



## Article Pleiotropic Role of Rainbow Trout CXCRs in Response to Disease and Environment: Insights from Transcriptional Signatures and Structure Analysis

Zhi-Shuai Hou <sup>1,\*,†</sup>, Hong-Kui Zhao <sup>1,†</sup>, Pedro Perdiguero <sup>2,3</sup>, Meng-Qun Liu <sup>1</sup>, Kai-Wen Xiang <sup>1</sup>, Chu Zeng <sup>1</sup>, Zhao Li <sup>1</sup>, Xiao-Dong Yang <sup>1</sup>, Qian Yang <sup>1</sup>, Yuan-Ru Xin <sup>1</sup>, Ji-Fang Li <sup>1</sup>, Carolina Tafalla <sup>2</sup>, and Hai-Shen Wen <sup>1,\*</sup>

- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
- <sup>2</sup> Animal Health Research Center (CISA-INIA-CSIC), 28130 Valdeolmos, Spain
- <sup>3</sup> Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), 28040 Madrid, Spain
- \* Correspondence: houzhishuai@ouc.edu.cn (Z.-S.H.); wenhaishen@ouc.edu.cn (H.-S.W.)
- <sup>+</sup> These authors contributed equally to this work.

**Abstract:** Chemokines are cytokines with chemoattractant capacities that exert their physiological functions through the binding of chemokine receptors. Thus, chemokine and receptor complexes exert important roles in regulating development and homeostasis during routine immune surveillance and inflammation. Compared to mammals, the physiology and structure of chemokine receptors in fish have not been systematically studied. Furthermore, the salmonid-specific whole genome duplication has significantly increased the number of functional paralogs of chemokine receptors. In this context, in the current study, trout exhibited 17 *cxcr* genes, including 12 newly identified and 5 previously identified receptors. Interestingly, gene expression of brain *cxcr1* and *cxcr4*, kidney *cxcr3* and *cxcr4*, and spleen *cxcr3*, *cxcr4*, and *cxcr5* subtypes were altered by bacterial infection, whereas brain *cxcr1*, kidney *cxcr1* and *cxcr7*, and liver *cxcr2*, *cxcr3*, and *cxcr4* subtypes were changed in response to environmental changes. Based on protein structures predicted by ColabFold, the conserved amino acids in binding pockets between trout CXCR4.1 subtypes and human CXCR4 were also analyzed. Our study is valuable from a comparative point of view, providing new insights into the identification and physiology of salmonid chemokine receptors.

Keywords: rainbow trout; chemokine receptors; bacterial infection; environmental changes

## 1. Introduction

Chemokines are small (8–15 kDa) proteins belonging to the cytokine family [1]. Chemokines bind to G protein-coupled receptors (GPCRs), and complexes of chemokine and receptor regulate cell movement and activation [2]. Based on the number and position of highly conserved N-terminal cysteines, chemokines are divided into four groups: CXC, CC, C, and CX3C (C indicates cysteine, and X/X3 indicates one or three non-cysteine amino acids) [1,2]. For example, CCL2 represents a chemokine ligand of the CC subfamily, number 2, and CCR2 represents the receptor of CCL2 [2,3]. It is well known that the physiological function of chemokines is to modulate cell migration, which gives them their name (from 'chemotactic cytokines') [4]. Chemokines play an important role in regulating cellular migration during routine immune surveillance, inflammation, and development [2]. Based on their physiological functions, chemokines can also be divided into two groups: inflammatory and homeostatic chemokines [5]. Inflammatory chemokines are induced directly by inflammatory stimuli or related cells [4,5]. Homeostatic chemokines, on the other hand, are involved in cell migration, organogenesis, and development, and they are constitutively expressed in discrete tissues or cells [4,5].



Citation: Hou, Z.-S.; Zhao, H.-K.; Perdiguero, P.; Liu, M.-Q.; Xiang, K.-W.; Zeng, C.; Li, Z.; Yang, X.-D.; Yang, Q.; Xin, Y.-R.; et al. Pleiotropic Role of Rainbow Trout CXCRs in Response to Disease and Environment: Insights from Transcriptional Signatures and Structure Analysis. *Biomolecules* **2024**, *14*, 337. https://doi.org/10.3390/ biom14030337

Academic Editor: Hanne Frøkiær

Received: 25 January 2024 Revised: 27 February 2024 Accepted: 3 March 2024 Published: 12 March 2024



**Copyright:** © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Chemokine receptors have also been divided into four groups: CXC, CC, C, and CX3C chemokine receptors, which are consistent with the four groups of chemokines [4]. Although a large number of chemokines have been identified, the number of chemokine receptors is lower [2,6,7]. For example, the human chemokine superfamily currently contains ~46 chemokines, and these chemokines bind to 18 chemokine receptors (six CXCRs, ten CCRs, one XCR, one CX3CR) [4]. Members of the chemokine superfamily (including ligands and receptors) have been identified in chicken, zebrafish, shark, and jawless fish [4].

Compared to mammals, teleosts exhibit increased gene copies of many immune genes, including chemokines, as a result of the teleost-specific whole genome duplication (which is also referred to as the third round of genome duplication (3R)) [8,9]. Hence, in 1998, the first teleost chemokine gene was identified in salmonids, and since then, a great number of chemokine orthologues, with a great complexity in physiology, have been identified in teleost, possibly also because chemokines are thought to evolve faster than other genes associated with immunomodulation [10–12]. On the other hand, previous studies in model animals showed that the CC chemokine receptor family contains at least 17 members in zebrafish (Danio rerio) and 10 members in medaka (Oryzias latipes) [13,14]. In aquacultured fish, 23 CC and 8 CXC chemokine receptors have been identified in channel catfish (Ictalurus punctatus) and 19 CC and 8 CXC chemokine receptors in orangespotted grouper (*Epinephelus coioides*) [15,16]. Considering that chemokine receptors also influence how chemokines regulate immune development, homeostasis, and competence, the identification of the complete repertoire of chemokine receptors in teleost and the assessment of their functions will provide insights into the functionality of chemokines from a comparative point of view, thus contributing to boosting the immune response of fish for a sustainable development of aquaculture.

Rainbow trout (Oncorhynchus mykiss) belongs to the salmonid family and is one of the most studied teleost species, having been extensively used as a model in diverse research fields, including ecology, physiology, toxicology, immunology, and microbiology [17–19]. Rainbow trout is also an economically important aquacultured species with a global production of ~1,000,000 tons (FAO, 2022). In the trout industry, diseases caused by pathogen infection are of major ecological and commercial relevance to aquaculture. On the other hand, aquaculture and other anthropogenic activities might result in short-term and longterm changes in the natural aquatic environment. These environmental changes could provoke an important impact on fish physiology, including the immune system, thus having consequences on their well-being and disease resistance [20,21]. Interestingly, an additional round of whole genome duplication occurred in salmonid ancestors (which is referred to as the fourth round of genome duplication (4R) or salmonid-specific whole genome duplication) [18,22–25]. Duplicated copies of functional genes have been retained after this additional salmonid-specific whole genome duplication when compared to species that have only experienced the teleost-specific whole genome duplication [26–28]. These paralogs exhibit differences in sequence, transcription, and function [22,28–30].

In this context, the first aim of this study was to identify the complete repertoire of fulllength CXC chemokine receptor genes in rainbow trout by exploiting the whole genomic data. We investigated the basal expressions of CXC chemokine receptors, as well as how they were transcriptionally regulated in response to *Vibrio anguillarum* and *Aeromonas salmonicida* infection. *Vibrio anguillarum* and *Aeromonas salmonicida* are two major pathogens that cause severe fatal diseases and considerable economic losses in cultured rainbow trout [31–33]. Environmental changes also impact fish immune systems by deregulating chemokine signaling in teleost [34,35], with triploid trout exerting different biochemistry and physiology when compared to diploid trout [36,37]. Therefore, we also investigated the transcriptional profiles of these CXC chemokine receptors in responses to environment changes in rainbow trout.

## 2. Materials and Methods

#### 2.1. Ethics Statement

Our experiments were approved by the Institutional Review Board at Ocean University of China (permit number: 20141201) and performed in accordance with the U.K. Animal Scientific Procedures (Act, 1986) and associated guidelines, the EU Directive 2010/63/EU for animal experiments and the National Institutes of Health Guide for the Care and Use of Laboratory Animals use of laboratory animals (NIH Publications No. 8023, revised 1978). This study did not involve endangered or protected animals.

#### 2.2. Genome-Wide Identification and Sequence Analyses

To identify the CXCR genes of rainbow trout, we searched the whole genome of rainbow trout obtained from NCBI (http://www.ncbi.nlm.nih.gov/, accessed on 24 January 2024) and performed tblastn analysis using all available CXCR sequences in the genome databases of human (Homo sapiens), mouse (*Mus musculus*), zebrafish (*Danio rerio*), Atlantic salmon (*Salmo salar*), fugu (*Takifugu rubripes*), Northern pike (*Esox lucius*), and channel catfish (*Ictalurus punctatus*) available in the NCBI (http://www.ncbi.nlm.nih.gov/), Ensembl (http://www.ensembl.org, accessed on 24 January 2024), and Uniport (http://www.uniprot.org/, accessed on 24 January 2024) as queries with e-values of  $1 \times 10^{-5}$ . To remove redundant sequences, we used ClustalW for multiple alignments. Tandem arrangement genes were identified by their locations in the reference genome. The coding sequences were predicted using ORF (opening reading frames) finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html, accessed on 24 January 2024), which were further validated by BLASTP against NCBI nonredundant (nr) protein database. In addition, we used the online ProtParam tool to characterize the molecular weight (MW) and theoretical isoelectric point (pI).

Based on the amino acid sequences of CXC chemokine receptors of humans, mice, zebrafish, Atlantic salmon, medaka, fugu, Northern pike, and channel catfish, a phylogenetic analysis was conducted with MEGA 7, using the neighbor-joining method, with a set of 1000 bootstrap replicates [38].

#### 2.3. Gene Structure, Conserved Domains, and Motif Analysis of the CXCR

Gene exon–intron structures were analyzed using the Gene Structure Display Server (GSDS2.0) by comparing the codon sequences and genomic sequences of the 17 CXCR members. The transmembrane (TM) domains were predicted by the TMHMM Server v. 2.0 (http://services.healthtech.dtu.dk/service.php?TMHMM-2.0, accessed on 24 January 2024), comparing the results of previous studies in human and zebrafish GPCRs. Motif analyses were performed with Multiple EM for Motif Elicitation (MEME, version 4.11.4), with the limitation of ten motifs and optimum widths of motifs of 6–50 amino acids [39].

#### 2.4. Expression Analysis Using Available RNA-Seq Datasets

Using our available RNA-Seq datasets, we analyzed the cxcr expression levels of rainbow trout in response to bacterial infection (phenotype/timeline-specific expressions). The RNA-Seq datasets were retrieved from our previous studies described above:

- Brain, kidney, and spleen samples from rainbow trout challenged with *Vibrio an-guillarum* (SRA ID: PRJNA667799 [40–42]). Brain, kidney, and spleen samples were collected from control, asymptomatic, and symptomatic rainbow trout after *V. anguillarum* challenge, and 27 libraries of RNA-Seq samples were used (3 phenotypes × 3 tissues × 3 replicates [40,42]).
- Brain and kidney samples from rainbow trout were challenged with *Aeromonas salmoni-cida* ([43]). Brain and kidney samples were collected from control and infected rainbow trout, and the RNA-Seq dataset included 12 libraries (2 (control vs. infection) × 2 tissues × 3 replicates [43]).
- 3. Brain, kidney, and liver samples from rainbow trout with environmental salinity changes ([44]). Diploid and triploid trout were classified into diploid trout in fresh-

water (DF), diploid trout in saltwater (DS, at salinity of 15 parts-per-thousand (ppt)), triploid trout in freshwater (TF), and triploid trout in saltwater (TS, at salinity of 15 ppt). Brain, liver, and kidney samples were collected from DS, TS, and TF. Twenty-seven libraries of RNA-Seq samples were used (3 groups (TF, DF, DS)  $\times$  3 tissues  $\times$  3 replicates [44]).

4. Liver samples from rainbow trout cultured in different stocking densities (unpublished data and count data are shown in Supplementary Materials). Rainbow trout were cultured in saltwater with initial densities at 9.15 kg/m<sup>3</sup> (low density (LD)), 13.65 kg/m<sup>3</sup> (moderate density (MD)), and 27.31 kg/m<sup>3</sup> (high density (HD)) for 84 days. The final densities were 22.00 (LD), 32.05 (MD), and 52.24 (HD) kg/m<sup>3</sup>, respectively. Liver samples were collected from LD, MD, and HD on day 84.

## 2.5. Structural Analysis of Trout CXCR4.1 Subtypes

ColabFold (ColabFold v1.5.5) was used to predict the protein structures by combining MMseqs2 with AlphaFold2 or RoseTTAFold [45]. Compared to the ORF sequences, we showed amino acid sequences associated with TM, extracellular (ECL), and intracellular (ICL) loops with high confidence values. The amino acid sequences for structure prediction are shown in Supplementary Materials Text S1. The human CXCR4 (PDB ID: 4RWS) was used as a template. Comparison of the domains between trout and human CXCR4 and the cartoon, stick, and sphere structures of the proteins were generated by PyMOL software (PyMOL-2.5.4) [46,47].

## 2.6. Statistical Analysis

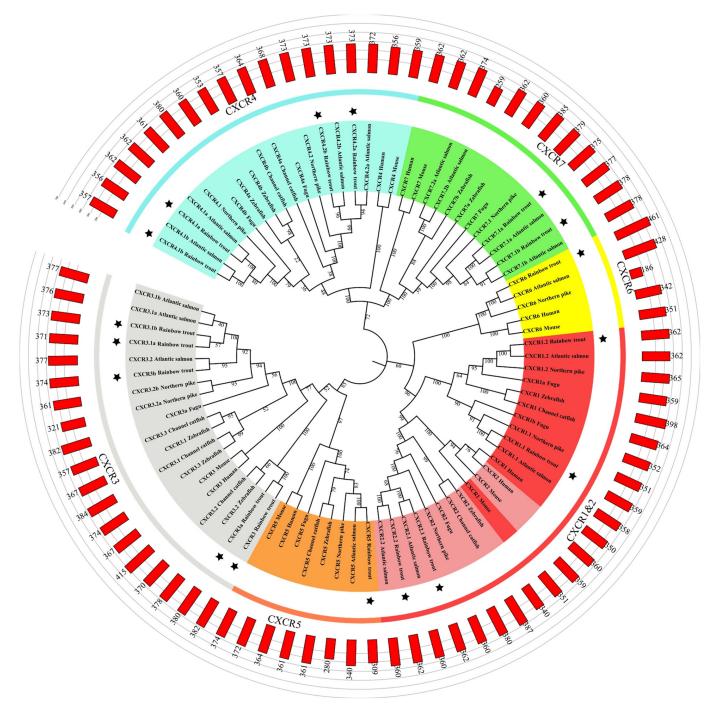
The RNA-Seq data (counts) were normalized with the Bioconductor DESeq2 Package [48,49]. In order to obtain the belt data (Poisson) distribution for further statistical analysis, data of RNA-Seq were normalized by log transformation [50]. After that, the normalized data were analyzed by an online R software Package (https://omicsforum.ca/, accessed on 24 January 2024) for multivariate analyses [51,52]. Based on previous studies in the fishery and biomedical studies [53,54], we evaluated the whole profile of the cxcr expressions by performing the heatmap, principal components analysis (PCA), correlation coefficients, and variable importance in projection (VIP). Gene expression analyses were performed with GraphPad Prism 8.0. The results were evaluated by one-way analysis of variance (ANOVA) followed by a Tukey multiple range test, with p < 0.05 set to assign significant differences. Student's *t*-test was used for comparisons between two groups, with significance established when p < 0.05. Results were presented as mean  $\pm$  standard error of the mean (SEM).

#### 3. Results

#### 3.1. Identification and Annotation of cxcr Genes in Rainbow Trout

In our study, a total of 17 *cxcr* genes (12 newly identified and 5 previously identified receptors) were identified in the rainbow trout, with the predicted protein sequences ranging from 309 to 461 amino acids, the molecular weights ranging from 33.92 to 50.85 kDa, and the pIs ranging between 5.88 and 9.24 (Table 1). Based on the sequence information of identified receptors in humans, mice, and zebrafish, on sequence similarities among the trout receptors, and on the conserved seven transmembrane domains and DRY motif, the 17 *cxcr* genes were divided into seven families. Chromosomal locations of *cxcr* genes were also studied. In brief, the trout *cxcr* genes were distributed in eight different chromosomes (Chr2, 3, 8, 16, 18, 22, 24, and 28), including three genes on Chr2, five genes on Chr3, and four genes on Chr22. Copy numbers of the *cxcr* genes in rainbow trout were compared with those of human, mouse, chicken, zebrafish, and several teleost species (Table 2). Expanded copies of *cxcr1, cxcr2, cxcr3, cxcr4*, and *cxcr7* genes were identified in rainbow trout (Table 2).

| Gene Name | Gene ID      | Chromosome | Position (bp)         | Protein Length<br>(aa) | MW (kDa) | pI   | Derived from     | Chemokines<br>[10,55–57] | Reference     |
|-----------|--------------|------------|-----------------------|------------------------|----------|------|------------------|--------------------------|---------------|
| cxcr1.1   | LOC100135914 | Chr18      | 3,898,505–3,899,881   | 359                    | 39.98    | 9.2  | AF260964.1       | CXCL8                    | [55,58]       |
| cxcr1.2   | LOC110501285 | Chr22      | 5,736,707-5,742,123   | 362                    | 40.1     | 8.31 | Newly Identified | CXCL8                    |               |
| cxcr2.1   | LOC110520605 | Chr3       | 78,906,276–78,908,301 | 362                    | 40.3     | 8.94 | HG794530.1       | CXCL8                    | [55,59]       |
| cxcr2.2   | LOC110501383 | Chr22      | 11,509,532–11,512,348 | 362                    | 40.07    | 8.78 | Newly Identified | CXCL8                    |               |
| cxcr3.1a  | LOC110537629 | Chr2       | 7,072,125–7,076,959   | 371                    | 41.7     | 6.08 | Newly Identified | CXCL9, 10, 11            |               |
| cxcr3.1b  | LOC110514317 | Chr2       | 102–3242              | 373                    | 41.94    | 5.88 | Newly Identified | CXCL9, 10, 11            |               |
| cxcr3b    | LOC100136126 | Chr3       | 16,782,015–16,785,624 | 374                    | 42.19    | 8.17 | AJ888881.1       | CXCL9, 10, 11            | [10,55,56,59] |
| cxcr3     | LOC110537622 | Chr2       | 7,038,779–7,047,349   | 382                    | 42.37    | 9.1  | Newly Identified | CXCL9, 10, 11            |               |
| cxcr3a    | LOC100136649 | Chr3       | 16,764,415–16,768,463 | 380                    | 42.27    | 9.24 | AJ888878.1       | CXCL9, 10, 11            | [10,55,56,59] |
| cxcr4.1a  | LOC110520024 | Chr3       | 48,667,827-48,669,883 | 362                    | 40.57    | 8.74 | AJ001039.1       | CXCL12                   | [55,60]       |
| cxcr4.1b  | LOC110501543 | Chr22      | 18,785,356–18,787,371 | 357                    | 39.99    | 8.86 | Newly Identified | CXCL12                   |               |
| cxcr4.2a  | LOC110530627 | Chr8       | 70,897,183–70,922,718 | 373                    | 40.82    | 8.58 | Newly Identified | CXCL12                   |               |
| cxcr4.2b  | LOC110516585 | Chr28      | 1208–2756             | 373                    | 41.08    | 8.54 | Newly Identified | CXCL12                   |               |
| cxcr5     | LOC110503290 | Chr24      | 38,512,905–38,516,651 | 309                    | 33.92    | 5.96 | Newly Identified | CXCL13                   |               |
| cxcr6     | LOC110492888 | Chr16      | 21,961,814–21,965,417 | 461                    | 50.85    | 8.68 | Newly Identified |                          |               |
| cxcr7.1a  | LOC110520437 | Chr3       | 70,094,498–70,106,981 | 375                    | 42.01    | 6.94 | Newly Identified | CXCL11, 12               |               |
| cxcr7.1b  | LOC110501640 | Chr22      | 25,651,985–25,660,915 | 378                    | 42.22    | 6.66 | Newly Identified | CXCL11, 12               |               |


| <b>Table 1.</b> Summary of 17 <i>cxcr</i> genes in rainbow trout. |  |
|-------------------------------------------------------------------|--|
|                                                                   |  |

| Table 2. Comparison | of cxcr gene copies among | mammals and teleosts     |
|---------------------|---------------------------|--------------------------|
| Table 2. Companison | of the gene copies among  | 5 manufals and teleosis. |

| Name  | Human    | Mouse    | Chicken  | Frog    | Zebrafish | Channel Catfish | Atlantic Salmon | Fugu      | Northern Pike | Rainbow Trout |
|-------|----------|----------|----------|---------|-----------|-----------------|-----------------|-----------|---------------|---------------|
| cxcr1 | 1 (~14%) | 1 (~14%) | 1 (~33%) | 0       | 1 (10%)   | 1 (~11%)        | 2 (~11%)        | 2 (25%)   | 2 (20%)       | 2 (~11%)      |
| cxcr2 | 1 (~14%) | 1 (~14%) | 0        | 0       | 1 (10%)   | 1 (~11%)        | 2 (~11%)        | 1 (12.5%) | 1 (10%)       | 2 (~11%)      |
| cxcr3 | 1 (~14%) | 1 (~14%) | 0        | 1 (25%) | 3 (30%)   | 3 (~33%)        | 3 (~17%)        | 1 (12.5%) | 2 (20%)       | 5 (~29%)      |
| cxcr4 | 1 (~14%) | 1 (~14%) | 1 (~33%) | 1 (25%) | 2 (20%)   | 2 (~22%)        | 4 (~23%)        | 2 (25%)   | 2 (20%)       | 4 (~23%)      |
| cxcr5 | 1 (~14%) | 1 (~14%) | 1 (~33%) | 1 (25%) | 1 (10%)   | 1 (~11%)        | 1 (~5%)         | 1 (12.5%) | 1 (10%)       | 1 (~5%)       |
| cxcr6 | 1 (~14%) | 1 (~14%) | 0        | 0       | 0         | 0               | 1 (~5%)         | 0         | 1 (10%)       | 1 (~5%)       |
| cxcr7 | 1 (~14%) | 1 (~14%) | 0        | 1 (25%) | 2 (20%)   | 1 (~11%)        | 4 (~23%)        | 1 (12.5%) | 1 (10%)       | 2 (~11%)      |
| Total | 7        | 7        | 3        | 4       | 10        | 9               | 17              | 8         | 10            | 17            |

## 3.2. Phylogenetic Analysis and Gene Structure Analyses

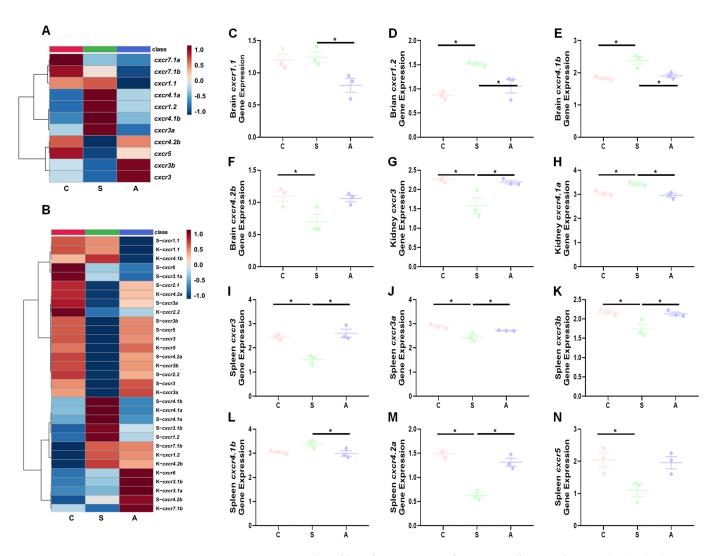
Amino acid sequences of CXCR in rainbow trout and other species were used to construct a phylogenetic tree. The phylogenetic tree exerted a total of six subgroups, including the CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, and CXCR7 subgroups (Figure 1). All these CXCR proteins contained seven transmembrane domains, which are typically observed in GPCRs (Figure 2).



**Figure 1.** Phylogenetic tree of CXCRs. The CXCR sequences were obtained from rainbow trout, Atlantic salmon, zebrafish, human, mouse, Northern pike, Channel catfish, and fugu. The number of nodes shows the bootstrapping values, and the black stars indicate trout CXCRs.

| CXCR1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MTEVLDYDYKADYDYKSANDSYYFNITSFDLNFDTLSCAAQPL-SPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CXCR1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MTAQPL-SPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                       |
| CXCR2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEALYSDIFNFTYPPIDELKAAPC-SVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                      |
| CXCR2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEMPEMELMGVPC-NVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35<br>33                                                                                                                                                                                                |
| CXCR3<br>CXCR3.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MDHVKATTDVKATTDMDLDLGGIFLENSTYNYDGDYVYKEEC-SPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                      |
| CXCR3.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MMAYLGATCAPVYGTPNHGRMILYVTFRMTDMDLDLGGIFLENSTYNYDGDYVYKEEC-SPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61                                                                                                                                                                                                      |
| CXCR3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MDHVKATTNSPETGSSQSSG-VPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33                                                                                                                                                                                                      |
| CXCR3b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                         |
| CXCR4.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EVEHIFFDNTSYEESGDFDLDLGFE-EPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                      |
| CXCR4.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ETI-IFYNDNSSEESGDYDLGYEEPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                      |
| CXCR4.2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSYYEHFVISESDNDYNDTSSGFGSGLGDFGTGFEEPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38                                                                                                                                                                                                      |
| CXCR4.2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSYYEHFVIPESDYDYNDTISGFGSGLGDFGAGFEEPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38                                                                                                                                                                                                      |
| CXCR5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MTYDEGSFEDGDGGLFYGF-DNYSELLESPDNSSSDTEY-TCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39                                                                                                                                                                                                      |
| CXCR6<br>CXCR7.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MVKVCVPEIDISQTSHCYRGGLQDMSVTVDSRNMDLTSFFGMDYDHSLVTGDYFDYNDTSTRGYELIERC<br>MNSFDLDELFDTWEDLDLNLTGLLENGTRVEMGGCPTAFDRSAL-LHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70<br>45                                                                                                                                                                                                |
| CXCR7.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSSFDLVELLDTWEDLNLTGLLENGTRVEMVGCPTAFDRSAL-LHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TM1 TM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |
| CXCR1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AVIFLCVLHVAIFLLAVPGNLLVGLVIGFSQQSLTPSDVYLFHLTVADGLLALTLPFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104                                                                                                                                                                                                     |
| CXCR1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AVIFLCVLHVAIFLLAVPGNLLVGLVIGFSQQSLTPSDVYLFHLTVADGLLALTLPFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67                                                                                                                                                                                                      |
| CXCR2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ILG-LSSVGLMVTYIIVFVLSVLGNSVVIYVMCCLARSRTDIYLMHLAMADLLFSLTLPFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97                                                                                                                                                                                                      |
| CXCR2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ILG-LSSVGLMITYIAVFIFSVLGNSVVIYVVCCMARGRTTTDVYLMHLAMADLLFSSTLPFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97                                                                                                                                                                                                      |
| CXCR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NQ-DGIMDFTRSYSPVVYSLVFVLALVGNILVLCVLMRYRTSQTGGACSFSLTDTFLLHLAVSDLLLALTLPLF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106                                                                                                                                                                                                     |
| CXCR3.1a<br>CXCR3.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DG-VGVR-FGTVFLPMLYSLTLVLGLVGNVLVLVVLVQRRRSWSVMDTFILHLGLADTLLLVTLPLW<br>DG-VGVR-FGTVFLPMLYSLTLVLGLVGNVLVLVVLVQRRRSWSVTDTFILHLGLADTLLLVTLPLW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95<br>126                                                                                                                                                                                               |
| CXCR3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NL-DGIMDFTRSYSPVVYSLVFVLALVGNULVLVVLVQARKSWSVTDTF1LHLAGLADILLLALTLPLF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106                                                                                                                                                                                                     |
| CXCR3b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NE DEMERTIONS VISION VISI VISION VISION VISION VISION VISION VISION VISION VISI                              | 30                                                                                                                                                                                                      |
| CXCR4.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NR-VGGDDFQRIFLPTVYGIIFLLGIVGNGLVVTVMGYQKKVKTMTDKYRLHLSVADLLLVFTLPFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                                                                                      |
| CXCR4.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NR-VSGDDFQRIFLPTVYGIIFLLGIVGNGLVLIVMGYQKKVQTKTDKYRLHLSVADLLFVLTLPFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                      |
| CXCR4.2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ${\tt DRELLSPSVQR} if {\tt PVVYGFIFTLGITGNGLVVFVLGCQ} {\tt RKARLSLTDRYRLHLSAADLLFVLALPFW}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106                                                                                                                                                                                                     |
| CXCR4.2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DRELLSPSVQRVFIPVVYGFIFTLGITGNGLVVFVLGCQRKARLSLTDRYRLHLCAADLLFVLALPFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106                                                                                                                                                                                                     |
| CXCR5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DG-AGLQLFHTVFQPLVYSLVFFLGLTGNGLMLTVLLKRRGLLRITEIYLLHLGLADLMLLATFPFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105                                                                                                                                                                                                     |
| CXCR6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EA-IEQQRTIKVFQTCVFLLVFLLGLLGNSLVIATFVLYRRLRLRSMTDIFLFQLALADLLLLTLPIQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 138                                                                                                                                                                                                     |
| CXCR7.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPRHETHLYIAHLAAADLCVCITLPVW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102                                                                                                                                                                                                     |
| CXCR7.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SSSSPRHETHLYIAHLAAADLCVCVTLPVW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TM3 TM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |
| CXCR1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TM3 TM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180                                                                                                                                                                                                     |
| CXCR1.1<br>CXCR1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a construction of a second state of a second state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180<br>143                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143<br>172                                                                                                                                                                                              |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143<br>172<br>172                                                                                                                                                                                       |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKATQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143<br>172<br>172<br>182                                                                                                                                                                                |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWIFGVAACKISGALFSLNRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143<br>172<br>172<br>182<br>171                                                                                                                                                                         |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQATGEWSFGTPLCKITGAMFTINFYCSIFLLACIILDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143<br>172<br>172<br>182<br>171<br>202                                                                                                                                                                  |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3.a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSLNRYSGILFLACISFDRYLAIVHAISTGWKRNTCHAQIACTLIWTVCLGLSGV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143<br>172<br>172<br>182<br>171<br>202                                                                                                                                                                  |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQATGEWSFGTPLCKITGAMFTINFYCSIFLLACIILDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143<br>172<br>172<br>182<br>171<br>202<br>182                                                                                                                                                           |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTTQALTQRRHLVGR-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSLNRYSGILFLACISFDRYLAIVHAISTGWKRNTCHAQIACTLIWTVCLGLSGV<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106                                                                                                                                                    |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR3b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWAACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWAACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYWYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRRPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISLDRYLSVVHAVQMYSRRRPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISLDRYLSVVHAVQMYSRRRPWMVQASCLSVWLLSILLSIP<br>AVQWASSWFGGFLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRRPWMVQASCLSVWLLSILLSIP<br>AVQAASSWFFGFLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRRPWMVQASCLSVWLLSILLSIP<br>AVDAASSWFFGGFLCTTVHVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTKKRKLLAERWIYVAVWLPAVLIVVP<br>AVDAA-SSWFFGGILCTAVHVIYTINLYSSVLILAFISMDRYLAVVHATKSQSTRTFLADRVIYVAVWLPAVLIVTP<br>AVDAA-LGDWRVGAVMCVGVHVIYTVNLYGSVLILAFISLDRYLSVVHAVXATVTSTTHTRQLLAHRLVYAGAWLPAGLLAIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185                                                                                                                               |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3.1b<br>CXCR3.b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFLACISPDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAASSWFGFLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVDAASSWFFGFLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVDAASSWFFGFLCTTVHVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTKKRKLLAERWIYVAVWLPAAVLTVP<br>AVDAASSWFFGGILCTAVHVIYTINLYSSVLILAFISDDRYLAVVHATKSQSTRTFLADRVIYVAVWLPAAVLITVP<br>AVDAA-LGDWRVGAVMCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTTHTRQLLAHRLVYAGAWLPAGLLAFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185                                                                                                                        |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISPDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSLNRYSGILFLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLAVVHATVAQM-SVRKNTCHAQIACTLIWTVCLGLSGV<br>AVQAASSWYFGGFLCTVHVIYTINLYSSVLILAFISLDRYLAVVHATNSQTTRKRKLLAERWIYVAVWLPAVLTVP<br>AVDAASSWYFGGILCTAVHVIYTINLYSSVLILAFISLDRYLAVVHATKSQSTRTFLADRVIYVAGAWLPAGLLAIP<br>AVDAA-LGWRVGAVMCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATVTSTTHTRQLLAHRLVYAGAWLPAGLLAIP<br>AVDAA-LGWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTHIRQRLAHRVYVAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGIMNRINFLCGSLLLACIGFDRYLAVVHATSQSRPRNVHLTCLALWUVCALSVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185                                                                                                                 |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVDAASSWFGGFLCTVTVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAAVLTVP<br>AVDAASSWFFGGILCTAVHVIYTINLYSSVLILAFISLDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAAVLTVP<br>AVDAA-LGDWRVGAVMCVGVHVIYTVNLYGSVLILAFISLDRYLAVVHATNSQTTRTRTQLLAHRLVYAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGLMNRLNFLCGSLLLACIGFDRYLAIVHATSLQSRPRNVHLTCLALWLVCALSVP<br>AGDTL-LGHWAFGNALCKATHASYAVNTYSGILLLACISVDRYMVVARTQEVLRLRSRMLTGGKLASLGVWLTALLLSLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185<br>181<br>217                                                                                                   |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVY-SHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISPDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSLNRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSLNRYSGILFLACISFDRYLAIVHAISTGWKRNTCHAQIACTLIWTVCLGLSGV<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVDAASSWFFGFLCTTVHVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAAVLTVP<br>AVDAASSWFFGFLCTAVHVIYTINLYSSVLILAFISLDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAAVLTVP<br>AVDAA-LGDWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATVTSTTHTRQLLAHRLVYAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGLMNRLNFLCGSLLLACIGFDRYLAIVHATTS-LQSRPRNVHLTCLALWLPVCALSSV<br>AGDTL-LGHWAFGNALCKATHASYAVNTYSGLLLLACISVDRYMVVARTQEVLRLRSRMLTGGKLASLGVWILALLSLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSMTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185<br>181<br>217<br>182                                                                                            |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVDAASSWFGGFLCTVTVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAAVLTVP<br>AVDAASSWFFGGILCTAVHVIYTINLYSSVLILAFISLDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAAVLTVP<br>AVDAA-LGDWRVGAVMCVGVHVIYTVNLYGSVLILAFISLDRYLAVVHATNSQTTRTRTQLLAHRLVYAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGLMNRLNFLCGSLLLACIGFDRYLAIVHATSLQSRPRNVHLTCLALWLVCALSVP<br>AGDTL-LGHWAFGNALCKATHASYAVNTYSGILLLACISVDRYMVVARTQEVLRLRSRMLTGGKLASLGVWLTALLLSLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185<br>181<br>217<br>182                                                                                            |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYVY-SHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSLNRYSGILFLACISPDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSLNRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSLNRYSGILFLACISFDRYLAIVHAISTGWKRNTCHAQIACTLIWTVCLGLSGV<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVDAASSWFFGFLCTTVHVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAAVLTVP<br>AVDAASSWFFGFLCTAVHVIYTINLYSSVLILAFISLDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAAVLTVP<br>AVDAA-LGDWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATVTSTTHTRQLLAHRLVYAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGLMNRLNFLCGSLLLACIGFDRYLAIVHATTS-LQSRPRNVHLTCLALWLPVCALSSV<br>AGDTL-LGHWAFGNALCKATHASYAVNTYSGLLLLACISVDRYMVVARTQEVLRLRSRMLTGGKLASLGVWILALLSLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSMTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177                                                                                                                                             |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSLP<br>AVYVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYWYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFLACISIDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFLACISLDRYLSVVHAVQMYSRRRPMVQASCLSVWLLSILSISIP<br>AVQATGEWSFGTPLCKITGAMFTINFYCSIFLLACISLDRYLSVVHAVQMYSRRRPMVQASCLSVWLLSILSISIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCSIFLLACISLDRYLSVVHAVQMYSRRRPMVQASCLSVWLLSILSISIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRRPMVQASCLSVWLLSILSISIP<br>AVQAASSWYFGGFLCTTVHVIYTINLYSSVLILAFISVDRYLAVVHATMSQTTKRKLLAERWIYVAVWLPAVLTVP<br>AVDAASSWYFGGILCTAVHVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTKRKLLAERWIYVAWLPAVLTVP<br>AVDAA-LGDWRFGAVCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATVTSTTHTRQLLAHRIVYAGAWLPAGLLAIP<br>AVDAA-LGDWRFGAVCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTTHIRQRLAHRYVYAGAWLPAGLLAIP<br>LAQVSLGVVFGDVLCKLIGLMNRINFLCSLLLACIGFDRYLAVVKATDTSTTHIRQRLAHRYVYAGAWLPAGLLAIP<br>LAQVS-LGVWFGDVLCKLIGLMNRINFLCSSLLLACISVDRYLAVVKATDTSTTHIRQKLARRYVYAGAWLPAGLLAIP<br>LAQVS-LGVVFGDVLCKLIGLMNRINFLCSSLLLACISVDRYLAVVKATDTSTHIRQKLRSWLTGGKLASLGVWLLALVLSLSV<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185<br>181<br>217<br>182                                                                                            |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSIP<br>AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSIP<br>AVTVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSIP<br>AVTVYSHWIFGTFLCKLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSIP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFLACISPDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISIDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISIDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISIDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGIFLLACISIDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWASSWFGGFLCTTTGAMFTINFYCGIFLLACISIDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWASSWFFGGFLCTTTVHVITINLYSSVLILAFISUDRYLAVVHATNSQTTKKRKLLAERNITVAVWLPAVLTVP<br>AVDAASSWFFGGFLCTTVHVITINLYSSVLILAFISUDRYLAVVHATNSQTTKKRKLLAERNITVAGWLPAVLTVP<br>AVDAA-SSWFFGGILCTAVHVITVNLYGSVLILAFISUDRYLAVVKATVTSTTHTRQLLAHRIVYAGAWLPAGLLAIP<br>AVDAA-LGDWRFGAVTCVGVHVITVNLYGSVLILAFISLDRYLAVVKATDTSTTHIRQRLAHRVYAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGLMNRINFLCGSLLLACIGFDRYLAIVHAITSLQSRPRNVHLTCLALWUVCALSVP<br>AGDTL-LGHWAFGANLCKATHASYAVNTYSGLLLLACISVDRYMVVRATQEVLRLRSRMLTGGKLASLGVWLTALLSLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHSVCVGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHSVCVGVWLLALVASLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185<br>181<br>217<br>182<br>185<br>244<br>207                                                                       |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR5<br>CXCR6<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.1<br>CXCR1.2<br>CXCR2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSIP<br>AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSIP<br>AVTVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSIP<br>AVTVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSIP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFLACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISIDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISFDRYLAIVHAVSTGWKRNTCHAQIACTLIWTVCLGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISFDRYLAIVHAISTGWKRNTCHAQIACTLIWTVCLGLSGV<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVDAASSWYFGGFLCTVVHYTINLYSSVLILAFISUDRYLAVVHATNSQTTRKRKLLAERWIYVAVWLPAVLTVP<br>AVDAA-SSWYFGGFLCTVHVIYTINLYSSVLILAFISUDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAVLITVP<br>AVDAA-SGURFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATVTSTHTRQLLAHRIVYAGAWLPAGLLAIP<br>AVDAA-LGDWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATVTSTHTRQLAHRVYAGAWLPAGLLAIP<br>AVDAA-LGDWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTHIRQRLAHRVYAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGLMNRINFLCGSLLLACIGFDRYLAIVHAITSLQSRPRNVHLTCLALWLVCLALSVP<br>AGDTI-LGHWAFGAALCKATHASYAVNTYSGILLLACISVDRYLVVXRTQEVLRIRSRMLTGGKLASLGVWITALLSLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRGVCMGVWLLALVASLP<br>VSSLAQHSHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLSSNLFSSIFFLACMSVDRYLSVRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVRPADSEDGGRRRKLIRGSVCVGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSV | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185<br>181<br>217<br>182<br>185<br>244<br>207<br>240                                                                |
| CXCR1.2<br>CXCR2.1<br>CXCR3.1a<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2b<br>CXCR5<br>CXCR6<br>CXCR6<br>CXCR6<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.1<br>CXCR1.2<br>CXCR2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSLP<br>AVTVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVTVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVTVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVTVYSHWIFGTFLCKITGAMFTINFYCGIFLLACISTDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWNVQASCLSVWLLSILLSIP<br>AVQWHQWTFGMAACKISGALFSINRYSGILFIACISFDRYLAIVHAVSTGWKRNTCHAQIACTLIWTVCFGLSGV<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWNVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWNVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWNVQASCLSVWLLSILLSIP<br>AVDAAGWSFGGFLCTTVHVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAVLTVP<br>AVDAAGUWSFGMVCVGVHVIYTINLYSSVLILAFISLDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAVLLTVP<br>AVDAAGDWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVHATNSQTTRKRKLLAERWIYVAGAWLPAGLLAFP<br>AVDAA-LGDWRVGAVMCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTHTRQLAHRIVYAGAWLPAGLLAFP<br>AVDAA-LGDWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTHTRQLAHRIVYAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGLMNRINFLCGSLLLACISVDRYMVVARTQEVLRIKSRMLTGGKLASLGVWLTALLSLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRSVCVGVWULALVASLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRSVCVGVWULALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRSVCVGVWULALVASLP<br>ALFNDAFTPQR-GGPTRCAEHFDLSSATHWRLATRGLRHILGFLLPLVIMVACYSITVARLLQTH<br>VLQREAIQEDLSDQTICYENLTASSSN-QWLVFVRVLRHTLGFFLPLAVMVCYSCTATMFRGMRW<br>VALQREAIQEPDLEGQIICFENLTAASSD-RWRVGVRVIRHVLGFFLPLSVMVCYSCTAATLFRGMRW                                                                                                                                                                                                                                                              | 143<br>172<br>172<br>182<br>171<br>182<br>182<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>217<br>182<br>185<br>217<br>240<br>240<br>240<br>240                                    |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2b<br>CXCR5<br>CXCR6<br>CXCR6<br>CXCR6<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.1<br>CXCR1.2<br>CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSIP<br>AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSIP<br>AVTVYSHWIFGTFLCKLLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSIP<br>AVTVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSIP<br>AVTVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSIP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFIACISFDRYLAIVHAVSTGWKRNSCHAQIACLIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWNVQASCLSVWLLSILLSIP<br>AVQWAHQWFGMAACKISGALFSINRYSGILFIACISFDRYLAIVHAISTGWKRNTCHAQIACTIWTVCFGLSGV<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWNVQASCLSVWLLSILLSIP<br>AVQWAHQWFGMAACKISGALFSINRYSGILFIACISLDRYLSVVHAVQMYSRRKPWNVQASCLSVWLLSILLSIP<br>AVQWAGWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWNVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWNVQASCLSVWLLSILLSIP<br>AVDAAGGWRFGGTCTTVHVIYTINLYSSVLILAFISDDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAVLTVP<br>AVDAAGGWRFGQTCTGVHVIYTINLYSSVLILAFISDDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAVLLTVP<br>AVDAAGGWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATVTSTTHTRQLLAHRIVYAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGLMNRINFLCGSLLLACISDDRYLVVXATVTSTTHTRQLAHRIVYAGAWLPAGLLAFP<br>USSLAQHSHWFFGRALCKATHASYAVNTYSGLLLLAFISLDRYLAVVKATDTSTHIRGVCMGVWLLALVASLP<br>VSSLAQHSHWFFGELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRGVCMGVWLLALVASLP<br>VSSLAQHSHWFFGELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRGVCMGVWLLALVASLP<br>VSSLAQHSHWFFGELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRGVCMGVWLLALVASLP<br>VSSLAQHSHWFFGELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRGVCMGVWLLALVASLP<br>VSSLAQHSHWFFGELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRRSVCVGVGTATLLQTH<br>ALFNDAFTPQR-GGPTRCAEHFDLSSATHWRLATRGLRHILGFLLPLVIMVACYSITVARLLQ-TH<br>VLQREAIQLEDLSDQTICYENTASSSNQWLVFVRVLRHTLGFFLPLSVMVCYSCTATTFRGWRW<br>-VALQREAIQPEDLEGQIICFENLTAASSD-RWRVGVRVIRHVLGFFLPLSVMVCYSCTATTFRGWRW                                                                                                     | 143<br>172<br>172<br>182<br>171<br>182<br>182<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185                                                                                     |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.2<br>CXCR1.2<br>CXCR2.2<br>CXCR2.2<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSIP<br>AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTLGGALSIP<br>AVTVYSHWIFGTFLCKLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSIP<br>AVTVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSIP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFIACISFDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFIACISFDRYLAIVHAVSTGWKRNTCHAQIACTLIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFIACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMACKISGALFSINRYSGILFIACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAGWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVDAAGGWRFGGICTTVHVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAVLLTVP<br>AVDAAGGWRFGQICTQVHVIYTVNLYGSVLILAFISLDRYLAVVHATNSQTRKRKLLAERWIYVAGMLPAGLLAIP<br>AVDAA-LGDWRFQAVCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATVTSTTHTRQLLAHRIVYAGAWLPAGLLAFP<br>LAQVSLGVVFGDVLCKLIGLMNRLNFLCGSLLLACIGFDRYLAVVKATVTSTTHTRQLAHRVYXGAWLPAGLLAFP<br>VSSLAQHSHWFFSELACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHSHWFFSELACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHSHWFFGEVACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHSHWFFGEVACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>ALFNDAFTPQR-GGPTRCAEHFDLSSATHWRLATRGLRHILGFLLPLVIMVACYSITVARLLQTH<br>ALFNDAFTPQR-GGPTRCAEHFDLSSAT-HWRLATRGLRHILGFLLPLVIMVACYSITVARLLQTH<br>VLQREAIQEEDLSDQTICYENLTASSSNQWLVFVRVLRHTLGFFLPLSVVVYCSCTATMFRGRRN<br>VALQREAIQFEDLSQTICYENLTASSNQWLVFVRVLRHTLGFLPLSVVYCYSCTATMFRGRRN<br>VLQREAIQFEDLSQTICYENLTASSSQWLVFRVLSRLLYHTVGFLLPSAVLFFCYSCILLQLQRG-SQ                                                                                                                            | 143<br>172<br>172<br>182<br>171<br>182<br>182<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185                                                                                     |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.2<br>CXCR1.2<br>CXCR2.1<br>CXCR2.1<br>CXCR2.1<br>CXCR3<br>CXCR3<br>CXCR3.1a<br>CXCR3.1a<br>CXCR3.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTIGGALSIP<br>AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTIGGALSIP<br>AVTVYSHWIFGTFLCKLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSIP<br>AVTVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSIP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFIACISIDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFIACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGIFLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAGWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAGWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQAASSWYFGGFLCTTVHVIYTINLYSSVLILAFISVDRYLAVVHATMSQTTRKRKLLAERWIYVAWLPAVLTVP<br>AVDAASSWYFGGILCTAVHVIYTINLYSSVLILAFISUDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAVLTVP<br>AVDAA-SSWYFGGILCTAVHVIYTINLYSSVLILAFISLDRYLAVVKATDTSTTHIRQLLAHRVYXGAWLPAGLLAIP<br>AVDAA-LGDWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTTHIRQLAHRYVYAGAWLPAGLLAFP<br>LAQVS-LGVVFGDVLCKLIGLMNRLNFLCGSLLLACIGFDRYLAIVHATTS-LQSRRPRNVHLTCLALWLVCLALSVP<br>AGDTI-LGHWAFGNALCKATHASYAVNTYSGILLLACISVDRYMLAVKATDTSTTHIRQKLARSUCVGVWLLALVASLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHSVCVGVWLLALVASLP<br>ALFNDAFTPQR-GGPTRCAEHFDLSSATHWRLATRGLRHILGFLLPLVIMVCYSITVARLLQTH<br>VLQREAIQLEDLSDQTICYENLTASSN-QWLVFVVLRHTLGFFLLPLVMVCYSCTATMFRGRM<br>-VALQREAIQPEDLSDQTICYENLTASSN-QWLVFVVLRHTLGFFLLSVMVVCYSCTATMFRGRM<br>-VALQREAIQPEDLSQQTICYFPHSS-VQWQVGWPILNULVLGFFLPLSVVLYGCTATMFRGRM<br>-VALQREAIQPEDLSQCVQNYPSLSQSGFDWRLVSRLLYHTVGFLLPSAVLIFCYSCILLQLQRG-SQ<br>DWHFLESVRRDKQECVQNYPSLSQSGFDWRLVSRLLYHTVGFLLPSAVLIFCYSCILLQLQRG-                                                           | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>181<br>217<br>182<br>185<br>244<br>207<br>240<br>244<br>207<br>240<br>244<br>254<br>254<br>256<br>267 |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.1<br>CXCR2.2<br>CXCR2.1<br>CXCR2.1<br>CXCR3.1a<br>CXCR3.1a<br>CXCR3.1a<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRVLVIVRPAKSRKGHRRACRWACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRVLVIVRPAKSRKGHRRACRWACTFIWTLGGALSLP<br>AVTVYSHWIFGFLCKLLSGLQDASFYSGVFLLACISVDRVLAIVKTTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVTVYSHWIFGFLCKLSGLQDASFYGGVFLLACISVDRVLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFLACISFDRVLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFLACISFDRVLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRVLSVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFLACISFDRVLAIVHAVSTGWKRNSCHAQIACTLIWTVCIGLSGV<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRVLSVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGGAACKISGALFSINRYSGILFLACISFDRVLAIVHATSTGWKRNTCHAQIACTLIWTVCIGLSGV<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRVLSVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVDAASSWYFGGILCTTVHVIYTINLYSSVLILAFISVDRVLAVHATNSQTTRKRKLLAERWIYVAVWLPAAVLTVP<br>AVDAASSWYFGGILCTVHVIYTINLYSSVLILAFISVDRVLAVHATNSQTTRKRKLLAERWIYVAGWLPAAULTVP<br>AVDAAGEWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRVLAVVKATVTSTHTRQLAHRUVYAGAWLPAGLLAFP<br>LAQVSLGVVFGVVCKLLGLHMRRLNFLCGSLLLACIGFDRVLAVVKATVTSTHTRQRLAHRUVYAGAWLPAGLLAFP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRVLSMTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRVLSMTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRVLSMTRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRVLSMTRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VLQREAIQLEDLSDQTICYENLTASSNQWLVFVNLRHLGFLPLVVVVCYSCTATTMFRGMRN<br>VLQREAIQLEDLSDQTICYENLTASSNQWLVFVNLRHLGFFLPLSVVVCYSCTATTMFRGMRN<br>DLAFRQVVEVERGRGDHQGLLVCQTVFPHSS-VQWQVGMPLVNLVGFLLPSAVLFFCYSCILLQLQRG-SQ<br>DWHFLESVRRKQECVQNYPSLSQSGFDWRLVSRULSHLYGFLLPSAVLFFCYSCILLQLQRG-SQ<br>DITFRQVVKVEVGRSGDHQGLLVCQTVFPHSS-VQWQVGMPLVSLVLGFGLPPLVMLYCYIRIFRSLCNASRR                                                                                                                                                                                                    | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>181<br>217<br>182<br>185<br>244<br>207<br>240<br>244<br>207<br>240<br>244<br>254<br>254<br>256<br>267 |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.2<br>CXCR1.2<br>CXCR2.1<br>CXCR2.1<br>CXCR2.1<br>CXCR3<br>CXCR3<br>CXCR3.1a<br>CXCR3.1a<br>CXCR3.1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTIGGALSIP<br>AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWACTFIWTIGGALSIP<br>AVTVYSHWIFGTFLCKLSGLQDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVGK-VCGAVWLGAGLLSIP<br>AVTVYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSIP<br>AVQWSHLWLFGVAACKISGALFSINRYSGILFIACISIDRYLAIVHAVSTGWKRNSCHAQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGILFIACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAHQWVFGMAACKISGALFSINRYSGIFLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAGWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQWAGWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPMVQASCLSVWLLSILLSIP<br>AVQAASSWYFGGFLCTTVHVIYTINLYSSVLILAFISVDRYLAVVHATMSQTTRKRKLLAERWIYVAWLPAVLTVP<br>AVDAASSWYFGGILCTAVHVIYTINLYSSVLILAFISUDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAVLTVP<br>AVDAA-SSWYFGGILCTAVHVIYTINLYSSVLILAFISLDRYLAVVKATDTSTTHIRQLLAHRVYXGAWLPAGLLAIP<br>AVDAA-LGDWRFGAVTCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTTHIRQLAHRYVYAGAWLPAGLLAFP<br>LAQVS-LGVVFGDVLCKLIGLMNRLNFLCGSLLLACIGFDRYLAIVHATTS-LQSRRPRNVHLTCLALWLVCLALSVP<br>AGDTI-LGHWAFGNALCKATHASYAVNTYSGILLLACISVDRYMLAVKATDTSTTHIRQKLARSUCVGVWLLALVASLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRHSVCVGVWLLALVASLP<br>ALFNDAFTPQR-GGPTRCAEHFDLSSATHWRLATRGLRHILGFLLPLVIMVCYSITVARLLQTH<br>VLQREAIQLEDLSDQTICYENLTASSN-QWLVFVVLRHTLGFFLLPLVMVCYSCTATMFRGRM<br>-VALQREAIQPEDLSDQTICYENLTASSN-QWLVFVVLRHTLGFFLLSVMVVCYSCTATMFRGRM<br>-VALQREAIQPEDLSQQTICYFPHSS-VQWQVGWPILNULVLGFFLPLSVVLYGCTATMFRGRM<br>-VALQREAIQPEDLSQCVQNYPSLSQSGFDWRLVSRLLYHTVGFLLPSAVLIFCYSCILLQLQRG-SQ<br>DWHFLESVRRDKQECVQNYPSLSQSGFDWRLVSRLLYHTVGFLLPSAVLIFCYSCILLQLQRG-                                                           | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185<br>181<br>217<br>182<br>185<br>244<br>207<br>240<br>240<br>240<br>254<br>236<br>267<br>254                      |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.1<br>CXCR2.2<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4a<br>CXCR3.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR4.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.4b<br>CXCR3.                                                                                                                                                                                                                                                                      | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AVTVYSHWIFGTFLCKLSGLQDASFYSGVFLLACISVDRYLAIVKTTQALQQRHLVGK-VCGAVWLGAGLLSLP<br>AVTYYSHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVGWSHLWLFGVAACKISGALFSINRYSGIFILACISFDRYLAIVHATARALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSHLWLFGVAACKISGALFSINRYSGIFILACISFDRYLAIVHAVQMYSRRKPWMVQASCLSVWLSSILSIP<br>AVQWSHGWSFGTPICKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLSSILSIP<br>AVQAAGEWSFGTPICKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLSSILSIP<br>AVQAAGEWSFGTPICKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLSSILSIP<br>AVQAAGEWSFGTPICKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLSSILSIP<br>AVDAASSWYFGGICTTVHVIYTINLYSSVLILAFISVDRYLAVVHATNSQTTRKRKLLAERWIYVAVWLPAAVLTVP<br>AVDAA-SSWYFGGICTTVHVIYTINLYSSVLILAFISLDRYLAVVHATNSQTTRKRKLLAERWIYVAWLPAAVLTVP<br>AVDAAGEWRFGAVCVGVHVIYTVNLYGSVLILAFISLDRYLAVVHATNSQTRKRKLLAERWIYVAGWLPAGLLAFP<br>LAQVSLGVVFGDVICKLIGLMNRLNFLCGSLLLACIGFDRYLAVVHATNSQTRKRKLLAERWIYVAGWLPAGLLAFP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFIACMSVDRYLAVVHATNSCYTTRHIDQLAHRYVYAGAWLPAGLLAFP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>VSSLAQHSHWPFSELACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFIACMSVDRYLSVTRPADSEDGGRRRKLIRGSVCMGVWCXGTATTMFRGMRN<br>VLQREAIQEEDLSDQTICVENLTASSSN-QWLVFVVLRHTLGFFLPLSVMVVCXSCTATTMFRGMRN<br>VLQREAIQEEDLSQCYCPYPF-HSS-VQWQVMPLVNLVLGFFLPLSVMVVCXSCTATTMFRGMRN<br>-VLQREAIQEEDLSQCJUCQVYFPHSS-VQWQVMPLVNLUGFFLPLSVMVCXSCTATTMFRGMRN<br>-VLQREAIQEEDLSQCUCQVYFP-SLSQSGFDWRLVSRLLYHTVGFLLSSAULFCYSCILLQLQRG-SQ<br>DWHFLESVRRDKQECVQNYPSLSQSGFDWRLSSRLLYHTVGFLLSAVLFC                                      | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185<br>185<br>181<br>217<br>182<br>185<br>244<br>207<br>240<br>240<br>240<br>240<br>240<br>254<br>236<br>267<br>254 |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.1<br>CXCR1.2<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3a<br>CXCR3b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AVYYY-SHWIFGTFLCKLSGLQDASFYSGVFLLACISVDRYLATVKATRALDQRHLVGK-VCGAVWLGAGLLSLP<br>AVYYY-SHWIFGTFLCKFLSGLQDAAFYCGVFLLACISVDRYLATVKATRALDQRHLVGK-VCGAVWLGAGLLSLP<br>AVQWSHUWFGVFLCKISGLFSLRYSGLFLACISVDRYLATVKATRALAQRHLVGL-VCGAVWLGAGLLSLP<br>AVQWSGEWSFGTFLCKITGAMFTINFYCGIFLLACISDRYLSVVHAVQMYSRKPWMVQASCLSVWLSILSILSIS<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISDRYLSVVHAVQMYSRKPWMVQASCLSVWLSILSILSISP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISDRYLSVVHAVQMYSRKPWMVQASCLSVWLSILSILSISP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISDRYLSVVHAVQMYSRKPWMVQASCLSVWLSILSILSISP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISDRYLSVVHAVQMYSRKPWMVQASCLSVWLSILSILSIP<br>AVQAASWYFGGFLCTTVHVITINLYSSVLILAFISDRYLAVVHATSSVTHARSQSTRTFLDRVIVVAWLPAAVLTVP<br>AVDAA-SWYFGGFLCTVHVITTINLYSSVLILAFISDRYLAVVHATSSSTTHIRQLAHRLVYAGAWLPAAVLTVP<br>AVDAA-LGDWRVGAVMCVGVHVITVTNLYGSVLILAFISDRYLAVVHATSSSTTHIRQLAHRLVYAGAWLPAGLLAFP<br>VSSLAQHSHWFGSLCKATHASYAVNTYSGLLLACIGFDRYLAIVHATSS-CQSRRNVLITCLALWVCLALSVP<br>AGDTL-LGHWAFGANCCVGVHVITVTNLYGSVLILAFISDRYLAVVKATDTSTTHIRQRLAHRVYXGAWLPAGLLAFP<br>VSSLAQHSHWFFSLACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRADSEDGGRRRKLIRGVCVGVWLLALVASLP<br>VSSLAQHSHWFFSGVCCVGVULTHIFSVNLFSSIFFLACMSVDRYLSVTRADSEDGGRRRKLIRGVCVGVWLLALVASLP<br>VSSLAQHSHWFFSGVCCVGVUZYDFPSNLFSSIFFLACMSVDRYLSVTRADSEDGGRRRKLIRGSVCVGVWLLALVASLP<br>USSLAQHSHWFFSGVCCVGVGVGVGVGVGVGVGVGVGVGVGVGVGVGVGVGV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>106<br>177<br>172<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185                                                                |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.2<br>CXCR2.1<br>CXCR2.1<br>CXCR2.1<br>CXCR2.1<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2a<br>CXCR4.2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSLVMEASFYTSILFLVCISVDRYLAIVKTTQAKAGHRRACRWYACTFIWTLGGALSLP<br>AVYYYSHWIFGTFLCKLSGLQDASFYSGVFLLACISVDRYLAIVKNTTQALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKLSGLQDASFYSGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVYYYGEWSFGTFLCKISGLADAFYCGVFLLACISVDRYLAIVKATRALAQRRHLVGL-VCGAVWLGAGLLSLP<br>AVQMSHUHLFGVAACKISGALFSINRYSGILFLACISDRYLAIVHATRAGWKNSCHAQIACALIWTVCFGLSGV<br>AVQAGEWSFGTPLCKITGAMFTINFYCGIFLLACISDRYLSVHAVQMYSRRKPMVQASCLSVWLISILLSIP<br>AVQWAHGWYFGMAACKISGALFSINRYSGILFLACISFDRYLAIVHAISTGWKNNCHAQIACTLIWTVCFGLSGV<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISDRYLSVHAVQMYSRRKPMVQASCLSVWLSILSILSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISDRYLSVHAVQMYSRRKPMVQASCLSVWLSILSILSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISDRYLSVHAVQMYSRRKPMVQASCLSVWLSSILSISP<br>AVDAASSWYFGGILCTAVHVITTINLYSSVLILAFISDRYLAVVHAINSQTIRKRKLLAERWIVVAWLPAVILTVP<br>AVDAA-SSWYFGGILCTAVHVITTINLYSSVLILAFISDRYLAVVKATVTSTTHTRQLAHRUVVAGAULPAULTVP<br>AVDAA-LGDWRVGAVMCVGVHVITVNLYGSVLILAFISDRYLAVVKATDTSTTHIRQLAHRUVVAGAULPAGLLAIP<br>LAQVSGUVFG9VICKLIGLMRINFLCGSLLLACISVDRYLAVVKATDTSTTHIRQLAHRUVVAGAULPAGLLAIP<br>VSSLAQHSHWPFSSLACKLTHLLFSVNLFSSIFFLACMSVDRYLSWTRPADSEDGGRRRKLIRHSVCVGVWLLALVASLP<br>VSSLAQHSHWPFSSLACKLTHLLFSVNLFSSIFFLACMSVDRYLSWTRPADSEDGGRRRKLIRHSVCVGVWLLALVASLP<br>VSSLAQHSHWPFSGVACKLTHLLFSVNLFSSIFFLACMSVDRYLSWTRPADSEDGGRRRKLIRRSVCVGVWLLALVASLP<br>VSSLAQHSHWPFSGVACKLTHLLFSVNLFSSIFFLACMSVDRYLSWTRPADSEDGGRRRKLIRHSVCVGSVLLALVASLP<br>VSSLAQHSHWPFSGUGCKLTHLLFSVNLFSSIFFLACMSVDRYLSWTRVLGFFLPLSVMVCYSCTATTFGRWR<br>ALFNDAFTPQR-GGPTRCAEHFDLSSATHWRLATRGLRHILGFLLPLVIMVACYSITVARLLQTH<br>VLQREAIQPEDLEGQTICYENLTASSSN-QWLVFRVLRHTLGFLPFLAVMVCYSCTATTFRGWR<br>DWHFLESVRRDKQECVQNYPSLSQSGFDWRLVSRLVHTVGFLLPSAVLFCYSCILLQLQRG-SQ<br>DWHFLESVRRDKQECVQNYPSLSQSGFDWRLVSRLVHTVGFLLPSAVLFCYSCILLQLQRG-SQ<br>DWHFLESVRRDKQECVMYPSLSQSGFDWRLASRLLYHTVGFLLPSAVLFCYSCILLQLQRG-SQ<br>DWHFLESVRRSRTCQRIYPQETSFYWAGFRPQHILVGFVLPGLVLLVCYCVISKLTRGPKG<br>                                                                          | 143<br>172<br>172<br>182<br>171<br>182<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185                                                                                            |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.2<br>CXCR2.2<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3.1b<br>CXCR3.1b<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.                                                                                                                                                                                                                                                                   | AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRACRWACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLAIVRTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKLLSGLDASFYSGVFLLACISVDRYLAIVRTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKLSGLDASFYSGVFLLACISVDRYLAIVRTARALAQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKLSGLDASFYSGVFLLACISVDRYLAIVRATALAQRRHLVGK-VCGAVWLGAGLLSLP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAASWYFGGILCTVHVIYTINLYSSVLILAFISDRYLAVVHATNSQTTRRKLLAERWIYVAWLPAAVLTVP<br>AVDAA-SSWYFGGILCTAVHVIYTINLYSSVLILAFISDRYLAVVHATNSQTTRRKKLLAERWIYVAWLPAAVLTVP<br>AVDAA-SWYFGGILCAXHVIYTINLYSSVLILAFISDRYLAVVHATNSQTRRRKLIAERWIYVAGAWLPAAVLTVP<br>AVDAA-LGDWRFGAVCCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTTHTRQLLAHRLVYAGAWLPAGLLAFP<br>LAQVS-LGVVFGDVLCKLIGLMNRINFLCGSLLLACIGFDRYLAIVHAITS-LQSRRPRNVHLTCLAWWLPAAVLTVP<br>AVDAA-LGWRFGAVCCVGHVIYTVNLYGSVLILAFISDRYLAVVRATDSTTHTRQLARRVYAGAWLPAGALAFP<br>LAQVS-LGVVFGDVLCKLIGLMNRINFLCGSLLLACIGFDRYLAIVHAITS-LQSRRPRNVHLTCLAWWLAXLSVP<br>ASSLAQHGHWFFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSMTRPADSEDGGRRRKLIRRGVCWGWULLALVSLP<br>VSSLAQHGHWFFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLNXRPADSEDGGRRRKLIRRGVCWGWULLALVSLP<br>ALFNDAFTPQR-GGPTRCAEHFDLSSAT-HWRLATRGLRHLIGFLLPLVIMVGYSITVARLLQTH<br>ALFNDAFTPQR-GGPTRCAEHFDLSSAT-HWRLARGLRHLGFLLPLVIMVGYSITVARLLQTH<br>VLQREAIQLEDLEQQIICFENLTAASSD-WWIVRNLUGFLLPLSVWVCYSCTAATIFRGWRM<br>VLQREAIQLEDLEQQIICFENLTAASSD-WWWIRKULGFLLPLVMVVGYSITVARLQRG-SQ<br>DWHFLESVRRDKQECVQNYPSLSQSGFDWRLVSRLLYHTVGFLLPSAVLFFCYSCILLQLQRG-SQ<br>DIFRQVVKVEVERGSGHQGILVQCYTFP-HSS-VQWQVMPLVSLLYGFLLPSAVLFFCYSCILLQLQRG-SQ<br>DIVFATAQBRVS-RTICQRIYPQETSF-YWWAGFRPHILVGFLLPSAVLFFCYSCILLQLQRG-SQ<br>DIVFATAQB                                                                  | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185                                                                                     |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3.1b<br>CXCR3.1b<br>CXCR3.1b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR5<br>CXCR | AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRRACRWYACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLAIVKTQALTQRRHLVCK-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKLLSGLDDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVCK-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKLSGLDDASFYSGVFLLACISVDRYLAIVKTQALTQRRHLVCK-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKISGLDFSINRYSGIFLACISPDRYLAIVKATAGWRNSCHQIACALIWTVCFGLSGV<br>AVQATGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAASWYFGGLCTTVHVIYTINLYSSVIILAFISDRYLAVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAASWYFGGLCTTVHVIYTINLYSSVIILAFISDRYLAVVHATNSQTTRRKKLLAERWIYVAVWLPAVLTVV<br>AVQAASWYFGGLCTAVHVIYTINLYSSVIILAFISDRYLAVVHATNSQTTRRKKLLAERWIYVAWLPAVLTVP<br>AVDAA-SWYFGGLCTAVHVIYTINLYSSVIILAFISDRYLAVVHATNSQTRRKKLIAERWIYVAGAULPAGLAP<br>AVDAA-LGDWRFGAVCVGVHVIYTVNLYGSVLILAFISDRYLAVVKATDTSTTHIRQLAHRLYVAGAWLPAGLAFP<br>LAQVSLGVVFGDVLCKLIGIANRINFICGSLLLACIGPDRYLAVVHATNSQTRRKKLIAREWIYVAGAWLPAGLAFP<br>USSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>VSSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>USSLAQHGHWPFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSVTRPADSEDGGRRRKLIRGVCMGVWLLALVASLP<br>ALFNDAFTPQR-GGPTRCAEHFDLSSAT-HWRLATRGLRHILGFLLPLVIMVACYSITVARLLQ-TH<br>VULQREALQLEDLSDQTICYENITASSD-RWRVQVRVIRHUGFLLPSAVLFGYSITUARLLQ-TH<br>VLQREALQLEDLSDQTICYENITASSD-VWQVGWDVLVNLUGFLLPSAVLFGYSITUARLQRG-SQ<br>DWHFLESVRRDKQECVQNYPSLSQSGFDWRLVSRLLHTVGFLLPSAVLFGYSITLQLQRG-SQ<br>-DITFRQVVKVEVGRSGDHQGLLVCQYVFP-HSS-VQWQVGMPLVNLVLGFLLPSAVLFGYSILLQLQRG-SQ<br>-DITFRQVVEVEVGRSGDHQGLLVCQYVFP-HSS-VQWQVGMPLVNLVLGFLLPSAVLFGYSCILLQLQRG-SQ<br>-DUFFATADARRDKQECVQNYPSLSQSGFDWRLVSRLLHTVGFLLPSAVLFGYSCILLQLQRG-SQ<br>-DUFFATADARRS-RTICQRIYPQETSF-YWMAGFRPHILVGFVLPGLVILVGYTISTIFFSLCNASRR<br>DWHFLESVRRDKQEC                                                | 143<br>172<br>172<br>182<br>171<br>202<br>182<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185                                                                                     |
| CXCR1.2<br>CXCR2.1<br>CXCR2.2<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3a<br>CXCR3b<br>CXCR4.1a<br>CXCR4.1a<br>CXCR4.1b<br>CXCR4.2a<br>CXCR4.2b<br>CXCR5<br>CXCR5<br>CXCR6<br>CXCR7.1a<br>CXCR7.1a<br>CXCR7.1b<br>CXCR1.2<br>CXCR2.2<br>CXCR3<br>CXCR3<br>CXCR3<br>CXCR3.1a<br>CXCR3.1b<br>CXCR3.1b<br>CXCR3.1b<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR3.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.1c<br>CXCR4.                                                                                                                                                                                                                                                                   | AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLVIVRPAKSRKGHRACRWACTFIWTLGGALSLP<br>AANTLHGWIFGDFLCKFLSIVMEASFYTSILFIVCISVDRYLAIVRTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKLLSGLDASFYSGVFLLACISVDRYLAIVRTQALTQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKLSGLDASFYSGVFLLACISVDRYLAIVRTARALAQRRHLVGK-VCGAVWLGAGLLSLP<br>AVYYYSHWIFGTFLCKLSGLDASFYSGVFLLACISVDRYLAIVRATALAQRRHLVGK-VCGAVWLGAGLLSLP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQWAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAAGEWSFGTPLCKITGAMFTINFYCGIFLLACISLDRYLSVVHAVQMYSRRKPWMVQASCLSVWLLSILLSIP<br>AVQAASWYFGGILCTVHVIYTINLYSSVLILAFISDRYLAVVHATNSQTTRRKLLAERWIYVAWLPAAVLTVP<br>AVDAA-SSWYFGGILCTAVHVIYTINLYSSVLILAFISDRYLAVVHATNSQTTRRKKLLAERWIYVAWLPAAVLTVP<br>AVDAA-SWYFGGILCAXHVIYTINLYSSVLILAFISDRYLAVVHATNSQTRRRKLIAERWIYVAGAWLPAAVLTVP<br>AVDAA-LGDWRFGAVCCVGVHVIYTVNLYGSVLILAFISLDRYLAVVKATDTSTTHTRQLLAHRLVYAGAWLPAGLLAFP<br>LAQVS-LGVVFGDVLCKLIGLMNRINFLCGSLLLACIGFDRYLAIVHAITS-LQSRRPRNVHLTCLAWWLPAAVLTVP<br>AVDAA-LGWRFGAVCCVGHVIYTVNLYGSVLILAFISDRYLAVVRATDSTTHTRQLARRVYAGAWLPAGALAFP<br>LAQVS-LGVVFGDVLCKLIGLMNRINFLCGSLLLACIGFDRYLAIVHAITS-LQSRRPRNVHLTCLAWWLAXLSVP<br>ASSLAQHGHWFFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLSMTRPADSEDGGRRRKLIRRGVCWGWULLALVSLP<br>VSSLAQHGHWFFGEVACKLTHLLFSVNLFSSIFFLACMSVDRYLNXRPADSEDGGRRRKLIRRGVCWGWULLALVSLP<br>ALFNDAFTPQR-GGPTRCAEHFDLSSAT-HWRLATRGLRHLIGFLLPLVIMVGYSITVARLLQTH<br>ALFNDAFTPQR-GGPTRCAEHFDLSSAT-HWRLARGLRHLGFLLPLVIMVGYSITVARLLQTH<br>VLQREAIQLEDLEQQIICFENLTAASSD-WWIVRNLUGFLLPLSVWVCYSCTAATIFRGWRM<br>VLQREAIQLEDLEQQIICFENLTAASSD-WWWIRKULGFLLPLVMVVGYSITVARLQRG-SQ<br>DWHFLESVRRDKQECVQNYPSLSQSGFDWRLVSRLLYHTVGFLLPSAVLFFCYSCILLQLQRG-SQ<br>DIFRQVVKVEVERGSGHQGILVQCYTFP-HSS-VQWQVMPLVSLLYGFLLPSAVLFFCYSCILLQLQRG-SQ<br>DIVFATAQBRVS-RTICQRIYPQETSF-YWWAGFRPHILVGFLLPSAVLFFCYSCILLQLQRG-SQ<br>DIVFATAQB                                                                  | 143<br>172<br>172<br>182<br>171<br>182<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185                                                                                            |

Figure 2. Cont.


|          | ТМ6 ТМ7                                                                       |         |
|----------|-------------------------------------------------------------------------------|---------|
| CXCR1.1  | GFQKHRAMRVIIAVVFAFLLCWTPLHMTVMADTLMRAKLVRFD-CAVRNRVDLALQVTHSLALVHSFVNPVLYA    | AFV 319 |
| CXCR1.2  | GFQKHRAMRVIIAVVFAFLLCWTPLHMTVMADTLMRAKLVRFD-CAVRNRVDLALQVTHSLALVHSFVNPVLYA    |         |
| CXCR2.1  | AVHKHKAMRVILAVVLAFVLCWLPCNVSVLVDTLMRGGLLGEETCEFRNSVSVALYVTKGIAFTHCAVNPVLY     | AFI 316 |
| CXCR2.2  | GGQKHKAMRVILAVVLAFVACWLPRNISVLVDTLMRSGSLGEETCEFQNKVSVALYVTEVMAFTHCAVNPVLY     | AFI 316 |
| CXCR3    | QKRKSLHLIVSLVSMFVLCWAPYNSFQLAESLKKLGVISG-GCQFGRTVDIGILVSESMGLSHCALNPLLY       |         |
| CXCR3.1a | GLQKQRAVRVILALVLVFFLCWTPYNITIMVDTFQGRPGEPVSGSCENGRTALENSLVVTFALACLHACLNPVLH   | LGL 314 |
| CXCR3.1b | GLQKQRAVRVILALVLVFFLCWTPYNITLMVDTFQGRPGEPVSGSCEKGRTALENSLVVTFALACLHACLNPVLH   |         |
| CXCR3a   | QKRKSLHLIVSLVSMFVLCWAPYNSFQLAESLKKLGVISG-GCQFGRTVDIGILVSESMGLSHCALNPLLY       |         |
| CXCR3b   | GLQKQRAVRVILFLVLVFFLCWTPYNITLMVDTLYSSNSLVDTCES-HNALDISLTATSSLGYLHCSLNPVLYA    |         |
| CXCR4.1a | G-QVLKRKALKTTVILILCFFSCWLPYCVGIFLDTLMLLNVISH-SCALEQSLQTWLLITEALAYFHCCLNPILY   |         |
| CXCR4.1b | G-QVLKRKALKTTVILVLCFFSCWLPYCVGIFVDTLMLLNVISH-SCALEQSLQTWISITEALAYFHCCLNPILY   |         |
| CXCR4.2a | G-OROKRRAVRTTVALVLCFFLCWLPYCIGIAVDALLRLELIPR-GCTLESGLGVWLAVSEPMAYAHCCLNPLLYA  |         |
| CXCR4.2b | G-QRQKRRAVRTTVALVLCFFLCWLPYCIGITVDALLRLELIPR-GCTLESGLGLWLAVSEPMAYAHCCLNPLLYA  |         |
| CXCR5    | QRSLEKEGAIRLAALVTAVFCLCWLPYNITMLVKTLVDRGLDSGLSCQSRTSLDKALVVTESLGYTHCCLNPLLY   |         |
| CXCR6    | G-GWRRQRTLRLMVVLVAVFLLFQLPYTVVLSLKVAGPGAAKQ-TCDQWAATLLREYVTCTLAYTRCCLNPLLY    |         |
| CXCR7.1a | AVEQERRVSRRMILAYIVVFLGCWGPYHGVLLADALSLLGLVPLSCGLENALYVALHLTQCLSLLHCCVNPILY    |         |
| CXCR7.1b | AMEQERRVSRRVILAYTVVFLGCWGPYHGVLLADALSLLGLVPLSCGLENALYVALHLTQCLSLLHCCFNPILY    |         |
| CACRITI  |                                                                               |         |
| CXCR1.1  | GEKFRGNLGALVRKSRGPERGSSSGFSRS                                                 |         |
| CXCR1.2  | GEKFRGNLGALVRKSRGPERGSSSGFSRS                                                 | 311     |
| CXCR2.1  | GQKFRNQLLLMLHKHGLISKRVLAAYRRGSAHSTVSQRSRN                                     | 357     |
| CXCR2.2  | GQKFRNQLLVVLHKHGLISKRLMVAYRSGSVNSTASQRSRN                                     | 357     |
| CXCR3    | GVKFRRELTRMCKGLLGQRFYPGMNRWGGQRKLRRTTGSFSS                                    | 369     |
| CXCR3.1a | CRNFRRLEMVRCVEGVQNDPKLSLWDSGVVEDSPDQAEEMGTLNP                                 | 359     |
| CXCR3.1b | CRNFRRVLDMVRCVEGVQNDPKLSLWDSGVVEDSPDQAEEMGTLNT                                | 392     |
| CXCR3a   | GVKFRRELTRMCKGLLGQRFYPGMKEWGGQRKTRRPTRSFSS                                    | 369     |
| CXCR3b   | GVKFRRHLLDMLRSLGCKLKSGVRLQTASRRSSM                                            | 283     |
| CXCR4.1a | GVKFKKSARDALAVSSRSSHKVLTKKR-GAISSVSTESESSSVLCS                                | 362     |
| CXCR4.1b | GVKFKKSARNALTVSSRSSHKILTKKR-GPISSVSTESESSGALSS                                | 357     |
| CXCR4.2a | GVGFKSSARRALTLTRTSSLKIVPRRRTGAMTSTTTESESSSLHSS                                | 373     |
| CXCR4.2b | GVGFKSSARRALTLTRMSSLKILPRRRTGATTSTTTESESSSLHSS                                | 373     |
| CXCR5    | GVRFRQDLLRLLAHH                                                               | 341     |
| CXCR6    | GVRFRGDVLKLLHGVGCLCWAVSGPHLESCTSGSPSSLGLTTLSPLPPNSPLLLPPDTLAHSVKYQPPTASHPSGPT | KVF 437 |
| CXCR7.1a | NRNYRYDLMKAFIFKYSTRTGLARLIEQTHVSETEY                                          | 365     |
| CXCR7.1b | NRNYRYDLMKAFIFKYSTRTGLTRLIEQPHISETEY                                          | 367     |
|          |                                                                               |         |
| CXCR1.1  | TSQTSEGNGLL                                                                   | 359     |
| CXCR1.2  | TSQTSEGNGLL                                                                   | 322     |
| CXCR2.1  | TSISL                                                                         | 362     |
| CXCR2.2  | TSVTL                                                                         | 362     |
| CXCR3    | VESENTSHFSVMA                                                                 | 382     |
| CXCR3.1a | MTTMGQVQSTQS                                                                  | 371     |
| CXCR3.1b | MTTMGQVQSTQS                                                                  | 404     |
| CXCR3a   | AESENTHSIMA                                                                   | 380     |
| CXCR3b   | WSESGDTSHTSAIY                                                                | 297     |
| CXCR4.1a |                                                                               |         |
| CXCR4.1b |                                                                               |         |
| CXCR4.2a |                                                                               |         |
| CXCR4.2b |                                                                               |         |
| CXCR5    |                                                                               |         |
| CXCR6    | LFPSRPTLPSDGLLQFTVSKTKPV                                                      | 461     |
| CXCR7.1a | SAVAVENTPQI                                                                   | 376     |
| CXCR7.1b | SAVAVENIPQI                                                                   | 378     |
|          | MAYAYINE EVI                                                                  | 576     |

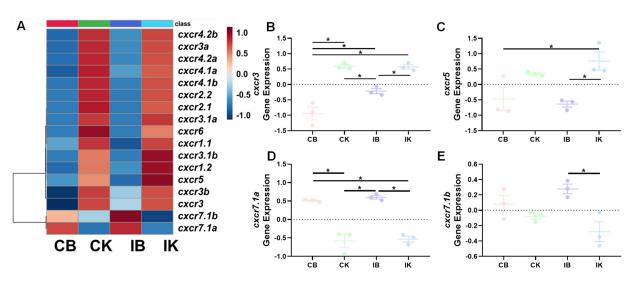
**Figure 2.** Alignment of CXCR proteins. Residues of transmembrane domains (TMs), DRY motif (a highly conserved motif in family A GPCRs), and (semi)conserved cysteines are shaded in grey, red, and orange. TMs and (semi)conserved cysteines are defined from previous studies of salmon and teleost CXCRs [61,62]. The highly conserved NPxxY motif in family A GPCRs is observed in TM 7.

## 3.3. Transcriptional Profiles of cxcr in Trout after Bacterial Infection

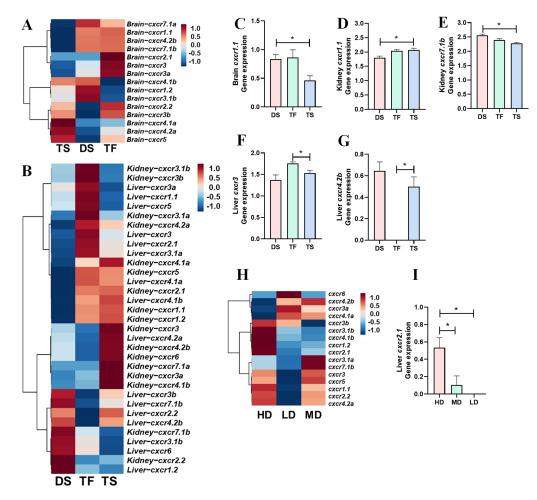
## 3.3.1. V. anguillarum

The heatmap showed the overall expression profiles of *cxcr* genes in the brain (Figure 3A), spleen, and kidney (Figure 3B). Brain *cxcr1* and *cxcr4*, kidney *cxcr3* and *cxcr4*, and spleen *cxcr3*, *cxcr4*, and *cxcr5* subtypes were significantly altered by *V. anguillarum* infection (Figure 3C–N).




**Figure 3.** Transcriptional profiles of *cxcr* in trout after *V. anguillarum* infection. (**A**,**B**): the heatmap of *cxcr* transcriptional profiles ((**A**): brain; (**B**): kidney and spleen). (**C**–**N**): expression of the representative genes (with significant differences among groups). Asterisks indicate significant differences (one-way analysis ANOVA followed by Tukey's multiple comparison test with *p* < 0.05). Abbreviations: K—kidney; S—spleen; C—control trout; A—asymptomatic trout; S—symptomatic trout.

#### 3.3.2. A. salmonicida

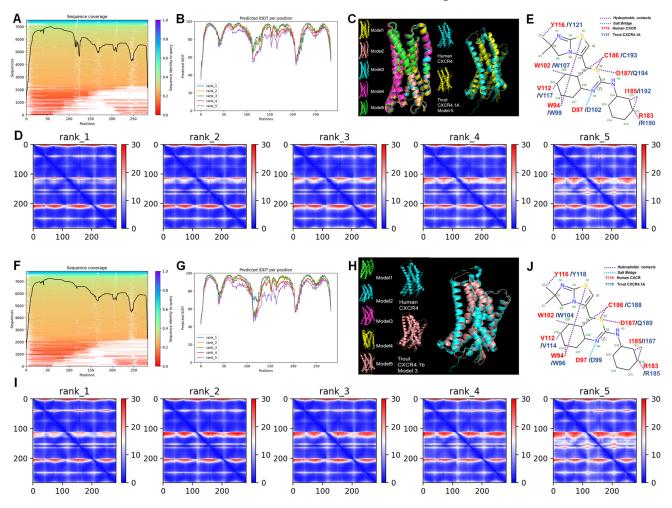

The heatmap indicated the overall expression profiles of *cxcr* genes in the brain and kidney between control and infected trout (Figure 4A). Expressions of representative genes (*cxcr3*, *cxcr5*, *cxcr7.1a*, and *cxcr7.1b*) are also shown (Figure 4B–E).

# 3.4. Transcriptional Profiles of cxcr in Trout in Response to Salinity Change and High Stocking Density

The overall transcriptional profiles of trout *cxcr* in the brain, kidney, and liver are shown in heatmaps (Figure 5A,B). Compared to DS, TS showed a significantly down-regulated expression of brain *cxcr1.1*, up-regulated expression of kidney *cxcr1.1*, and down-regulated expression of kidney *cxcr7.1b* (Figure 5C–E). Compared to TF, TS showed a significantly down-regulated expression of liver *cxcr3* and up-regulated expression of liver *cxcr4.2b* (Figure 5F,G). The overall hepatic *cxcr* expressions were clustered in a heatmap (Figure 5H). High stocking density significantly increased *cxcr2.1* expressions when comparing HD to MD and LD (Figure 5I).



**Figure 4.** Transcriptional profiles of *cxcr* in trout after *A. salmonicida* infection. (**A**): the heatmap of *cxcr* transcriptional profiles. (**B**–**E**): expression of the representative genes (with significant differences among groups). Asterisks indicate significant differences (one-way analysis ANOVA followed by Tukey's multiple comparison test with p < 0.05). Abbreviations: CB—control trout brain tissue; CK—control trout kidney tissue; IB—infected trout brain tissue; IK—infected trout kidney tissue.




**Figure 5.** Transcriptional profiles of *cxcr* in trout after salinity and density changes. (**A**,**B**): principal component analysis (PCA) of *cxcr* transcriptional profiles in the brain (**A**) and liver and kidney (**B**).

The separated PCA plots indicate specific *cxcr* transcriptions. (**A**,**B**): the heatmap of *cxcr* transcriptional profiles in the brain (**A**) and liver and kidney (**B**). (**C**–**G**): expression of the representative genes (with significant differences) between DS and TS or TF and TS (Student's *t*-test was used for comparisons between two groups with p < 0.05). (**H**): the heatmap of *cxcr* transcriptional profiles in the liver. (**I**): expression of liver *cxcr1.2* among different stocking densities. Asterisks indicate significant differences (one-way analysis ANOVA followed by Tukey's multiple comparison test with p < 0.05). Abbreviations: DS—diploid trout in saltwater; TF—triploid trout in freshwater; TS—triploid trout in saltwater.

#### 3.5. Structure Prediction of CXCR4.1a and CXCR4.1b

Sequence coverage of trout CXCR4.1a and CXCR4.1b residues are shown in Figure 6A,F. For trout CXCR4.1a, the pLDDT score of model 5, model 3, model 4, model 1, and model 2 were 88.9, 88.8, 87.2, 85.5, and 82.6, respectively (Figure 6B, cartoon representation in Figure 6C). The pLDDT scores of model 3, model 4, model 5, model 1, and model 2 of trout CXCR4.1b were 88.8, 88.4, 87.2, 84.6, and 80.1, respectively (Figure 6G, cartoon representation in Figure 6H). Uncertainty of the predicted distance between two residues is color-coded from blue (0 Å) to red (30 Å, Figure 6D,I). Trout CXCR4.1a (CXCR4.1b) showed conserved IT1t (a small molecule antagonist) binding sites of W99 (W96), D102 (D99), W107 (W104), V117 (V114), Y121 (Y118), C193 (C188), R190 (R185), and I192 (I187) to human CXCR4 with exception of D187. Human CXCR4 D187 was replaced by Q194 in trout CXCR4.1a and Q189 in trout CXCR4.1b (Figure 6E,J).



**Figure 6.** Comparison analyses of trout CXCR4.1a and CXCR4.1b based on human CXCR4 crystal structure. (A): sequence coverage of the trout CXCR4.1a residues. (B): predicted local distance difference

test (LDDT) score per residue for five models (model 5 = 88.9; model 3 = 88.8; model 4 = 87.2; model 1 = 85.5; model 2 = 82.6). (C): cartoon model of the structure of human CXCR4 and five predicted structures of trout CXCR4.1a. (D): prediction aligned error (PAE) score for five models. (E): schematic representation of interactions between human CXCR4/trout CXCR4.1a and IT1t. Red amino acids show human CXCR4 residues, and blue amino acids show trout CXCR4 residues. (F): sequence coverage of the trout CXCR4.1b residues. (G): prediction dictated local distance difference test (LDDT) score per residues for five models (model 3 = 88.8; model 4 = 88.4; model 5 = 87.2; model 1 = 84.6; model 2 = 80.1). (H): cartoon model of the structure of human CXCR4 and five predicted structures of trout CXCR4.1b. (I): prediction aligned error (PAE) score for five models. (J): schematic representation of interactions between human CXCR4/trout CXCR4.1b and IT1t. Red amino acids show human CXCR4 residues, and blue amino acids show trout CXCR4.1b and IT1t. Red amino acids show human CXCR4 residues, and blue amino acids show trout CXCR4.1b and IT1t. Red amino acids show human CXCR4 residues, and blue amino acids show trout CXCR4 residues.

#### 4. Discussion

## 4.1. Characterization of cxcr Genes

Whole genome duplication occurred in teleost ancestors, resulting in increased paralogs of cxcr genes. Hence, previous studies have identified eight cxcr genes in a typical 3R teleost species, such as channel catfish [15]. Atlantic salmon is an important 4R salmonid species, and 19 cxcr genes have been identified in Atlantic salmon [61]. In the current study, a total of 17 cxcr genes were identified in rainbow trout based on available genomic information and our RNA-seq datasets (Figures 1 and 2), being consistent with previous studies that showed an expansion of chemokine systems in teleosts [62,63]. Thus, the faster evolvement of chemokines and the fish-specific whole genome duplication have resulted in the expansion of both teleost chemokine and receptor genes [10,14,64–66]. In this study, we showed duplications of trout cxcr1, cxcr2, cxcr3, cxcr4, and cxcr7 due to whole genome duplication and lineage-specific tandem gene duplications (Figures 1 and 2). For example, cxcr3 and cxcr3.1a were localized quite close to each other on chromosome 2, and a large cluster of *cxcr* genes were located on chromosome 3 and 22, all of this suggesting a rapid evolution through tandem duplications [67], suggesting that gene duplication of CXC chemokines and receptors might acts as a predominant evolutionary mechanism for environment adaptation in fish [68]. Compared to 3R teleosts, the 4R salmonid species exerted more cxcr paralogs, which is consistent with previous studies showing that genes (such as *igf* and *igfbp* genes, for example) involved in immunomodulation were further expanded in salmonid species [26,27].

The phylogenetic analysis showed explicit annotations of trout CXCR proteins, with most trout CXCR proteins clustered with their teleost counterparts (Figure 1). The seven transmembrane domains, a conserved and typical structure of GPCRs [69], were observed in all trout CXCR members, as well as a DRY motif in TM3 and an NPxxY motif in TM7, revealing sequence and structure similarities between trout CXCRs and mammalian family A GPCRs.

## 4.2. Physiological Functions of cxcr Genes

The chemokine system plays an important role in modulating the development of the immune system homeostasis during routine immune surveillance and inflammation [2,6,67]. Recent studies reported the involvement of chemokine systems in regulating immunomodulation in teleosts, including catfish, trout, croaker, and bream [15,59,70–73]. However, most of these studies focused on studying CXCR-regulated immunomodulation in peripheral immune tissues rather than in the central nervous system. Therefore, we evaluated *cxcr* transcription levels in both brain and peripheral tissues in trout in response to *V. anguillarum* or *A. salmonicida* infections.

In humans and rodents, CXCR1 has been reported to be widely expressed in the brain and to play an important role in modulating neuroinflammation [74,75]. In teleosts, CXCR1 regulates immune defense against pathogen infections [59,76,77]. For example, peripheral *cxcr1* was up-regulated by viral and bacterial infections in trout [59]. Two *cxcr1* subtypes have been identified in some teleost species as a consequence of the additional WGD [61,77], which is consistent with our results. In Asian swamp eel (*Monopterus albus*), a previous study showed different gene expressions between *cxcr1.1* and *cxcr1.2* after pathogen infection [77]. In this study, brain *cxcr1.1* and *cxcr1.2* showed different transcriptional regulation in response to bacterial infections (Figure 3). A recent study showed *cxcrs* exhibited tissue-specific and time-dependent regulation of transcription in the head kidney, liver, and gill after *A. salmonicida* infection in turbot (*Scophthalmus maximus*) and black rockfish (*Sebastes schlegelii*) [68,78]. These results suggest that *cxcr1* subtypes might be differently involved in the response to disease in both brain and peripheral tissues.

Biomedical studies indicate that CXCR3 is involved in directing lymphocytes into inflammation areas and regulating the inflammatory state of both the CNS and peripheral tissues [79,80]. A previous study in grass carp (Ctenopharyngodon idella) showed that *cxcr3* is widely expressed in the brain and protects the brain from pathogen infection [81]. We observed that brain cxcr3 was significantly up-regulated by A. salmonicida infection (Figure 4). Consistently, transcriptional profiles of cxcr3 subtypes were significantly altered by a bacterial and viral infection, LPS or polyI:C stimulation in teleost species, including rainbow trout, turbot, largemouth bass (Micropterus salmoides), and black rockfish [57,68,78,82]. In rainbow trout, cxcr3 subtypes were differently induced by inflammatory stimulants and cytokines in head kidney cells and macrophages [59,76,83]. Our results also showed that cxcr3 exhibited tissue-specific and subtype-dependent transcriptional regulation in peripheral tissues in response to pathogen infection. Our results further supported the involvement of CXCR3 in the neuro-immune network in fish [81]. Human studies showed that CXCR3A and CXCR3B exert opposite functions in regulating cell growth, with the "Survival" and "Death" signals derived from CXCR3A and CXCR3B, respectively [84,85]. In this study, we observed up-regulated cxcr3 subtypes in asymptomatic trout compared to symptomatic trout (Figure 3). Our results suggested trout *cxcr3* subtypes might be functional orthologs of human CXCR3A. Further studies should investigate the regulatory mechanism(s) of the cxcr3-regulated "Survival" signals.

CXCR4 is one of the most well-studied chemokine receptors due to its important role in regulating the development of the immune system and also immunomodulation. In biomedical studies, CXCR4 serves as the therapeutic target of cancer metastasis and HIV-1 infection [86–89]. There is growing evidence that CXCR4 is involved in infection defense, neuron pathophysiology, and response to stress in teleosts ([90,91], Reviewed in [76]). For example, rainbow trout, grouper, and channel catfish showed up-regulated *cxcr4* after viral and bacterial infections [15,82,90]. CXCR4 was also widely expressed in the CNS, where it seems to be involved in neuron pathology [76,90]. Our results showed brain cxcr4.1b and cxcr4.2b expression were significantly altered due to V. anguillarum infection, in correlation with a previous study that showed that nervous necrosis virus infection led to significantly upregulated *cxcr4* expression in orange-spotted grouper [90]. Alterations of environmental nitrate also induce cxcr4b expression in Wuchang bream (Megalobrama amblycephala) [91]. Likewise, our results showed that both bacterial infection and environmental changes altered the expression of cxcr4 subtypes (Figures 3 and 5). CXCR5 serves as the homeostatic regulator for immune responses and neuron regeneration ([92,93], reviewed in [76]). In fish, cxcr5 was shown to be highly expressed in lymphoid tissues, including the kidney and spleen in grass carp [92]. Consistent with previous studies showing *cxcr5* expression is modulated by a range of immune stimulants and pathogen infection [68,92], in this study, symptomatic trout also showed down-regulated spleen cxcr5 in response to V. anguillarum infection (Figure 4).

Meanwhile, it is important to compare the extent of changes between chemokine receptors to the overall statistical pattern of changes in the RNA-Seq data and other genes that are not directly related to immunomodulation. In this study, we selected *per1b* (period circadian clock 1b). The *per1b* is widely expressed in both brain and peripheral tissues in humans (https://www.genecards.org/, accessed on 24 January 2024) and rainbow trout. The *per1b* gene regulates circadian rhythms of locomotion, metabolism, and behavior. In the brain, average fold-changes of all up-regulated genes between groups were ~1.59 (C/S)

and 1.48 (C/A), and all down-regulated genes between groups were ~0.68 (C/S) and 0.75 (C/A). The fold-changes of *per1b* gene expression between groups were ~1.51 (C/S) and 0.94 (C/A), while fold-changes of *cxcr1.2* gene expression between groups were ~0.21 (C/S) and 0.57 (C/A) (Figure 3). In the kidney, average fold-changes of all up-regulated genes between groups were ~2.51 (C/S) and 1.76 (C/A), and all down-regulated genes between groups were ~0.59 (C/S) and 0.63 (C/A). The fold-changes of *per1b* gene expression between groups were ~0.84 (C/S) and 0.82 (C/A), while fold-changes of *cxcr3* gene expression between groups were ~3.97 (C/S) and 1.21 (C/A) (Figure 3). In the spleen, average fold-changes of all up-regulated genes between groups were ~4.35 (C/S) and 2.71 (C/A), and all down-regulated genes between groups were ~0.95 (C/S) and 0.60 (C/A). The fold-changes of *per1b* gene expression between groups were ~0.95 (C/S) and 0.64 (C/A), while fold-changes of *cxcr3* gene expression between groups were ~0.95 (C/S) and 0.64 (C/A). The fold-changes of *cxcr3* gene expression between groups were ~0.89 (C/S) and 0.64 (C/A) (Figure 3). These results suggested that infection or the fish response to infection are directly provoking alterations in trout *cxcr* transcription levels, especially between groups of control trout and symptomatic trout.

Finally, we showed that the amino acids of the binding pocket of IT1t (a small molecule) in trout CXCR4.1a/b were conserved to those of human CXCR4 [94] (Figure 6). Compared to endogenous ligands, these small molecule ligands (drugs) are stable and orally bioavailable [95]. Therefore, small molecular ligands of human chemokine receptors could be used in the future as immunomodulators targeting fish CXCRs in the aquaculture industry.

## 5. Conclusions

In this study, we have identified 17 *cxcr* genes in rainbow trout with duplicated copies of *cxcr1*, *cxcr2*, *cxcr3*, *cxcr4*, and *cxcr7*. Gene expression analyses showed trout *cxcr* genes exhibited conserved functions with human orthologs. Transcription levels of *cxcr* genes were altered by bacterial infection and environmental changes, suggesting a pleiotropic role in regulating homeostasis and immune response. Trout CXCR4.1a(b) showed conserved residues for the binding pocket of IT1t (a small molecule ligand) with human CXCR4. Our results contribute to a better understanding of the immune role of CXCRs and their potential ligands in an important teleost species. This information could be used in the future to modulate immune responses to infectious diseases and adaptation to environmental changes.

**Supplementary Materials:** The following supporting information can be downloaded at https: //www.mdpi.com/article/10.3390/biom14030337/s1, Text S1: Input amino acids sequences of CXCR4.1a–b, Figure S1. Prediction aligned error (PAE) score for five models with CXCR4.1a ORF sequences. Figure S2. Prediction aligned error (PAE) score for five models with CXCR4.1a amino acid sequences associated with the transmembrane domain (TM), extracellular (ECL), and intra-cellular (ICL) loops. Table S1. Count of liver *cxcr* genes in trout at HD, LD, and MD.

Author Contributions: Conceptualization, Z.-S.H., J.-F.L. and H.-S.W.; methodology, Z.-S.H., M.-Q.L., X.-D.Y., H.-K.Z., C.Z., Y.-R.X., Q.Y. and H.-S.W.; validation, Z.-S.H., H.-K.Z., M.-Q.L., K.-W.X. and Z.L.; formal analysis, Z.-S.H., H.-K.Z., K.-W.X., Z.L. and P.P.; data curation, Z.-S.H., H.-K.Z., K.-W.X. and Z.L.; writing—original draft preparation, Z.-S.H., J.-F.L., P.P., C.T. and H.-S.W.; writing—review and editing, Z.-S.H., J.-F.L., P.P., C.T. and H.-S.W.; supervision, Z.-S.H. and H.-S.W.; project administration, Z.-S.H. and H.-S.W.; funding acquisition, Z.-S.H. and H.-S.W. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was funded by the Natural Science Foundation of Shandong Province (ZR2023QC196), China Postdoctoral Science Foundation (2023M743332), Development Plan of Youth innovation team in colleges and universities in Shandong Province (2023KJ031), Qingdao Postdoctoral Science Foundation (QDBSH20230102021), Foundation of Guangxi Academy of Aquatic Sciences (GXKEYLA-2023-01-21) and Support Foundation of Ocean University of China.

**Institutional Review Board Statement:** Animal studies were approved by the Institutional Review Board at Ocean University of China (permit number: 20141201).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Conflicts of Interest: The authors declare no conflicts of interest.

#### References

- 1. Koelink, P.J.; Overbeek, S.A.; Braber, S.; de Kruijf, P.; Folkerts, G.; Smit, M.J.; Kraneveld, A.D. Targeting chemokine receptors in chronic inflammatory diseases: An extensive review. *Pharmacol. Ther.* **2012**, *133*, 1–18. [CrossRef]
- Allen, S.J.; Crown, S.E.; Handel, T.M. Chemokine: Receptor structure, interactions, and antagonism. *Annu. Rev. Immunol.* 2007, 25, 787–820. [CrossRef]
- 3. Bacon, K.; Baggiolini, M.; Broxmeyer, H.; Horuk, R.; Lindley, I.; Mantovani, A.; Maysushima, K.; Murphy, P.; Nomiyama, H.; Oppenheim, J. Chemokine / chemokine receptor nomenclature. *Cytokine* **2003**, *21*, 48–49.
- 4. Zlotnik, A.; Yoshie, O.; Nomiyama, H. The chemokine and chemokine receptor superfamilies and their molecular evolution. *Genome Biol.* **2006**, *7*, 243. [CrossRef]
- Zlotnik, A.; Burkhardt, A.M.; Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. *Nat. Rev. Immunol.* 2011, 11, 597–606. [CrossRef] [PubMed]
- 6. Zlotnik, A.; Yoshie, O. Chemokines: A new classification system and their role in immunity. *Immunity* **2000**, *12*, 121–127. [CrossRef] [PubMed]
- Yoshie, O.; Imai, T.; Nomiyama, H. Chemokines in immunity. In *Advances in Immunology*; Elsevier: Amsterdam, The Netherlands, 2001; pp. 57–110.
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. *Nat. Rev. Genet.* 2017, 18, 411. [CrossRef] [PubMed]
- Jaillon, O.; Aury, J.-M.; Brunet, F.; Petit, J.-L.; Stange-Thomann, N.; Mauceli, E.; Bouneau, L.; Fischer, C.; Ozouf-Costaz, C.; Bernot, A.; et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. *Nature* 2004, 431, 946–957. [CrossRef]
- 10. Valdés, N.; Cortés, M.; Barraza, F.; Reyes-López, F.E.; Imarai, M. CXCL9-11 chemokines and CXCR3 receptor in teleost fish species. *Fish Shellfish. Immunol. Rep.* **2022**, *3*, 100068. [CrossRef]
- 11. Dixon, B.; Shum, B.; Adams, E.J.; Magor, K.; Hedrick, R.P.; Muir, D.G.; Parham, P. CK-1, a putative chemokine of rainbow trout (*Oncorhynchus mykiss*). *Immunol. Rev.* **1998**, *166*, 341–348. [CrossRef]
- 12. Peatman, E.; Liu, Z. Evolution of CC chemokines in teleost fish: A case study in gene duplication and implications for immune diversity. *Immunogenetics* 2007, 59, 613–623. [CrossRef] [PubMed]
- 13. Liu, Y.; Chang, M.; Wu, S.; Nie, P. Characterization of C–C chemokine receptor subfamily in teleost fish. *Mol. Immunol.* **2009**, *46*, 498–504. [CrossRef] [PubMed]
- 14. Nomiyama, H.; Osada, N.; Yoshie, O. A family tree of vertebrate chemokine receptors for a unified nomenclature. *Dev. Comp. Immunol.* **2011**, *35*, 705–715. [CrossRef]
- Fu, Q.; Yang, Y.; Li, C.; Zeng, Q.; Zhou, T.; Li, N.; Liu, Y.; Liu, S.; Liu, Z. The CC and CXC chemokine receptors in channel catfish (*Ictalurus punctatus*) and their involvement in disease and hypoxia responses. *Dev. Comp. Immunol.* 2017, 77, 241–251. [CrossRef] [PubMed]
- 16. Leu, J.-H.; Tsai, C.-H.; Tsai, J.-M.; Yang, C.-H.; Hsueh, C.-Y.; Chou, H.-Y. Identification and expression analysis of 19 CC chemokine genes in orange-spotted grouper (*Epinephelus coioides*). *Dev. Comp. Immunol.* **2019**, *97*, 1–10. [CrossRef] [PubMed]
- 17. Thorgaard, G.H.; Bailey, G.S.; Williams, D.; Buhler, D.R.; Kaattari, S.L.; Ristow, S.S.; Hansen, J.D.; Winton, J.R.; Bartholomew, J.L.; Nagler, J.J.; et al. Status and opportunities for genomics research with rainbow trout. *Comp. Biochem. Physiol. Part B Biochem. Mol. Biol.* **2002**, *133*, 609–646. [CrossRef]
- Berthelot, C.; Brunet, F.; Chalopin, D.; Juanchich, A.; Bernard, M.; Noël, B.; Bento, P.; Silva, C.D.; Labadie, K.; Alberti, A.; et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. *Nat. Commun.* 2014, 5, 1–10. [CrossRef] [PubMed]
- 19. Valdés, N.; Gonzalez, A.; Garcia, V.; Tello, M. Analysis of the microbiome of rainbow trout (*Oncorhynchus mykiss*) exposed to the pathogen Flavobacterium psychrophilum 10094. *Microbiol. Resour. Announc.* **2020**, *9*, e01562-19. [CrossRef]
- 20. Bowden, T.J. Modulation of the immune system of fish by their environment. Fish Shellfish. Immunol. 2008, 25, 373–383. [CrossRef]
- 21. Makrinos, D.L.; Bowden, T.J. Natural environmental impacts on teleost immune function. *Fish Shellfish. Immunol.* **2016**, 53, 50–57. [CrossRef]
- Macqueen, D.J.; Garcia de la serrana, D.; Johnston, I.A. Evolution of ancient functions in the vertebrate insulin-like growth factor system uncovered by study of duplicated salmonid fish genomes. *Mol. Biol. Evol.* 2013, 30, 1060–1076. [CrossRef]
- Allendorf, F.W.; Thorgaard, G.H. Tetraploidy and the evolution of salmonid fishes. In *Evolutionary Genetics of Fishes*; Plenum Press: New York, NY, USA, 1984; pp. 1–53.
- 24. Lien, S.; Koop, B.F.; Sandve, S.R.; Miller, J.R.; Kent, M.P.; Nome, T.; Hvidsten, T.R.; Leong, J.S.; Minkley, D.R.; Zimin, A.; et al. The Atlantic salmon genome provides insights into rediploidization. *Nature* **2016**, *533*, 200–205. [CrossRef]
- 25. Macqueen, D.J.; Johnston, I.A. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. *Proc. R. Soc. B Biol. Sci.* 2014, 281, 20132881. [CrossRef] [PubMed]

- 26. Alzaid, A.; Martin, S.A.M.; Macqueen, D.J. The complete salmonid IGF-IR gene repertoire and its transcriptional response to disease. *Sci. Rep.* 2016, *6*, 34806. [CrossRef] [PubMed]
- Alzaid, A.; Castro, R.; Wang, T.; Secombes, C.J.; Boudinot, P.; Macqueen, D.J.; Martin, S.A.M. Cross talk between growth and immunity: Coupling of the IGF axis to conserved cytokine pathways in rainbow trout. *Endocrinology* 2016, 157, 1942–1955. [CrossRef] [PubMed]
- Sequeida, A.; Castillo, A.; Cordero, N.; Wong, V.; Montero, R.; Vergara, C.; Valenzuela, B.; Vargas, D.; Valdés, N.; Morales, J.; et al. The Atlantic salmon interleukin 4/13 receptor family: Structure, tissue distribution and modulation of gene expression. *Fish Shellfish. Immunol.* 2020, *98*, 773–787. [CrossRef]
- Conant, G.C.; Wolfe, K.H. Turning a hobby into a job: How duplicated genes find new functions. *Nat. Rev. Genet.* 2008, 9, 938–950.
  [CrossRef]
- Taylor, J.S.; Raes, J. Duplication and divergence: The evolution of new genes and old ideas. *Annu. Rev. Genet.* 2004, 38, 615–643. [CrossRef]
- Rebl, A.; Korytář, T.; Köbis, J.M.; Verleih, M.; Krasnov, A.; Jaros, J.; Kühn, C.; Köllner, B.; Goldammer, T. Transcriptome profiling reveals insight into distinct immune responses to Aeromonas salmonicida in gill of two rainbow trout strains. *Mar. Biotechnol.* 2014, 16, 333–348. [CrossRef]
- 32. Frans, I.; Michiels, C.W.; Bossier, P.; Willems, K.A.; Lievens, B.; Rediers, H. Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. *J. Fish Dis.* **2011**, *34*, 643–661. [CrossRef]
- 33. Valdes, N.; Espinoza, C.; Sanhueza, L.; Gonzalez, A.; Corsini, G.; Tello, M. Draft genome sequence of the Chilean isolate Aeromonas salmonicida strain CBA100. *FEMS Microbiol. Lett.* **2015**, *362*, fnu062. [CrossRef] [PubMed]
- 34. Sun, P.; Bao, P.; Tang, B. Transcriptome analysis and discovery of genes involved in immune pathways in large yellow croaker (*Larimichthys crocea*) under high stocking density stress. *Fish Shellfish. Immunol.* **2017**, *68*, 332–340. [CrossRef]
- San, L.; Liu, B.; Liu, B.; Guo, H.; Guo, L.; Zhang, N.; Zhu, K.; Jiang, S.; Zhang, D. Transcriptome analysis of gills provides insights into translation changes under hypoxic stress and reoxygenation in golden pompano, Trachinotus ovatus (Linnaeus 1758). Front. Mar. Sci. 2021, 8, 763622. [CrossRef]
- 36. de Fonseka, R.; Fjelldal, P.G.; Sambraus, F.; Nilsen, T.O.; Remø, S.C.; Stien, L.H.; Reinardy, H.C.; Madaro, A.; Hansen, T.J.; Fraser, T.W.K. Triploidy leads to a mismatch of smoltification biomarkers in the gill and differences in the optimal salinity for post-smolt growth in Atlantic salmon. *Aquaculture* 2022, 546, 737350. [CrossRef]
- 37. Galbreath, P.F.; Thorgaard, G.H. Saltwater performance of all-female triploid Atlantic salmon. *Aquaculture* **1995**, *138*, 77–85. [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 2016, 33, 1870–1874. [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. *Nucleic Acids Res.* 2009, 37 (Suppl. 2), W202–W208. [CrossRef] [PubMed]
- Hou, Z.-S.; Xin, Y.-R.; Zeng, C.; Zhao, H.-K.; Tian, Y.; Li, J.-F.; Wen, H.-S. GHRH-SST-GH-IGF Axis Regulates Crosstalk between Growth and Immunity in Rainbow Trout (*Oncorhynchus mykiss*) Infected with Vibrio anguillarum. *Fish Shellfish. Immunol.* 2020, 106, 887–897. [CrossRef]
- Zeng, C.; Hou, Z.-S.; Zhao, H.-K.; Xin, Y.-R.; Liu, M.-Q.; Yang, X.-D.; Wen, H.-S.; Li, J.-F. Identification and characterization of caspases genes in rainbow trout (*Oncorhynchus mykiss*) and their expression profiles after Aeromonas salmonicida and Vibrio anguillarum infection. *Dev. Comp. Immunol.* 2021, 118, 103987. [CrossRef]
- 42. Hou, Z.-S.; Xin, Y.-R.; Yang, X.-D.; Zeng, C.; Zhao, H.-K.; Liu, M.-Q.; Zhang, M.-Z.; Daniel, J.G.; Li, J.-F.; Wen, H.-S. Transcriptional profiles of genes related to stress and immune response in Rainbow trout (*Oncorhynchus mykiss*) symptomatically or asymptomatically infected with Vibrio anguillarum. *Front. Immunol.* **2021**, *12*, 967. [CrossRef]
- Liu, M.; Yang, X.; Zeng, C.; Zhao, H.; Li, J.; Hou, Z.; Wen, H. Transcriptional Signatures of Immune, Neural, and Endocrine Functions in the Brain and Kidney of Rainbow Trout (*Oncorhynchus mykiss*) in Response to Aeromonas salmonicida Infection. *Int. J. Mol. Sci.* 2022, 23, 1340. [CrossRef] [PubMed]
- 44. Xiang, K.; Yang, Q.; Liu, M.; Yang, X.; Li, J.; Hou, Z.; Wen, H. Crosstalk between Growth and Osmoregulation of GHRH-SST-GH-IGF Axis in Triploid Rainbow Trout (*Oncorhynchus mykiss*). *Int. J. Mol. Sci.* **2022**, *23*, 8691. [CrossRef]
- 45. Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. *Nat. Methods* **2022**, *19*, 679–682. [CrossRef] [PubMed]
- 46. DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92.
- 47. Yuan, S.; Chan, H.S.; Filipek, S.; Vogel, H. PyMOL and Inkscape bridge the data and the data visualization. *Structure* **2016**, *24*, 2041–2042. [CrossRef] [PubMed]
- 48. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* **2014**, *15*, 550. [CrossRef]
- 49. Love, M.; Anders, S.; Huber, W. Beginner's guide to using the DESeq2 package. Genome Biol. 2014, 15, 550.
- 50. Johnson, K.A.; Krishnan, A. Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data. *Genome Biol.* 2022, 23, 1. [CrossRef]
- 51. Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. *Metabolites* **2020**, 10, 186. [CrossRef]

- 52. Chong, J.; Wishart, D.S.; Xia, J. Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. *Curr. Protoc. Bioinform.* **2019**, *68*, e86. [CrossRef]
- Mouton, A.J.; Ma, Y.; Rivera Gonzalez, O.J.; Daseke, M.J., II; Flynn, E.R.; Freeman, T.C.; Garrett, M.R.; DeLeon-Pennell, K.Y.; Lindsey, M.L. Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. *Basic Res. Cardiol.* 2019, 114, 6. [CrossRef] [PubMed]
- 54. Zhao, H.; Soufan, O.; Xia, J.; Tang, R.; Li, L.; Li, D. Transcriptome and physiological analysis reveal alterations in muscle metabolisms and immune responses of grass carp (*Ctenopharyngodon idellus*) cultured at different stocking densities. *Aquaculture* **2019**, *503*, 186–197. [CrossRef]
- 55. Bird, S.; Tafalla, C. Teleost chemokines and their receptors. Biology 2015, 4, 756–784. [CrossRef] [PubMed]
- 56. Xu, H.; Liu, F. Advances in chemokines of teleost fish species. Aquac. Fish. 2023, 9, 115–125. [CrossRef]
- Qi, Z.; Xu, Y.; Dong, B.; Pi, X.; Zhang, Q.; Wang, D.; Wang, Z. Molecular characterization, structural and expression analysis of twelve CXC chemokines and eight CXC chemokine receptors in largemouth bass (*Micropterus salmoides*). *Dev. Comp. Immunol.* 2023, 143, 104673. [CrossRef]
- 58. Zhang, H.; Thorgaard, G.H.; Ristow, S.S. Molecular cloning and genomic structure of an interleukin-8 receptor-like gene from homozygous clones of rainbow trout (*Oncorhynchus mykiss*). *Fish Shellfish. Immunol.* **2002**, *13*, 251–258. [CrossRef]
- Xu, Q.; Li, R.; Monte, M.M.; Jiang, Y.; Nie, P.; Holland, J.W.; Secombes, C.J.; Wang, T. Sequence and expression analysis of rainbow trout CXCR2, CXCR3a and CXCR3b aids interpretation of lineage-specific conversion, loss and expansion of these receptors during vertebrate evolution. *Dev. Comp. Immunol.* 2014, 45, 201–213. [CrossRef]
- 60. Daniels, G.D.; Zou, J.; Charlemagne, J.; Partula, S.; Cunningham, C.; Secombes, C.J. Cloning of two chemokine receptor homologs (CXC-R4 and CC-R7) in rainbow trout Oncorhynchus mykiss. *J. Leukoc. Biol.* **1999**, *65*, 684–690. [CrossRef]
- 61. Grimholt, U.; Hauge, H.; Hauge, A.G.; Leong, J.; Koop, B.F. Chemokine receptors in Atlantic salmon. *Dev. Comp. Immunol.* 2015, 49, 79–95. [CrossRef]
- 62. Alejo, A.; Tafalla, C. Chemokines in teleost fish species. Dev. Comp. Immunol. 2011, 35, 1215–1222. [CrossRef]
- 63. Nomiyama, H.; Hieshima, K.; Osada, N.; Kato-Unoki, Y.; Otsuka-Ono, K.; Takegawa, S.; Izawa, T.; Yoshizawa, A.; Kikuchi, Y.; Tanase, S.; et al. Extensive expansion and diversification of the chemokine gene family in zebrafish: Identification of a novel chemokine subfamily CX. *BMC Genom.* **2008**, *9*, 222. [CrossRef] [PubMed]
- 64. DeVries, M.E.; Kelvin, A.A.; Xu, L.; Ran, L.; Robinson, J.; Kelvin, D.J. Defining the origins and evolution of the chemokine/chemokine receptor system. *J. Immunol.* **2006**, *176*, 401–415. [CrossRef] [PubMed]
- 65. Nomiyama, H.; Osada, N.; Yoshie, O. The evolution of mammalian chemokine genes. *Cytokine Growth Factor Rev.* 2010, 21, 253–262. [CrossRef] [PubMed]
- Chen, J.; Xu, Q.; Wang, T.; Collet, B.; Corripio-Miyar, Y.; Bird, S.; Xie, P.; Nie, P.; Secombes, C.J.; Zou, J. Phylogenetic analysis of vertebrate CXC chemokines reveals novel lineage specific groups in teleost fish. *Dev. Comp. Immunol.* 2013, 41, 137–152. [CrossRef] [PubMed]
- 67. Zlotnik, A.; Yoshie, O. The chemokine superfamily revisited. Immunity 2012, 36, 705–716. [CrossRef]
- Li, Y.; Zhang, P.; Gao, C.; Cao, M.; Yang, N.; Li, X.; Li, C.; Fu, Q. CXC chemokines and their receptors in black rockfish (*Sebastes schlegelii*): Characterization, evolution analyses, and expression pattern after Aeromonas salmonicida infection. *Int. J. Biol. Macromol.* 2021, 186, 109–124. [CrossRef]
- 69. Lefkowitz, R.J. Seven transmembrane receptors: Something old, something new. Acta Physiol. 2007, 190, 9–19. [CrossRef]
- Umasuthan, N.; Wan, Q.; Revathy, K.S.; Whang, I.; Noh, J.K.; Kim, S.; Park, M.-A.; Lee, J. Molecular aspects, genomic arrangement and immune responsive mRNA expression profiles of two CXC chemokine receptor homologs (CXCR1 and CXCR2) from rock bream, Oplegnathus fasciatus. *Fish Shellfish. Immunol.* 2014, 40, 304–318. [CrossRef]
- Liu, X.; Kang, L.; Liu, W.; Lou, B.; Wu, C.; Jiang, L. Molecular characterization and expression analysis of the large yellow croaker (*Larimichthys crocea*) chemokine receptors CXCR2, CXCR3, and CXCR4 after bacterial and poly I: C challenge. *Fish Shellfish*. *Immunol.* 2017, 70, 228–239. [CrossRef]
- Xu, T.; Zhu, Z.; Sun, Y.; Ren, L.; Wang, R. Characterization and expression of the CXCR1 and CXCR4 in miluy croaker and evolutionary analysis shows the strong positive selection pressures imposed in mammal CXCR1. *Dev. Comp. Immunol.* 2014, 44, 133–144. [CrossRef]
- 73. Fu, Q.; Yang, Y.; Li, C.; Zeng, Q.; Zhou, T.; Li, N.; Liu, Y.; Li, Y.; Wang, X.; Liu, S.; et al. The chemokinome superfamily: II. The 64 CC chemokines in channel catfish and their involvement in disease and hypoxia responses. *Dev. Comp. Immunol.* 2017, 73, 97–108. [CrossRef]
- 74. Danik, M.; Puma, C.; Quirion, R.; Williams, S. Widely expressed transcripts for chemokine receptor CXCR1 in identified glutamatergic, γ-aminobutyric acidergic, and cholinergic neurons and astrocytes of the rat brain: A single-cell reverse transcriptionmultiplex polymerase chain reaction study. J. Neurosci. Res. 2003, 74, 286–295. [CrossRef]
- Puma, C.; Danik, M.; Quirion, R.; Ramon, F.; Williams, S. The chemokine interleukin-8 acutely reduces Ca<sup>2+</sup> currents in identified cholinergic septal neurons expressing CXCR1 and CXCR2 receptor mRNAs. *J. Neurochem.* 2001, 78, 960–971. [CrossRef] [PubMed]
- Zou, J.; Redmond, A.K.; Qi, Z.; Dooley, H.; Secombes, C.J. The CXC chemokine receptors of fish: Insights into CXCR evolution in the vertebrates. *Gen. Comp. Endocrinol.* 2015, 215, 117–131. [CrossRef] [PubMed]

- 77. Gao, W.; Li, S.; Xu, Q.; Zhu, D.; Zhang, Q.; Luo, K.; Zhang, W. Molecular characterization and expression analysis of Asian swamp eel (*Monopterus albus*) CXC chemokine receptor (CXCR) 1a, CXCR1b, CXCR2, CXCR3a, CXCR3b, and CXCR4 after bacteria and poly I: C challenge. *Fish Shellfish. Immunol.* 2019, *84*, 572–586. [CrossRef] [PubMed]
- Zhao, S.; Li, Y.; Cao, M.; Yang, N.; Hu, J.; Xue, T.; Li, C.; Fu, Q. The CC and CXC chemokine receptors in turbot (*Scophthalmus maximus* L.) and their response to Aeromonas salmonicida infection. *Dev. Comp. Immunol.* 2021, 123, 104155. [CrossRef] [PubMed]
- 79. Goldberg, S.H.; Van Der Meer, P.; Hesselgesser, J.; Jaffer, S.; Kolson, D.L.; Albright, A.V.; González-Scarano, F.; Lavi, E. CXCR3 expression in human central nervous system diseases. *Neuropathol. Appl. Neurobiol.* **2001**, *27*, 127–138. [CrossRef]
- 80. Soto, H.; Wang, W.; Strieter, R.M.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Hedrick, J.; Zlotnik, A. The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3. *Proc. Natl. Acad. Sci. USA* **1998**, *95*, 8205–8210. [CrossRef] [PubMed]
- 81. Chang, M.X.; Sun, B.J.; Nie, P. The first non-mammalian CXCR3 in a teleost fish: Gene and expression in blood cells and central nervous system in the grass carp (*Ctenopharyngodon idella*). *Mol. Immunol.* **2007**, *44*, 1123–1134. [CrossRef]
- 82. Aquilino, C.; Castro, R.; Fischer, U.; Tafalla, C. Transcriptomic responses in rainbow trout gills upon infection with viral hemorrhagic septicemia virus (VHSV). *Dev. Comp. Immunol.* **2014**, *44*, 12–20. [CrossRef]
- 83. Wang, T.; Hanington, P.C.; Belosevic, M.; Secombes, C.J. Two macrophage colony-stimulating factor genes exist in fish that differ in gene organization and are differentially expressed. *J. Immunol.* **2008**, *181*, 3310–3322. [CrossRef] [PubMed]
- 84. Ehlert, J.E.; Addison, C.A.; Burdick, M.D.; Kunkel, S.L.; Strieter, R.M. Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. *J. Immunol.* **2004**, *173*, 6234–6240. [CrossRef]
- Wu, Q.; Dhir, R.; Wells, A. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. *Mol. Cancer* 2012, 11, 1–16. [CrossRef]
- 86. Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; et al. Involvement of chemokine receptors in breast cancer metastasis. *Nature* **2001**, *410*, 50–56. [CrossRef]
- 87. Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 2010, 16, 2927–2931. [CrossRef]
- Oberlin, E.; Amara, A.; Bachelerie, F.; Bessia, C.; Virelizier, J.-L.; Arenzana-Seisdedos, F.; Schwartz, O.; Heard, J.-M.; Clark-Lewis, I.; Legler, D.F.; et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. *Nature* 1996, *382*, 833–835. [CrossRef] [PubMed]
- 89. Feng, Y.; Broder, C.C.; Kennedy, P.E.; Berger, E.A. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. *Science* **1996**, 272, 872–877. [CrossRef] [PubMed]
- Lin, C.-Y.; Chen, Y.-M.; Hsu, H.-H.; Shiu, C.-T.; Kuo, H.-C.; Chen, T.-Y. Grouper (*Epinephelus coioides*) CXCR4 is expressed in response to pathogens infection and early stage of development. *Dev. Comp. Immunol.* 2012, 36, 112–120. [CrossRef]
- Zhang, J.; Wei, X.L.; Chen, L.P.; Chen, N.; Li, Y.H.; Wang, W.M.; Wang, H.L. Sequence analysis and expression differentiation of chemokine receptor CXCR4b among three populations of Megalobrama amblycephala. *Dev. Comp. Immunol.* 2013, 40, 195–201. [CrossRef]
- 92. Xu, Q.Q.; Chang, M.X.; Sun, R.H.; Xiao, F.S.; Nie, P. The first non-mammalian CXCR5 in a teleost fish: Molecular cloning and expression analysis in grass carp (*Ctenopharyngodon idella*). *BMC Immunol.* **2010**, *11*, 25. [CrossRef]
- 93. Kizil, C.; Dudczig, S.; Kyritsis, N.; Machate, A.; Blaesche, J.; Kroehne, V.; Brand, M. The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain. *Neural Dev.* **2012**, *7*, 27. [CrossRef] [PubMed]
- Wu, B.; Chien, E.Y.T.; Mol, C.D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan, R.; Brooun, A.; Wells, P.; Bi, F.C.; et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. *Science* 2010, 330, 1066–1071. [CrossRef] [PubMed]
- 95. Skerlj, R.T.; Bridger, G.J.; Kaller, A.; McEachern, E.J.; Crawford, J.B.; Zhou, Y.; Atsma, B.; Langille, J.; Nan, S.; Veale, D.; et al. Discovery of Novel Small Molecule Orally Bioavailable C– X– C Chemokine Receptor 4 Antagonists That Are Potent Inhibitors of T-Tropic (X4) HIV-1 Replication. *J. Med. Chem.* 2010, *53*, 3376–3388. [CrossRef] [PubMed]

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.