrophic factors that initiate a cascade of biochemical cues that facili-
tate the remyelination of damaged nerves and accurately guide regrowing axons to the
target site [180]. The signaling pathways most influential in nerve regeneration include
PI3K/AKT/mTORC1, MAPK, Notch, Wnt, and JAK2/STAT3. Each pathway influences
the cellular response to external stress, determining the cellular fate and the natural im-
munoresponse to injury. Working together, nerve regeneration is possible; however, large
peripheral nerves with significant nerve gaps require additional neurotrophic support [180].
Gapped nerves require more time for neurite outgrowth, decreasing the survivability of
rSCs. To overcome this limitation, supplying the nerve conduit with additional factors
will maintain the regenerative microenvironment surrounding regrowing nerves. The
application of MSCs expressing neural phenotypes and rSCs within the biocomposite
conduit will actively modulate the surrounding area. Additionally, rSC-derived exosomes,
compacted with cytokines, anti-inflammatory factors, and miRNA, will supply an optimal
combination of neurotrophic factors necessary to accelerate the regeneration process.

To further promote the regenerative properties provided by the coculture of neural-like
MSC, rSCs, and rSC-derived exosomes, modifications to the external environment enhance
the production of rSC exosomes, increasing the probability of clinical applications. Low
levels of direct electrical stimulation activate the Rho GTPase and PKC signaling pathways
to increase EV production [288]. Within a lab setting, the in vitro application of electrical
stimulation requires a device to supply voltage and conductive electrodes. However, the
previously described schematic could be more realistic and convenient to the patient within
clinical applications. Guo et al. developed a self-generating device powered by triboelectric
charging [212]. Incorporating conductive, biocompatible, and biodegradable materials
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such as carbon nanotubes, enhanced by a triboelectric effect, is an effective method of
maintaining a regenerative environment.

6. Conclusions

The PNS is more susceptible to damage than the CNS, which is protected by the skull
and spinal column. Due to the associated symptoms, individuals affected by peripheral
nerve injuries have trouble navigating through everyday life, preventing effective commu-
nication between the CNS and PNS. These symptoms are influenced by mechanisms such
as the compression or severance of nerves, classified as Grade I–Grade IV injuries. Once a
nerve is severed, the muscular function and sensory information that the nerve innervates
are disconnected. The treatment options for various nerve injuries successfully restore
function; however, the associated disadvantages discourage long-term use. Fortunately,
peripheral nerves can slowly self-regenerate, encouraging the utilization of biocomposite
conduits to guide and facilitate axon reinnervation. In conjunction with a biocompatible
material, seeding neural-like MSCs, rSCs, and rSC-derived exosomes will further encourage
the presence of growth factors necessary for axon growth, myelination, and nerve rein-
nervation. Difficulties arise when attempting this treatment method. Effective treatment
requires accurate mapping of the mechanisms that guide cellular differentiation and release
neurotrophic support.

Before exosomal therapeutics can become an effective clinical option, limitations such
as upscale, site specificity, storage, and quality assurance must be addressed. Upscaling
cellular expansion for EV production has been shown to affect cell quality and, in turn, the
cargo and concentration loaded within exosomes. A practical and repeatable upscaling
technique that ensures minimal difference in cell and exosome quality from static to large-
scale dynamic cultures has yet to be devised. After upscale, long-term storage must also
be addressed. It is pivotal to store EVs for long periods in an economically feasible way
to ensure clinical viability. Research is inconclusive, and many different methods such as
lyophilization, storage buffer, and storage temperature still need to be studied. Despite
having some site specificity due to the markers on their surface, EVs often accumulate
in unintended sites like the liver or spleen. Current research focuses on increasing site
specificity via exosomal surface modifications and cargo. The results are promising, but
considering the effects of culture conditions on EV formation, they should be tackled along
with engineered modifications to produce more site-specific exosomes. More research
on engineered EV surface modifications, storage, particle reconstitution, clearance within
the body, and long-term outcomes are all avenues of research that are of interest in cell-
free therapy. Furthermore, a method of EV isolation to maximize exosome production
as well as the optimal combination of materials necessary to enhance the regenerative
microenvironment must be universally established. With EVs becoming more and more
prevalent in research, it is critical to note that many safety barriers must be addressed.
Regarding MSCs, there are conflicting data regarding safety. While the research suggests
human MSC EVs are nontoxic, these studies are in vitro cultures with small dosages relative
to those needed in clinical work [305]. Despite being nontoxic, there is conflicting evidence
regarding oncogenesis derived from MSC EVs. While EVs cannot grow tumors, they
can inhibit or upregulate tumor growth and metastasis [306–308]. In a 2021 study by
Tan et al., they proposed that these conflicting data could be due to the heterogeneity of
the MSC source, EV isolation methodology, or tumor model utilized [309]. Nonetheless,
more must be known about EVs regarding oncogenesis and other safety concerns prior to
clinical applications.
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Abbreviations

AC Alternating current NAD+ Oxidative nicotinamide adenine dinucleotide
hASC Human adipose derived MSC NADH Reductive nicotinamide adenine dinucleotide
AKT Protein kinase B NAM Nicotinamide
ATP Adenosine triphosphate NEFL Neurofilament light polypeptide
Aβ Alpha beta NEFM Neurofilament medium polypeptide
Aδ Alpha delta NESTIN Neuroepithelial stem cell protein
BBB Blood–brain barrier NK-kB Nuclear factor-kappa beta
BDNF Brain-derived neurotrophic factor NGF Nerve growth factor
b-FGF Fibroblast growth factor nm Nanometers
hBM-MSC Human bone marrow derived MSC NMDA N-methyl-D-aspartate
Ca2+ Calcium NMN Nicotinamide mononucleotide
CD44 Cluster of differentiation 44 NMNAT Nicotinamide mononucleotide adenylyltransferase
CHMP4C Chromatin modified protein 4C NP Neuropathic pain
CIPN Chemotherapy-induced peripheral neuropathy NR Nicotinamide riboside
CNS Central nervous system nSMase2 Neutral sphingomyelinase 2
CT Computerized tomography
DC Direct current NT-3 Neurotrophin-3
DHT Dihydrotestosterone NURR1 Dopaminergic neuron marker
DPN Diabetic peripheral neuropathy OCT-3/4 Octamer transcription factor 3 and 4
DSN Distal symmetric neuropathy P0 Protein zero
ECM Extracellular matrix PI3K Phosphatidylinositol 3-kinase
ER Endoplasmic reticulum PAX6 Paired box 6
ESCs Embryonic stem cells PC Phosphatidylcholine
ESCRT Endosomal sorting complex required for transport PCL Polycaprolactone
EVs Extracellular vesicles PE Phosphatidylethanolamine
FasL Fas ligand PGA Poly-glycolic acid
FBS Fetal bovine serum PI Phosphatidylinositol
FDA U.S. Food and Drug Administration PLA Polylactic acid
FK506 Tacrolimus PLGA Poly-dl-lactic-co-glycolic acid
GABA Gamma-aminobutyric acid PMP22 Peripheral myelin protein-22
GAP-43 Growth-associated protein 43 PN Peripheral neuropathy
GDF3 Growth and differentiation factor 3 PNS Peripheral nervous system
GDNF Glial cell-derived neurotrophic factor PS Phosphatidylserine
GFAP Glial fibrillary acidic protein PSA Pressure sensitive adhesive tape
GluN1 Glycine-binding subunits PVA Polyvinyl acetate
GM Gangliosides qPCR Quantitative polymerase chain reaction
GPCR G protein-coupled receptor
GPI Glycosylphosphatidylinositol RA Retinoic acid
GTPase Guanosine triphosphate Rab GTPases Ras-associated binding guanosine triphosphates
HA Hyaluronic acid REX1 Reduced expression 1
hASC Human ASC ROS Reactive oxygen species
hBM-MSC Human BM-MSC rSCs Repair Schwann cells

Hrs
Hepatocyte growth factor-regulated tyrosine
kinase substrate

RT-PCR Reverse transcription polymerase chain reaction

HF High frequency S100B Calcium-binding protein B

HLA-DR Human leukocyte antigen SARM1
Sterile alpha and toll/interleukin-1 receptor
motif-containing 1

HPL Human platelet lysate SC Schwann cell
Hsc Heat shock cognate SHH Sonic Hedgehog protein
Hsp Heat shock protein SMPD2 Sphingomyelin phosphodiesterase 2
hUC Human umbilical cord SOX2 Sex determining region Y-box 2
Hz Hertz STAM1 Signal transducing adaptor molecule
IGF-1 Insulin-like growth factor 1 STZ Streptozotocin
IL Interleukin TENS Transcutaneous electrical nerve stimulation
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ILV Intraluminal vesicles TfR Transferrin receptor
iPSCs Induced pluripotent stem cells TGF-β1 Transforming growth factor-beta 1
JNK C-Jun N-terminal kinase TH Tyrosine hydroxylase
K+ Potassium TLR4 Toll-like receptor member 4
KLF4 Kruppel-like factor 4 TNF-α Tumor necrosis factor
kPa Kilopascal
LAMP1 Lysosomal-associated membrane protein 1 Trp Tryptophan
LF Low frequency TRAIL TNF related apoptosis-inducing ligand
mA Milliamps TSG Tumor susceptibility gene
MAL Myelin and lymphocyte protein Tuj1 Class III beta-tubulin
MAPK Mitogen-activated protein kinase hUM-MSC Human umbilical cord derived MSC
MEK/ERK Kinase extracellular signaling regulation pathway VEGF Vascular endothelial growth factor
MHC Major histocompatibility complex VPS Vascular protein sorting-associated protein
miRNA MicroRNA VTA1 Vacuolar protein sorting-associated protein
MITF Melanocyte including transcription factor WD Wallerian degeneration
MM Multiple myeloma WHO World Health Organization
MRI Magnetic resonance imaging Wlds Wallerian degeneration slow
mRNA Messenger RNA µs Microseconds
MSCs Mesenchymal stromal cells µm Micrometers
MVB Multivesicular bodies 2D Two-dimensional
NA Nicotinic acid 3D Three-dimensional
Na+ Sodium
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