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Abstract: Anti-ageing biology and medicine programmes are a focus of genetics, molecular biology,
immunology, endocrinology, nutrition, and therapy. This paper discusses metabolic therapies aimed
at prolonging longevity and/or health. Individual components of these effects are postulated to
be related to the energy supply by tricarboxylic acid (TCA) cycle intermediates and free radical
production processes. This article presents several theories of ageing and clinical descriptions of the
top markers of ageing, which define ageing in different categories; additionally, their interactions with
age-related changes and diseases related to α-ketoglutarate (AKG) and succinate SC formation and
metabolism in pathological states are explained. This review describes convincingly the differences
in the mitochondrial characteristics of energy metabolism in animals, with different levels (high
and low) of physiological reactivity of functional systems related to the state of different regulatory
systems providing oxygen-dependent processes. Much attention is given to the crucial role of AKG
and SC in the energy metabolism in cells related to amino acid synthesis, epigenetic regulation, cell
stemness, and differentiation, as well as metabolism associated with the development of pathological
conditions and, in particular, cancer cells. Another goal was to address the issue of ageing in terms of
individual characteristics related to physiological reactivity. This review also demonstrated the role of
the Krebs cycle as a key component of cellular energy and ageing, which is closely associated with the
development of various age-related pathologies, such as cancer, type 2 diabetes, and cardiovascular
or neurodegenerative diseases where the mTOR pathway plays a key role. This article provides
postulates of postischaemic phenomena in an ageing organism and demonstrates the dependence of
accelerated ageing and age-related pathology on the levels of AKG and SC in studies on different
species (roundworm Caenorhabditis elegans, Drosophila, mice, and humans used as models). The
findings suggest that this approach may also be useful to show that Krebs cycle metabolites may
be involved in age-related abnormalities of the mitochondrial metabolism and may thus induce
epigenetic reprogramming that contributes to the senile phenotype and degenerative diseases. The
metabolism of these compounds is particularly important when considering ageing mechanisms
connected with different levels of initial physiological reactivity and able to initiate individual
programmed ageing, depending on the intensity of oxygen consumption, metabolic peculiarities, and
behavioural reactions.

Keywords: tricarboxylic acid cycle intermediates; ageing mechanisms; individual physiological
reactivity; bioenergetic mechanisms of ageing; individual ageing processes; anti-ageing therapy

1. Introduction

Ageing is the world’s No. 1 killer. It is a genetically determined long-term biological
process [1]. All living things—from the simplest biological entities to such a complex entity
as an organism—undergo this process. Ageing can be physiological (natural) and patho-
logical, i.e., accelerated or premature [2]. The processes of negative senescence/negligible
senescence are considered by many authors [3,4] and link these phenomena with a mortality
risk that remains stable or decreases with age. These processes, as noted by some authors [5]
are observed in some wild animals. It is noted that the age-independent mortality of these
groups of animals may result in an abnormally long maximum lifespan. The authors [5]
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emphasise that these features of ageing individuals may be incompatible with generally
accepted evolutionary theories of ageing. These mechanisms regarding the rate of ageing of
wild animals with a low probability of recovery may be comparable for any ageing models
and can be effectively used to improve and prolong human health [6]. Physiological ageing
differs from premature ageing, first of all, by the fact that it is not burdened with diseases
and, therefore, it does not need to be treated. It is a process that affects all cells of the human
body. Anti-ageing biology and medicine programmes incorporate the latest knowledge in
molecular biology, genetics, immunology, endocrinology, nutrition, therapy, cosmetology,
and other specialisations [7].

Elucidation of the mechanisms of ageing and determination of metabolic therapies,
such as calorie restriction [8], fasting [9], exercise [10], and ketogenic diets [11], have been
convincingly shown in the literature to prolong longevity and/or health [12]. Individual
components of these effects are postulated to be related to energy supply and free radical
production processes. However, their convincing benefits, as shown in studies from
different systematic groups [13], are still limited and their relationship to the underlying
mechanisms of ageing is not completely clear.

There are so-called biomarkers of ageing that help to estimate a person’s biological
age—these are measurable physiological parameters that can be used to qualitatively
and quantitatively determine/measure the process of human ageing [14]. Knowing the
deviation of a biomarker from the norm, it can be adjusted and thus it is possible to slow
down the ageing process using data-intensive technologies [15].

The convincing differences in the mitochondrial characteristics of energy metabolism
in animals with different levels (high and low) of physiological reactivity of functional
systems shown in the literature are related to the state of three leading regulatory systems
providing oxygen delivery to tissues: the respiratory system, the state of the cardiovascular
system, and the transport function of blood [16,17]. Hypoxic damage that accompanies
many pathologies is especially intensified in old age subjects. Importantly, these differences
in the resistance to oxygen deficiency imply differences in the implementation of ageing
programmes resulting from differences in the systemic inflammatory response, depending
on species, organ, sex, age, and individual characteristics [18]. In combination, all these
functional–metabolic characteristics of low-resistant animals may be the cause of such
diseases as diabetes, atherosclerosis, coronary thrombosis, ketoacidosis, etc., and the pos-
sibility of their development is much higher than in animals with high resistance, which
classifies the former into a risk group with rapid fatigue and reduced performance. It is
important that short- and long-term bioenergetic mechanisms of adaptation to hypoxia
implemented during the life of each individual differ, which in turn can intensify the ageing
programmes [19,20].

Since it is difficult to overestimate the crucial role of the tricarboxylic acid (TCA)
cycle (i.e., Krebs cycle, citric acid cycle) in the energy metabolism of cells, amino acid
and protein synthesis, epigenetic regulation, cell stemness and differentiation, fertility
and reproductive health, as well as the metabolism associated with the development of
pathological conditions and, in particular, cancer cells, the aim of this review was to address
the issue of ageing in terms of individual characteristics related to physiological reactivity.
What role can substrates of the Krebs cycle play in these processes? This review discusses
our reports and other recent data on these relationships to suggest the causes of loss of
efficiency and ways to overcome it, using the example of individual physiological reactivity,
which may determine the direction of individual ageing-based processes on the structure–
function relationships of energy metabolism. Consideration of the relationship between
these interdependent processes was the additional aim of this study.

2. Biological Mechanisms of the Ageing Process

There are several theories of ageing [1,21,22], but one of the most popular and most
widely supported approaches has been proposed by López-Otín et al. [23], who defined
ageing in different categories and explained the interactions between various factors stim-
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ulating the development of age-related changes and diseases. For example, Gonçalves
et al. [24] described the major causes of ageing related to epigenetic changes associated with
gene expression [25], e.g., global DNA methylation in genes [26], epigenetic alterations,
genomic instability, and mitochondrial dysfunction related to the mitochondrial DNA copy
number, depletion of telomeres on chromosomes or telomere attrition, and changes in
proteostasis processes leading to the accumulation of cellular waste by Hsp70 and Hsp72
markers [27]. The relative contribution of energetic and functional barriers to the evolution
and manifestation of ageing is discussed in the work of the authors [28]. The results of
experiments on interorgan systems to determine the longevity of species in adapting to
ecosystems presented in several papers highlight the role of heterochronic parabiosis, sys-
temic factors such as DAMP, TF-like vascular proteins, and inflammation, and they focus
on the ageing clock located at different levels of organisation from individual cells to the
brain [29,30]. The uncontrolled free radical production and oxidative stress postulated by
many authors [22] lead to mitochondrial dysfunction and, consequently, impaired energy
production [31].

The ageing process is characterised by the appearance of ageing signs in organs and
systems with a different onset time, a different degree of expression of age-related changes
in organs or their separate parts, and a different speed. These changes can be observed
in tissues and systems, such as the blood, heart, liver, and skin [32]. The processes of
early ageing are distinguished by the presence of an aetiological factor, which leads to the
initiation of pathological processes by the reduced efficiency of compensatory mechanisms
and a more pronounced limitation of adaptation to changing environmental conditions
and, finally, by more pronounced chronic and acute changes in the organism when the
changes relate to one organ or system (Figure 1).
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Figure 1. Biological mechanisms of the ageing process.

The causes of ageing are associated with the impaired nutrient sensitivity of cellular
functions, inducing cellular ageing accompanied by chronic inflammation and loss of tissue
regeneration. Another important process is stem cell depletion and altered intercellular
communication, e.g., chronic inflammation and dysfunctional cell behaviour in the GDF-15
analysis of mitochondrial dysfunction [33], cellular senescence as a homeostatic biological
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process that has a key role in driving ageing [34–36], and altered intercellular communi-
cation [37]. Significant aspects of mitochondrial changes during ageing as elements of
some anti-senescence strategies are considered in study [38]. Other important signs of
ageing that are possible to add to the existing paradigm have been reported by Gonçalves
et al. [24]. The first proposed new sign is impaired autophagy. The process of autophagy
during ageing is a phenomenon in which cells consume their own components (organelles)
as a fuel source, and it is associated with dysregulation of splicing, which builds RNA from
DNA, disturbances in the microbiome [39], and dysfunction of laminin, i.e., the nuclear
envelope protecting DNA.

3. Biomarkers of Ageing

Ageing is a series of processes that include direct DNA damage, the accumulation
of cellular waste, metabolic errors, and imperfect repair and the body’s response to these
processes, resulting in the development of known signs of ageing and age-related diseases.
According to the Ageing Biomarker Consortium, the definition of ageing consists of three
main combinations of biological parameters: assessment of age-related changes, tracking
the physiological ageing process, and prediction of the transition to pathological status [40].

The clinical descriptions of the top markers of ageing, which are currently being
investigated, include the following parameters [24]: DNA copy number, telomere length,
global DNA methylation, Hsp70 and Hsp72, insulin-like growth factor 1 (IGF-1) [41,42],
SIRT1 (Sir2) as an NAD+-dependent deacetylase playing critical roles in a broad range
of biological events [43] and a deregulated nutrient-sensing level, GDF-15, CD4+, and
CD8+ cell percentages [44] as a cellular senescence level [45,46], and circulating osteogenic
progenitor (COP) cells as a marker of stem cell exhaustion. Next in this line are the levels
of IL-6 [47], CRP, and TNF-alpha as evidence of altered intercellular communication [48].
The authors indicated that IGF-1, SIRT1, GDF-15, IL-6, CRP, and TNF-alpha were the most
efficient biomarkers.

The thickness of the intima–media complex (IMC) of the common carotid artery
characterises vascular ageing and is a marker of early atherosclerotic lesions in the vascular
wall. The IMC not only reflects local changes in the carotid arteries, but also indicates the
prevalence of atherosclerosis. The greater the IMC thickness, the higher the likelihood of
ischaemic stroke and transient ischaemic attack [49]. Such parameters as blood pressure,
body mass index, and waist circumference are often associated with biomarkers of ageing.
In clinical practice of cardiovascular diseases, high insulin-like growth factor-1 also seems
to be a biomarker of ageing; it may indicate the presence of inflammatory processes that
accelerate ageing and the levels of glycosylated haemoglobin, IL-6, C-reactive protein,
ferritin, and homocysteine [50].

Among the many factors of ageing, mitochondrial dysfunction, the accumulation
of cells that have already lost the ability to divide (senescent cells), genome instability,
deregulation of major genes (epigenetic ageing), glycation (protein cross-linking and ag-
gregation), systemic inflammation, chronic hypoxia, and chronic stress are now being
highlighted [51,52]. This ranking of the main biomarkers was added by authors who
assessed 44 markers in seven categories, categorising 19 as high, 22 as moderate, and three
as low [53].

A very important molecular pathway that accelerates ageing is the activation of the
mTOR signalling pathway [54,55]. The mTOR pathway is activated by the consumption of
large amounts of the amino acid methionine (red meat, sausages), which, on the one hand,
is an essential amino acid and therefore essential for the normal functioning of the body [56].
At the same time, an excess of methionine, especially at a certain age (approximately after
40 years), provokes accelerated protein synthesis; hence, the cell grows, depending on
its specialisation, multiplies and, ultimately, finds itself in a stressful situation, because
this protein cannot specialise [57]. Since this is a very energy-intensive process, extremely
important mechanisms for controlling “breakdowns”, such as autophagy (the process of
cell self-cleaning from cellular debris), are disabled [58]. If the intake of methionine can
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somehow be inhibited (for example, by eating poultry instead of red meat), the processes
that promote cell self-cleaning and repair of “breakdowns” are activated, stress resistance
increases, and the chances of being healthy increase (Figure 2).
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The systematic research on biological ageing targeted at understanding the underly-
ing mechanisms of stressors and energy supply processes continues, especially after the
publication of studies showing that chronic stress at an early age reduces life expectancy.
The concept proposed by [59] explains that chronic exposure to cortisol at an early age con-
tributes to persistent changes in the stress response system and compromises the regulation
of central immune system genes whose expression controls inflammation. Since the body’s
regenerative capacity is known to depend on the state of immune regulation, an in-depth
understanding of the immune system responses to stressors may explain the link between
chronic stress and impaired regeneration. The potential of research in studying the role of
klf9 in the development of age-related neurodegenerative diseases, such as Alzheimer’s
disease, has been underlined. It has been suggested that klf9 is a central gene in under-
standing the mechanism of the optimal regulation of inflammation and the peculiarities of
changes in this typical pathological process under the influence of stress factors in the early
stages of organism development. This work highlights the potential for synergy that arises
between scientists who collaborate in the study of ageing and regeneration [59].

4. Accelerated Ageing and Age-Related Pathology

Postischaemic phenomena in an ageing organism have been convincingly demon-
strated for heart tissue in comparison with skeletal muscle and other tissues (e.g., liver),
which differ in functional metabolic specificity; in an ageing organism, myocardial dysfunc-
tion is the result of the development of significant metabolic disorders in the myocardium
during ischaemia and reperfusion to a degree that is not yet sufficient for necrosis but
significantly impedes the restoration of its functional state caused by autophagy in the
heart [60]. This means that metabolic correction with drugs that directly contribute to
the normalisation of an impaired myocardial metabolism and can provide a more rapid
and effective normalisation of the functional state of the heart significantly reduces the
risk of the severe consequences of heart disease associated with hypoxia and subsequent
myocardial infarction [61]. Biology and clinical medicine today have made quite a big step
towards studying the problems of ageing, and it makes sense to try to manage the error
accumulation programme and the genetic programme. The first programme of the accumu-
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lation of negative tendencies is associated with hormonal imbalance, chronic inflammatory
diseases, metabolic disorders, stress, and behavioural reactions such as smoking, eating,
etc. [62].

The search for effective means and methods of preventing premature ageing continues.
To treat and prevent premature ageing, geriatric agents or geroprotectors are used, which
have a stimulating effect on the ageing organism, normalise disturbed functions of organs
and systems, improve metabolism, and increase compensatory capabilities [63]. There are
many substances known to have the ability to slow down the ageing process and thereby
increase life expectancy. These geroprotectors include vitamins, anabolic agents, biogenic
stimulants, adaptogens, hypolipidemic agents, and peptide bioregulators of the cytomedine
class [64].

5. Krebs Cycle as the Key Component of Cellular Energy and Ageing

The tricarboxylic acid cycle (TAC), or Krebs cycle, was discovered in 1937 by Hans
Krebs. The reactions of this cycle take place in the matrix of the mitochondria (Mt) and
are the main source of reducing equivalents in the respiratory chain [65]. The oxidation of
intermediate products of protein, fat, and carbohydrate catabolism occurs in the mitochon-
drial matrix. Thus, fatty acids are converted into acyl derivatives of coenzyme A, which are
oxidised in the Mt matrix. The breakdown and oxidation of carbohydrates is accompanied
by the formation of ATP and pyruvic acid (PIR). The conversion of PIR involves its oxida-
tive decarboxylation in the Mt matrix and the incorporation of the resulting acetyl-CoA
into the TAC. During the hydrolysis of proteins, acetyl-CoA, α-ketoglutarate, fumarate,
and succinate are formed along with amino acids. The final oxidation of these compounds
also occurs in a cyclic reaction system called the TAC [66].

The Krebs cycle begins with the formation of citrate from oxaloacetate and acetyl-CoA
and ends with the formation of carbon dioxide, water, and oxaloacetate regeneration. The
condensation of oxaloacetate from acetyl-CoA, which is formed during the oxidation of
PIR, fatty acids, and amino acids, leads to the regeneration of citrate and supports the
cycle [67]. Krebs cycle reactions are accompanied by the transfer of hydrogen atoms to
NAD+ molecules. The reduced form of NAD+ is the main intermediate between the Krebs
cycle and the respiratory chain located in the inner membrane of the Mt. Aging is associated
with the development of oxidative stress, inflammation and impaired Ca2+ control in the
failing heart as shown by Bhullar et al. [68].

During the transition of the cell to the activation of physiological functions, the se-
quence of TAC reactions changes and the initial enzymes of the cycle, such as citrate
synthase and isocitrate dehydrogenase, already do not determine the general rate of
this cycle, and the limiting stage in this process consists in the oxidation of one of its
intermediates, i.e., succinic acid (SC). Respiratory complex II (succinate dehydrogenase
(SDH), canonically SDHA-SDHB-SDHC-SDHD, but with exceptions) is a heterotetrameric
membrane-spanning enzyme, as postulated by Iverson et al. [69].

As reported by a number of authors [70], the activation of SC oxidation in these
conditions is determined by the possibility of rapid renewal of its pool due to the transam-
ination of glutamic, oxalic, and acetic acids with subsequent oxidative decarboxylation
of alpha-ketoglutarate (KGL) to SC. It has been shown that the oxidation of succinate by
mitochondria can generate a higher protonmotive force than can the oxidation of NADH-
linked substrates [71], which may result from substantial succinate oxidation in vivo in
pathological conditions.

The data on the structural organisation of TAC enzymes in the matrix, which are
organised into a multi-enzyme complex, i.e., a “metabolon” [72,73], are in good agreement
with this hypothesis. At the same time, dicarboxylic acid oxidation enzymes and aspartate
aminotransferase form a closely associated aggregate in the centre of the complex, which
creates conditions for accelerating their interaction. Thus, TAC enzymes act as a source
of reducing equivalents entering the respiratory chain and ensuring the formation of an
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electrochemical potential gradient on the inner membrane of the Mt as a universal form of
energy that provides the energy and transport functions of the Mt [66].

Recent data on the maintenance of homeostasis in the regulation of metabolism and cell
death, in which sestrins, maintaining intracellular homeostasis through AMPK and mTOR
kinases, play a leading role, have led to a conclusion about the role of sestrins in ageing and
disease protection. Sestrins, i.e., mTORC1 inhibitors and stress-responsive proteins, are
involved in the control of ageing, and Sestrin2 is a member of a family of stress-responsive
proteins. These proteins control cell viability, have antioxidant activity, and take part as
regulators of the mammalian target of the rapamycin protein kinase (mTOR) pathway.
Thus, it has been demonstrated that the inactivation of Sestrin2, which regulates redox
homeostasis and apoptosis in response to various stresses, can reduce ATP production [74].
Sestrin2 causes a decrease in both oxidative phosphorylation and glycolysis [75]. It seems
that two amino acids, aspartate and glutamate, which are directly produced from the TCA
cycle, can activate the mTOR [76,77]. Thus, the activation of sestrins in response to stress
likely plays an important role in maintaining energy production via the TAC.

6. mTOR, Ageing, and Metabolism

DNA damage is known to stimulate ATP production by maintaining the oxidative
phosphorylation chain, which may be essential for repair processes [78], and sestrins may
participate in this process, as these proteins are activated in response to DNA damage [79].
Metabolic disorders in mitochondrial malfunctions, the suppression of glycolysis, or insuf-
ficient supply of essential nutrients, such as glucose or amino acids, lead to the induction
of Sesn2 caused by the activation of transcription factors ATF4 and NRF2 [80]. Genetic or
pharmacological inhibition of the mTORC1 kinase has been shown to increase the lifespan
in most eukaryotic organisms studied, including yeast, flatworms, flies, and mice [81], in
the nuclear ageing program. Some studies have shown increased longevity in a wide range
of organisms due to calorie restriction, defined as a reduction in nutrient intake [82]. Given
the critical role of the mTORC1 in nutrient and insulin sensing [83], it has been speculated
that the beneficial effects of calorie restriction on the lifespan are also related to reduced
mTORC1 signalling through overlapping mechanisms. Important issues related to caloric
restriction and the activation of autophagy, which increases longevity by delaying the
onset of age-related diseases in most living organisms, are discussed in a paper [84]. For
these metabolic pathways in yeast [85] and cellular senescence processes in nematode, the
protein kinase CK2 has been proposed [84].

Since ageing is closely associated with the development of various age-related patholo-
gies, such as cancer, type 2 diabetes, and cardiovascular and neurodegenerative dis-
eases [86], the mTORC1 kinase plays a key role in the regulation of ageing in this case.
Sesn2, in turn, maintains cell viability in the conditions of ischaemia as well as glucose
and amino acid starvation. Although the contribution of sestrins to the defence against
cellular death is in many cases related to the regulation of the AMPK-mTORC1, which
leads to the inhibition of biosynthetic processes in the cell and supports catabolic processes
aimed at energy production and the repair of cellular structures, it is possible that Sesn2
in glucose starvation protects against necrotic death through a mechanism by controlling
mitochondrial function and maintaining mitochondrial respiration in stress conditions [75].

Can TCA metabolites be used to effectively and efficiently influence biological age?
Understanding the molecular mechanisms of ageing and the role of nutrition and supple-
ments that can slow down these processes often helps people stay healthy. The following
important links between TAC metabolites and the mTOR as the main target and sestrin
are related to the concepts that metabolic interventions deplete acetate stores and probably
reduce the conversion of oxaloacetate to aspartate, thereby inhibiting the mammalian target
of the rapamycin (mTOR) pathway and enhancing autophagy [54]. Another important
finding relates to the effects of glutathione, which promotes autophagy and prevents AKG
accumulation, supporting stem cell maintenance [65,87].
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The previously demonstrated negative effects of SC accumulation [88,89] contribute to
slowing down DNA hypermethylation, promoting the repair of DNA double-strand breaks,
reducing inflammatory and hypoxic signalling, and reducing dependence on glycolysis.
The following dependencies of accelerated ageing and longevity decline processes are
also discussed in the literature as progressive damage to aconitase, inhibition of succinate
dehydrogenase, and suppression of hypoxia-inducible factor-1α and phosphoenolpyruvate
carboxykinase, as shown by Jia et al. [90]. Possibly due to these mechanisms, metabolic
interventions using TAC metabolites may slow down ageing and increase longevity. Con-
versely, in the case of overnutrition or oxidative stress, these processes act in the opposite
direction, accelerating ageing and worsening longevity. Therefore, consideration of the
involvement of Krebs cycle metabolites in the basic processes of cellular energetics should
be examined with reference to the specific involvement of the leading metabolites, i.e.,
ketoglutarate and succinate, the role of which has been convincingly demonstrated in a
number of studies and is given below.

7. α-Ketoglutarate, Energy Metabolism, and Ageing

The key role of α-ketoglutarate in TAC activity for mitochondrial respiration has
recently been shown in experiments with labelled TAC metabolites in brain mitochondria
oxidising a mixture of pyruvate+glutamate+malate substrates, which caused a significant
increase in α-ketoglutarate (AKG) content [91,92]. The peculiarities of TAC functionality,
which operates as two conjugated cycles and oxidises overamidation substrates, were
previously reported by Yudkoff et al. [93] in rat brain synaptosomes and were examined as
fluxes and interactions with aspartate aminotransferase and the malate/aspartate shuttle.
The authors suggested that, in the presence of glutamate+pyruvate, the cycle operates
as two coupled cycles, with the first cycle starting from α-ketoglutarate to oxaloacetate
and the second cycle operating from oxaloacetate to AKG. These values in the first cycle
were 3–5-fold higher than the flux between oxaloacetate and 2-oxoglutarate measured
in the presence of glucose. Thus, during oxidation of the glutamate+pyruvate substrate
mixture, activation of the α-ketoglutarate dehydrogenase complex (KGDHC) and succinate
dehydrogenase (SDH) can significantly increase the rates of metabolite flux through the
TCA and respiratory chain during oxidative phosphorylation.

The specific functioning of the substrate–enzyme complexes of the Krebs cycle, as well
as the activity of SDH in the TCA, can be inhibited by endogenous oxaloacetate (OAA) in
a process named intrinsic inhibition of SDH [94], which limits the rate of the entire TCA
in metabolic states 3 (phosphorylating respiration) and 3P (uncoupled respiration). The
ability of glutamate and pyruvate together and singly to overcome SDH inhibition has
been linked to the metabolic removal of OAA in citrate synthase and aspartate and alanine
aminotransferase reactions.

The second limiting point in the TCA is the reaction catalysed by KGDHC, as shown
by Sheu and Blass [72]. It has previously been shown that the activity of KGDHC is the
lowest of all the TCA enzymes [95] and is controlled by the presence of α-ketoglutarate and
its affinity for KGDHC, which is controlled by Ca2+ and Mg2+ ions [96]. Also, a decrease in
the ATP/ADP ratio in the mitochondrial matrix due to increased energy consumption and
a concomitant decrease in membrane potential in the mitochondria of activated neurons
also increases the GDF content for substrate phosphorylation, which will also contribute to
increased KGDHC activity.

The literature presents the results of animal and human studies showing the antioxi-
dant properties of AKG; namely, a number of metabolites modify the activity of KGDHC,
including inactivation by 4-hydroxynonenal and other reactive oxygen species (ROS) [72].
The mechanism of action of AKG is associated with the metabolism of amino acids, such as
glutamate and glutamine, and has nutritional and therapeutic effects via the glutamine-
AKG axis, improving the health and well-being of animals and humans [97]. AKG acts as
an antioxidant because it reacts directly with hydrogen peroxide to form succinate, water,
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and carbon dioxide. The mechanisms of oxidative decarboxylation involving AKG are also
considered as important [98].

Another study also discusses improvement of cellular energy status, immunity, and
health via animal and human nutrition [99]. The possible physiological mechanism of
the effect of AKG on the digestive tract was elucidated by scientists in a study on Cherry
Valley ducks in the following way: the ratio of AMP to ATP, total adenine nucleotide in
the ileal mucosa and hepatic and ileal messenger RNA expression of AMP kinase α-1, and
hypoxia-inducible factor-1α [100].

The effects of AKG on ageing processes and healthspan and the possibilities of AKG
use as an anti-ageing agent are shown in Table 1.

Table 1. Effects of alpha-ketoglutarate (AKG) on ageing processes and healthspan and possibilities of
AKG use as an anti-ageing agent.

Model Description Possible Mechanisms Authors

Lifespan of adult Caenorhabditis
elegans, proposal of new strategies

for the prevention and treatment of
ageing and age-related diseases in

both C. elegans and mammalian cells

Molecular mechanisms underlying
ad libitum feeding processes,

dietary restriction connected with
the lifespan and age-related

diseases in evolutionarily diverse
organisms

AKG impact inhibited ATP
synthase and reduced the ATP

content, which decreased oxygen
consumption and increased

autophagy processes

[101]

Caenorhabditis elegans as a model
system, C. elegans orthologue of the
ATP5B model, effects of modulators

of worm longevity

Critical role of AKG in prolonging
the lifespan, mediator of autophagy

by inhibition of the TOR
mechanism

ATP synthase as a potential target,
mechanism of inhibition of TOR by

AKG, the relationship of ATP58
inhibition with TOR target of

rapamycin (TOR), 5′ adenosine
monophosphate-activated protein

kinase (AMPK), and FoxO

[102]

Drosophila fruit fly model receiving
diets with 5 µM AKG

Heat shock protein genes (Hsp22
and Hsp70), mRNA expression, cry,
FoxO, HNF4, p300, Sirt1, AMPKα,
HDAC4, PI3K, TORC, PGC, and

SREBP genes

ATP/ADP ratio, increased
autophagy processes, AMPK,

activation of AMPK signalling,
inhibition of the mTOR pathway

[103]

Analysis of AKG effects on
roundworm Caenorhabditis elegans
(C. elegans), Drosophila, mice, and

humans as models in different
ageing and longevity studies

The review discusses different AKG
effects on the lifespan depending on

the animal (C. elegans, Drosophila,
mice) and human models

Regulation of stem cell behaviours,
modulation of the level of

inflammation processes, activation
of the Nrf2/ARE signalling

pathway, and ROS reduction, the
AMPK signalling pathway and

downregulation of mTOR

[104]

Potential therapeutic use in humans
to treat age-related diseases, clinical
studies of therapeutic interventions

Potential positive effects of AKG on
muscle growth, wound healing, and
promotion of faster recovery after

surgery; dietary supplementation in
humans

Antioxidant properties; cellular
respiration processes, one of the key

regulators of the citric acid cycle
[105]

Analysis and discussion of data
from different sources obtained in
different models: nematodes, fruit

flies, yeast, and mice, and
limitations of AKG use as a

geroprotective agent

Potential anti-ageing effects and
geroprotective action of AKG
through mimicking of calorie
restriction and properties of a

hormesis agent

Modulated energy production
mechanisms connected with Krebs

cycle functioning, production of
moderate levels of ROS according
to the hormesis conception, impact

on DNA obligate substrate and
histone demethylases processes,

direct antioxidant properties

[106]



Biomolecules 2024, 14, 260 10 of 25

Table 1. Cont.

Model Description Possible Mechanisms Authors

Analysis of alpha-ketoglutarate
calcium salt on the healthspan and

lifespan in C57BL/6 mice

Series of longitudinal and clinical
experiments on a longer and

healthier life in the murine model,
by a mechanism reducing frailty

and enhancing longevity, and
compression of morbidity

Decrease in the levels of systemic
inflammatory cytokines,

namely IL-10
[107]

Calcium alpha-ketoglutarate salt
dietary supplementation in the

murine model, frailty index study,
analysis of the efficacy of processes

in boosting health and
longevity models

Significant increase in the median
and maximal lifespan in mice, a

decrease in the proportion of life in
which mice were frail, reduction in
frailty scores of females and males
after the impact of the AKG diet.

Only AKG-fed females were
protected against age-dependent

increases in circulating
inflammatory cytokines

AKG as an important agent of the
ageing regulatory pathway, an

amino acid metabolism player, and
a partner in aminotransferase

reactions, reactions involved in
chromatin modification, immune

and inflammatory pathways,
growth regulation, and epigenetic

regulation of gene expression

[108]

Therapeutic use of AKG in different
metabolic pathological processes

and for treatment of diseases

The involvement of AKG in
multiple metabolic and cellular
pathways; the metabolite as an

important key factor in amino acid
biosynthesis, epigenetic processes,
cellular signalling, a transcription
factor in cancer development and

progression, protein deficiency
oxidative stress conditions, an

immunomodulatory agent, and a
bone anabolic factor

Endogenous intermediary
metabolite in the Krebs cycle,

hydroxylation reactions on various
types of substrates,

hypoxia-inducible factor, oxidative
stress

[109]

Clinical study testing in vitro
methods; 28 days of treatment with
the use of AKG-containing cream;

epidermal keratinocyte
proliferation assays

Assessment of skin wrinkles,
texture, elasticity, and firmness

in vitro using capillary
electrophoresis time-of-flight mass

spectrometry assays and
rice-fermented liquid

AKG significantly reduced skin
wrinkles and had anti-ageing effects

on epidermal keratinocyte
proliferation in the skin

[110]

Human osteosarcoma (OS) cell lines
Saos-2 (HTB-85TM) and HOS

(CRL-1543TM) model;
alpha-ketoglutarate disodium salt
dihydrate impact, in vitro study

Anti-osteosarcoma effects of AKG
supplementation in an in vitro
study analysis; JNK pathway,
Bax/Bcl-2 ratio, caspase-9 and

caspase-3; pro-metastatic TGF-β,
and pro-angiogenic VEGF cytokines

Pro-apoptotic effect of AKG, with
its anti-metastatic potential linked
with inhibition of OS cell motility

[111]

AKG exerts its pro-apoptotic effect with an effective anti-metastatic potential ra-
tio [111]. AKG decreased oxygen consumption and increased autophagy processes through
activation of AMPK signalling and inhibition of the mTOR pathway [105]. AKG can modu-
late energy production mechanisms connected with TAC functioning and the production
of moderate ROS levels according to the hormesis conception [106] and has antioxidant
properties [103].

Scientists discuss the involvement of AKG in multiple metabolic and cellular pathways
as an important factor in amino acid biosynthesis, epigenetic processes, cellular signalling,
transcription in cancer development and progression, protein deficiency oxidative stress
conditions, and as an immunomodulatory agent [108,109], which was shown in roundworm
Caenorhabditis elegans, Drosophila, mice, and humans used as models in different ageing and
longevity studies [104].
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8. Succinic Acid and Age-Related Pathologies

Physiological hypoxia and low oxygen levels lead to reduced activity of the SDH
enzyme, which metabolises SC, and other oxygen-dependent enzymes in the electron
transport chain, causing SC accumulation [112]. There are many data on the production of
ROS by intact mitochondria in different tissues (skeletal muscle, heart, and liver of rats)
depending on the goals of the experiment and the use of various substrates and inhibitors of
the electron transport chain. It has been shown that mitochondria do not release measurable
amounts of superoxide or hydrogen peroxide when respiring on complex I or complex
II substrates. Importantly, skeletal muscle or cardiac mitochondria generated significant
amounts of superoxide from complex I through palmitoylcarnitine as substrate respiration.
The authors concluded that, in physiological conditions, mitochondria do not produce
significant amounts of ROS [113].

Another analysis [114] of the rate of superoxide/H2O2 production from different
sites of rat skeletal muscle mitochondria oxidising substrates showed that, when succinate
was oxidised, most of the superoxide formation came from the quinone reduction site in
complex I (site IQ), but when glutamate and malate were used as substrates, the IQ site
made little or no contribution. This supports conclusions about the preferential mobilisation
of the respiratory chain by succinate (experiments without inhibitors) compared to alpha-
ketoglutarate for the production of AFC in muscle tissue [114].

Some studies have demonstrated the specific role of SC in cancer development associ-
ated with the discovery of pseudohypoxia phenomena [115], which refers to the activation
of hypoxia signalling pathways under normal oxygen levels [116]. Pseudohypoxia is a
typical event in tumours with mutated SDH and has been shown in many studies [117].
Mutations in complex II-succinate dehydrogenase, a tumour suppressor, were shown to
stabilise HIF-1 and the related pseudo-hypoxia condition, and on the other hand, to prevent
pseudo-hypoxic gene expression in aerobic cardiac cells [118].

The literature collects the results of animal and human studies that indicate that
targeting metabolic dysregulation has significant implications for the treatment of age-
related cardiac fibrosis and diastolic dysfunction by the oxidation and concentration of
SC in the heart of old animals. A novel mechanism by which succinate induces fibroblast
activation and apoptosis resistance by promoting PKM2 dimerisation in the heart has been
demonstrated [88]. Hence, the inhibition of SC generation or blocking its downstream
effects is potentially a promising new strategy for slowing down heart ageing and kidney
ischaemia–reperfusion injury [89].

The effects of the metabolic syndrome associated with increased glucose levels, which
are relieved by metformin, can be considered as disturbances in energy metabolism and
glucose utilisation through insulin resistance, which is a frequent associated factor of
age-related changes [119]. These effects can be achieved through the application of met-
formin, which is recognised as a potential anti-ageing agent [120]. It is not important that
the induced intense oxidation of succinate in mitochondria under hypoxic loads, which
often accompany pathological conditions, is accompanied by a significant increase in the
production of free radicals and mitochondrial dysregulation processes [89]. The succinate-
dependent metabolism pathways during ageing and pathologies with a varied genesis are
shown in Table 2.
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Table 2. Succinate-dependent metabolism pathways during ageing and pathologies with varied genesis.

Model Description Possible Mechanisms Authors

SUCNR1−/− mouse model and an
AAV9-based approach, older

mice/human model, succinate
receptor as SUCNR1/GPR91 in

analysis of fibrosis processes in old
animals, diastolic dysfunction

process depending on age

Succinate promoted fibroblast
activation and apoptosis resistance

in both young and old mice via
succinate receptor SUCNR1 and

stimulation of PKM2 dimerisation

Dimeric PKM2 translocated to the
nucleus and mitochondria, where it
promoted fibroblast activation and
apoptosis resistance via interaction
with HIF-1α; the metformin impact
as a mediated succinate-dependent

mechanism agent may inhibit
fibroblast activation and apoptosis

resistance in a murine model

[88]

In vitro model of
ischaemia–reperfusion kidney
injury in mice; proximal tubule

cell-specific Pdk4 knockout
(Pdk4ptKO) murine model, pyruvate
dehydrogenase kinase 4 deficiency

analysis

Knockout or pharmacological
inhibition of the PDK4 pathway

ameliorated ischaemia–reperfusion
kidney damage caused by a

cell-permeable form of succinate,
i.e., dimethyl succinate, and

mitochondrial ROS generation
processes

Inhibition of PDK4 prevents in vitro
ischaemia–reperfusion kidney

injury via the reduction in succinate
accumulation and mitochondrial

dysfunction

[89]

Analysis of postoperative cognitive
dysfunction processes,

gerontological patients after cardiac
surgery, and a cognitive impairment
model, people over 60 years of age,
Cytoflavin containing succinic acid

Cytoflavin containing inosine,
nicotinamide, riboflavin, and

succinic acid was used in elderly
postoperative patients in a
multicenter, double-blind,

placebo-controlled, and randomised
study

Improvement of gerontological
patients’ condition [121]

Study of steroidogenic
adrenocortical cells in LPS-induced
systemic inflammation processes in

a murine model,
succinate–succinate dehydrogenase

relationship

Increased succinate levels by
disruption of oxidative

phosphorylation and increased ATP
synthesis connected with high ROS

production

SDHB expression via upregulation
of DNA methyltransferase 1 and

methylation processes in the SDHB
promoter

[122]

Review analysis of the
physiological and

pathophysiological condition
connected with succinic acid

metabolism and SDH functions

Succinate functions and
hypoxia-inducible factor (HIF)-1α,

development of pseudohypoxia
and tumours via mutated SDH,

succinate functions in metabolic or
non-metabolic pathways, lysine
succinylation process as proteins

and immunomodulatory
modification levels, blood

formation or haematopoiesis

Activation of succinate receptor 1
(SUCNR1), G protein-coupled

receptor 91 (GPR91), or
hypoxia-inducible factor-1α,

(HIF)-1α

[112]

In vivo ischaemia–reperfusion of
heart in an open-chest mouse

model, metabolomic analysis of ex
vivo Langendorff heart experiments

Study of succinate-dependent
mitochondrial superoxide
production in myoblasts

Inhibition of ischaemic succinate
accumulation and its oxidation as

an effective way in
ischaemia–reperfusion conditions

[123]

Immune-defective ageing murine
model, clinically relevant

BRAFV600E mutated YUMM1.1
melanoma tumour model, cancer

immunotherapies

Tumour microenvironment study
using polyethylene succinate

microparticle biomaterial

Succinate-mediated immune and
cancer cell responses in a tumour

model and immunotherapies
[124]

Hippocampus of different aged
APP/PS1 double transgenic AD
mice, analysis of the β-amyloid

level with the
immunohistochemistry method

3, 6, 9, and 12-month-old mice
groups, learning and memory test
analysis, mitochondrial damage,

and autophagosome accumulation
assays

Abnormal accumulation of succinic
acid and citric acid associated with
age-related damage to hippocampal

mitochondria in the APP/PS1
murine model

[125]
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Table 2. Cont.

Model Description Possible Mechanisms Authors

Comparative approach aimed at
determination of the plasma

methionine metabolic profile using
an LC-MS/MS platform from
11 mammalian species with a
longevity ranging from 3.5 to

120 years

Species longevity-specific plasma
profile of methionine metabolism

dependencies

Longevity connected with reduced
succinate and malate levels [126]

Mature female Xenopus laevis frogs
INDY-expressing oocyte model,

longevity gene Indy

Succinate-stimulated [14C] citrate
efflux

Longevity gene Indy functions as
an exchanger of dicarboxylate and

tricarboxylate Krebs cycle
intermediates

[127]

According to one of the postulates of the ageing theory, chronic inflammatory pro-
cesses, especially severe inflammation activating the hypothalamic–pituitary–adrenal axis,
are accompanied by the production of anti-inflammatory glucocorticoids by the adrenal cor-
tex, including suppression of the TCA cycle and oxidative phosphorylation in mice [128].
These changes in adrenal dysfunction during severe inflammation at the level of SDH
lead to suppression of ATP synthesis and SC accumulation and are accompanied by ac-
tivation of enhanced ROS generation. Thus, an effective therapeutic way to eliminate
anti-inflammatory dysfunctions of the adrenal gland at increased levels of SC, which
disrupts oxidative phosphorylation and ATP synthesis, is to reduce the SC level.

9. Different Levels of Initial Physiological Reactivity of the Organism Potentially
Determine the Mechanisms of Ageing

It has been shown that high and low physiological reactivity of organism systems to the
action of different adverse factors (stress, adaptation, resistance to hypoxia, etc.) depends on
the intensity of oxygen consumption, metabolic peculiarities, behavioural reactions, and a
number of other individual differences [16–18,20]. A long-term study of monozygotic twins
conducted for 8 years at sea level and altitude has shown that the respiratory response to a
hypoxic stimulus is a rigid, genetically determined, physiological characteristic reflecting
the general non-specific reactivity of the organism [122]. In particular, it has been shown
that the human ability to maintain relatively constant levels of oxygen consumption under
hypoxia is genetically determined (70–80%) and depends on individual sensitivity to
hypoxia and hypercapnia. The genetic determinacy of hypoxia tolerance is confirmed
by data showing numerous polymorphisms of the HIF1A gene [129]. These features of
energy metabolism and organism responses are best manifested in age-related changes,
thus inducing individual programmes of age-related changes. However, genetic factors
are one of the leading factors, but not less important are the traits of each individual that
actively counteract these unfavourable age-related changes—hence, the importance of
social programmes for the elderly implemented in many countries. This is important now,
given the increasing ageing of the population in many countries [1,2,7,62].

Sex and age differences in the ability to adapt to high altitudes have been revealed,
when it was shown that females adapted more quickly and more easily to acute mountain
sickness compared to males [130], and highly hypoxia-resistant individuals predominated
among female rats, while males turned out to be predominantly low-resistant and medium-
resistant [131]. These factors have been shown to be mechanisms of distribution of different
mortality rates among older males and females. There is no doubt that resistance to
the action of hypoxic factors with a varied genesis is one of the leading mechanisms
in the initiation of pathological conditions (metabolic acidosis, increased tension of the
oxygen transport system, hyperlipidemia, and reduced activity of antioxidant systems in
counteracting oxidative stress).
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Also, these ageing mechanisms are connected with different levels of sensitivity of
internal organs to hypoxia and, accordingly, ageing, as bones, skeletal muscles, thymus,
and spleen exhibit high resistance to hypoxia, whereas brain, heart, kidneys, lungs, and
liver are characterised by low resistance [16,17]. Probably, the range of these highly affected
organism systems in ageing is more pronounced, when taking into account the initial
level of metabolism under the influence of unfavourable factors, such as emotional status,
especially in the conditions of intensification of modern life and a high-fat diet, and the
influence of anthropogenic factors of different origins connected with the globalisation of
economic interrelations.

The available studies predominantly consider only two extreme variants of this
situation—high and low reactivity of physiological systems. However, a large group
of moderately resistant individuals have both groups of traits. The use (or ignorance) of
effective programmes to counteract these stresses (measures related to the prevention of
ageing, such as rational nutrition with calorie restriction, physical and mental exercise,
fitness, group therapies, and many other self-organisation techniques, etc.) leads to the
transition from one extreme group to the other only through the group of moderately
resistant individuals. This is important, because the characteristics of animals with low
resistance to hypoxia, established in experiments, have shown them as individuals with a
weak nervous system, increased emotional reactivity, less developed internal inhibition,
increased excitability, rapid exhaustion of the excitatory process, and a high predisposition
to the development of such diseases as diabetes, obesity, thyrotoxicosis, atherosclerosis,
etc. [17]. Thus, such conditions of physiological functioning of organisms in high-risk
groups are certainly associated with decreased survival and limited years of active ageing.

10. Individual Ageing, Energy Metabolism, Hormonal Status, and Receptor Control

The interaction between energy metabolism, hormonal status, and the receptor system
of the cell can be affected by pathological factors, as convincingly demonstrated in studies
of hypoxia of varied genesis [19,132,133]. It is known that hypoxic damage, stress, and
other conditions, especially in the course of ageing, are closely related. Accordingly, a
positive relationship between the predominant oxidation of SC in TAC and catecholamines
has been established, and, conversely, exogenous SC can stimulate catecholamine (CA)
metabolism under stressful loads. The existence of such bilateral relationships suggests the
direct involvement of SC in the processes of regulating synaptic transmission. In turn, a
number of the effects of this system are reciprocated by another reaction, i.e., the specific
activation of AKG oxidation by acetylcholine (ACh) in the Mt. This system, opposite
to succinate, is driven by the activation of aminotransferase reactions, while inhibiting
the activity of SDH under functional loads of varied nature (hypoxia, stress, etc.). On
the other hand, exogenous AKG has cholinomimetic properties, exerting an effect on the
ACh-cholinesterase system [134–136]. These two multidirectional systems are important
for determining individual adaptation to low-oxygen conditions in the environment, which
has been convincingly demonstrated in animals and humans with different levels of initial
resistance to hypoxic and other loading [16–18,20,133,136].

This high individual reactivity is associated with the functioning of the ACh-cholinesterase
system, which activates the part of oxidative processes that allows the use of the nitrate–
nitrite component of cellular reactions under hypoxia. This approach is essential for
improvement of the survival of this group of animals under acute hypoxia. In low-resistant
animals, the oxidation of succinate under acute oxygen deficiency is dominated mainly
by the intensive metabolism of catecholamines, accompanied by critical changes in the
oxygen energy supply. In the group of highly resistant animals, the predominant oxidation
of alpha-ketoglutarate and activation of the ACh system result in the induction of the
nitrite–nitrate respiration component [137].

This important element becomes crucial for maintaining the functional state of cholin-
ergic receptors and determines metabolic cellular and mitochondrial rearrangements in
conditions of acute oxygen deficiency not only for ACh but also for NO, the volume of
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which increases significantly during adaptation to hypoxia. Precisely these mechanisms of
the formation of effective nitric oxide depots provide effective preconditions for increasing
metabolic reserves during the physical training of older people and prevent the onset of
cardiovascular pathologies. The relationship between nitric oxide and vascular pathologies
in older adults has been convincingly demonstrated in a number of studies [20,136] and
is shown in Figure 3. Physical activity in older people is important for maintaining the
correct physiological ageing process [10].
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Figure 3. Systematic assessment of the effect of succinate and α-ketoglutarate in the regulation of
oxygen-dependent processes in rats depending on functional changes in nitric oxide production
during hypoxia [19].

It is important to note the connection between theories of ageing and both free radical
and mitochondrial dysfunction, which has been the subject of many studies [31,33]. Thus,
the treatment with the main intermediates of the Krebs cycle, which, in turn, can modify
NO production [137], in order to correct the energy supply, first of all causes changes in the
functional state of the Mt themselves, which can switch to reducing energy consumption
and, at the same time, to reducing the production of ROS [72,106]. Reduced ROS production
is an important factor in the protective effect of Krebs cycle substrates, as well as NO
donors, in order to utilise oxygen economically. Therefore, the problem of increasing the
efficiency of mitochondrial oxidative phosphorylation and energy supply processes during
the ageing period and maintaining the physiological ageing process is associated with the
interdependence of these processes, when changes in the functional state of the Mt act as
factors in the production of ROS, and the latter are also able to modify the energy supply
processes by the main TAC intermediates (Figure 4).
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The nature of the action of various physiologically active substances, in particular
TAC intermediates SC and AKG, and other compounds that lead to the formation of
these substances, in aminotransferase and other reverse reactions as a promising means
to prevent damage to various body systems during ageing has attracted the attention
of many researchers [88,89,101–103,105,121]. First of all, this concerns the use of SC to
normalise various pathological abnormalities associated with ageing in clinical and animal
studies [112]. The effect of other TAC substrates, namely AKG, on changes in the functional
state of the most important body systems has also been studied [109]. In particular, the
introduction of AKG provided for the efficiency of the cardiovascular system prevented the
appearance of stress-related tissue damage [19] by redistributing metabolites in functional
tissues through the activation of the cholinergic mechanism of body regulation [135]. In
these conditions, the transaminase pathway of TAC substrate supply was activated, which
increased the energy supply in cells [138].

11. Biomarkers of Ageing and the Krebs Cycle

With age, human cells react to stress more actively, become overworked, and the ageing
process accelerates. What is the role of Krebs cycle intermediates in these stress-preventing
processes that accelerate ageing and prevent active longevity? The theories of ageing
are based on comprehensive genomic screening studies that have shown that the ageing
process is associated with significant epigenetic changes in the chromatin landscape, such
as global demethylation of DNA and histones and increased histone acetylation [139,140].

These mechanisms of control of gene expression by the modification of the epigenetic
landscape of chromatin are important as regulatory mechanisms of the key mechanisms
of energy supply induced by the Krebs cycle. From this point of view, studies on the
effects of TAC intermediates, such as α-ketoglutarate, succinate, and fumarate, which
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can regulate DNA and histone methylation levels, and citrate, which can also enhance
histone acetylation, are important. This relationship is seen through the effects of DNA
demethylase (TET1-3) and histone lysines (KDM2-7), which are members of 2-oxoglutarate-
dependent dioxygenases (2-OGDO). The 2-OGDO enzymes are activated by oxygen, iron,
and α -oxoglutarate, and these in turn are inhibited by succinate and fumarate [141,142].

The dependencies of mitochondrial energy supply processes shown in the literature
demonstrate important differences in the use of Krebs cycle intermediates for the formation
of adaptation reactions of oxygen supply [16,17], which can change significantly during
ageing and have been confirmed in experiments on the accumulation and efficient removal
of succinate in many pathologies [88,89]. Thus, time-critical compensatory reactions at
the early stage of hypoxia are realised in the conditions of suppression of NADH-oxidase
oxidation through the activation of the succinate oxidase oxidation pathway. The latter is
also necessary for the formation of regulatory bioenergetic mechanisms underlying long-
term adaptation during the transition period. This refers to the period of quantitative and
qualitative changes in the properties of respiratory chain enzymes and the interaction of
mitochondrial enzyme complex I and II aimed at restoring the NAD-dependent oxidation
pathway. The completion of the formation of bioenergetic mechanisms of long-term
adaptation is associated with the restoration of the NAD-dependent oxidation pathway and
the loss of importance of succinate oxidase oxidation [16,17]. Therefore, the short-term and
long-term bioenergetic mechanisms of adaptation to hypoxia implemented during the life
of each individual differ significantly, which in turn can intensify the ageing programme.

Thus, Krebs cycle metabolites may be involved in age-related abnormalities of the
mitochondrial metabolism and, in this way, may induce epigenetic reprogramming that
contributes to the senile phenotype and degenerative diseases. The metabolism of these
compounds is particularly important when considering the variety of neurological diseases
observed in old age, including stroke, traumatic brain injury, and Alzheimer’s disease,
which may be associated with adaptive gene expression to protect the nervous system in
these conditions [143].

12. Neurohumoral Regulation, Metabolic Disorders, Substrates of the Krebs Cycle

Recently, in the care of patients with cardiac pathology, increasing attention has been
focused on the use of metabolic agents that include Krebs cycle substrate derivatives [144].
These succinate-based drugs, as convincingly shown in a number of studies [145], do not
affect the causative factors of coronary heart disease, but significantly normalise metabolic
disorders directly related to its pathogenesis [146]. Equally important, they also target the
concomitant hyperactivity of neurohumoral regulation mechanisms.

It is known that, in the conditions of normal blood supply to the heart, the main source
of its energy supply is the utilisation of free fatty acids (FFA), especially long-chain fatty
acid derivatives shown as myocardial metabolic imaging agents [147], which gives the
maximum energy yield per unit of substrate and provides 60–90% of ATP necessary to
maintain myocardial function and life support. The presence of FFAs as a substrate of
energy metabolism is accompanied by a sharp inhibition of glucose and lactate oxidation
in the myocardium [148]. Therefore, a decrease in the concentration of FFAs in the blood
plasma, or pharmacological effects that directly inhibit their oxidation in the mitochondria,
as shown for malonyl CoA decarboxylase, protects the ischaemic heart and leads to an
increase in the rate of mitochondrial pyruvate transport and, as a result, an increase in
glucose and lactate utilisation [149]. Important issues related to pyruvate metabolism as
a key pathway for glycolysis and oxidative phosphorylation, which is crucial for energy
homeostasis and mitochondrial quality control, are reviewed in study [150]. Pyruvate can
induce the accumulation of ROS and induce the flux of calcium ions into the mitochondria.
These effects of pyruvate can result in mitochondrial ultrastructural changes, mitochondrial
dysfunction, and metabolic dysregulation. An important role of pyruvate is related to the
processes of the fusion dynamics, fission, and mitophagy of these cellular structures [150].
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At the same time, the oxidation of FFAs is associated with the consumption of large
oxygen amounts, and the limitation of its supply in coronary vascular disease is accom-
panied by a sharp impairment of FFA utilisation as a substrate of energy metabolism in
cardiomyocytes [151,152]. Then, oxidised metabolic products accumulate in cardiomy-
ocytes, inhibiting mitochondrial translocation and the transfer of macroergic phosphates
across their membrane. This is also accompanied by a decoupling of the reaction of oxi-
dation and phosphorylation and causes a sharp energy deficit [153]. As a result, aerobic
glucose utilisation is also blocked, and myocardial energy supply results in an inefficient
anaerobic pattern. Such changes in the heart tissue are associated with the activation of
glycolysis, the accumulation of lactate and protons in the cytosol, the development of
acidosis, and a subsequent inhibition of cardiomyocyte contractile function. Therefore, one
of the possible mechanisms for maintaining myocardial energy metabolism in the presence
of oxygen deficiency may be blocking the utilisation of FFAs, which allows more complete
aerobic glucose utilisation, which is possible even with a limited oxygen supply. One of
the pharmacological ways to solve this problem is the use of SC, which has previously
been shown to have a pronounced antihypoxic [154] and antioxidant effect, especially on
ischaemia–reperfusion injury [123,155].

It has been noted that SC activates the SDH pathway of glucose oxidation, which
switches the cellular metabolism under hypoxia to a more oxygen-saving direction of
energy metabolism [156]. In addition, as an effective metabolic substrate, SC improves
energy metabolism by optimising the functioning of the mitochondrial respiratory chain,
which helps to stabilise the cell membrane and reduce post-hypoxic metabolic acidosis.
Succinic acid has also been shown to increase ATP synthesis, inhibit glycolysis, activate
aerobic processes in cells, enhance gluconeogenesis, and stabilise cell membranes [157,158].
The antioxidant effect of SC is related to its ability to bind free radicals, inhibit free radical
processes, and increase the activity of antioxidant enzymes. This leads to a wide range of
applications for succinate and other derivatives of TAC [159] in cardiological and other
treatments, especially in older patients with severe cardiac pathologies [160].

13. Conclusions

Summarising, it can be concluded that anti-ageing biology and medicine programmes
define ageing in different categories and explain the interactions between various factors
stimulating the development of age-related changes and diseases. This paper presents
several theories of ageing, with the major causes of the process related to epigenetic changes
associated with gene expression, global DNA methylation, epigenetic alterations, genomic
instability, mitochondrial dysfunction, depletion of telomeres on chromosomes or telomere
attrition, changes in proteostasis processes, uncontrolled free radical production, and
oxidative stress. This review presents clinical descriptions of the major markers of aging
currently used to screen for DNA copy number, telomere length, global DNA methyl thione:
Hsp70 and Hsp72, insulin-like growth factor 1 and SIRT1 (Sir2) (i.e., NAD+-dependent
deacetylase that plays a critical role in a wide range of biological events), deregulated
levels of nutrient sensitivity, circulating osteogenic progenitor cells as an indicator of stem
cell depletion, and IGF-1, SIRT1, GDF-15, IL-6, CRP and TNF-alpha. Additionally, more
evidence about these biomarkers is presented.

This review contains data concerning the analysis of inflammatory processes that
accelerate ageing and levels of glycosylated haemoglobin, IL-6, C-reactive protein, ferritin,
and homocysteine. Accelerated ageing and age-related pathology were discussed with
reference to important Krebs cycle metabolites (α-ketoglutarate (AKG) and succinate (SC))
and their role in energy metabolism and ageing. This has been demonstrated in AKG and
SC studies on different species (roundworm Caenorhabditis elegans, Drosophila, mice, and
humans used as models).

This review describes convincingly the differences in the mitochondrial characteristics
of energy metabolism in animals with different levels (high and low) of physiological
reactivity of functional systems related to the state of different regulatory systems providing
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oxygen-dependent processes. Much attention is given to the crucial role of tricarboxylic
acid (TCA) cycle intermediates, i.e., α-ketoglutarate (AKG) and succinate (SC), in the energy
metabolism in cells related to amino acid and protein synthesis, epigenetic regulation, cell
stemness and differentiation, as well as metabolism associated with the development of
pathological conditions and, in particular, cancer cells. This article also addressed the
issue of ageing in terms of individual characteristics related to physiological reactivity.
This review has demonstrated the role of the Krebs cycle as the key component of cellular
energy and ageing, which is closely associated with the development of various age-related
pathologies, such as cancer, type 2 diabetes, and cardiovascular and neurodegenerative
diseases where the mTOR pathway plays a key role in the regulation of ageing.

The findings suggest that this approach may also be useful to show that Krebs cycle
metabolites may be involved in age-related abnormalities of the mitochondrial metabolism
and may thus induce epigenetic reprogramming that contributes to the senile phenotype
and degenerative diseases. The metabolism of these compounds is particularly important
when considering ageing mechanisms connected with different levels of initial physiologi-
cal reactivity and able to initiate individual programmed ageing depending on the intensity
of oxygen consumption, metabolic peculiarities, and behavioural reactions.
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Alpha Ketoglutarate Exerts In Vitro Anti-Osteosarcoma Effects through Inhibition of Cell Proliferation, Induction of Apoptosis
via the JNK and Caspase 9-Dependent Mechanism, and Suppression of TGF-β and VEGF Production and Metastatic Potential of
Cells. Int. J. Mol. Sci. 2020, 21, 9406. [CrossRef] [PubMed]

112. Grimolizzi, F.; Arranz, L. Multiple faces of succinate beyond metabolism in blood. Haematologica 2018, 103, 1586–1592. [CrossRef]
[PubMed]

113. St-Pierre, J.; Buckingham, J.A.; Roebuck, S.; Brand, M.D. Topology of superoxide production from different sites in the mitochon-
drial electron transport chain. J. Biol. Chem. 2002, 277, 44784–44790. [CrossRef] [PubMed]

114. Quinlan, C.L.; Perevoshchikova, I.V.; Hey-Mogensen, M.; Orr, A.L.; Brand, M.D. Sites of reactive oxygen species generation by
mitochondria oxidizing different substrates. Redox Biol. 2013, 1, 304–312. [CrossRef] [PubMed]

115. Else, T. 15 years of paraganglioma: Pheochromocytoma, paraganglioma and genetic syndromes: A historical perspective. Endocr.
Relat. Cancer 2015, 22, T147–T159. [CrossRef] [PubMed]

116. Boulahbel, H.; Durán, R.V.; Gottlieb, E. Prolyl hydroxylases as regulators of cell metabolism. Biochem. Soc. Trans. 2009, 37 Pt 1,
291–294. [CrossRef] [PubMed]

117. Piruat, J.I.; Millán-Uclés, A. Genetically modeled mice with mutations in mitochondrial metabolic enzymes for the study of
cancer. Front. Oncol. 2014, 4, 200. [CrossRef]

118. Piantadosi, C.A.; Suliman, H.B. Transcriptional Regulation of SDHa flavoprotein by nuclear respiratory factor-1 prevents
pseudo-hypoxia in aerobic cardiac cells. J. Biol. Chem. 2008, 283, 10967–10977. [CrossRef]

119. Domalpally, A.; Whittier, S.A.; Pan, Q.; Dabelea, D.M.; Darwin, C.H.; Knowler, W.C.; Lee, C.G.; Luchsinger, J.A.; White,
N.H.; Chew, E.Y. Diabetes Prevention Program Research (DPPOS) Group. Association of Metformin With the Development of
Age-Related Macular Degeneration. JAMA Ophthalmol. 2023, 141, 140–147. [CrossRef]

120. Nishima, N.; Tanaka, S. Suppressing succinate accumulation during ischemia protects the kidney from IRI. Kidney Int. 2023, 104,
646–649. [CrossRef]

121. Bogolepova, A.N. Posleoperatsionnaya kognitivnaya disfunktsiya [Postoperative cognitive dysfunction]. Zh. Nevrol. Psikhiatr. Im.
S S Korsakova. 2022, 122, 7–11. (In Russian) [CrossRef] [PubMed]

122. Mateska, I.; Witt, A.; Hagag, E.; Sinha, A.; Yilmaz, C.; Thanou, E.; Sun, N.; Kolliniati, O.; Patschin, M.; Abdelmegeed, H.; et al.
Succinate mediates inflammation-induced adrenocortical dysfunction. Elife 2023, 12, e83064. [CrossRef] [PubMed]
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