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Abstract: Calcification is a process of accumulation of calcium in tissues and deposition of calcium
salts by the crystallization of PO4

3− and ionized calcium (Ca2+). It is a crucial process in the
development of bones and teeth. However, pathological calcification can occur in almost any soft
tissue of the organism. The better studied is vascular calcification, where calcium salts can accumulate
in the intima or medial layer or in aortic valves, and it is associated with higher mortality and
cardiovascular events, including myocardial infarction, stroke, aortic and peripheral artery disease
(PAD), and diabetes or chronic kidney disease (CKD), among others. The process involves an intricate
interplay of different cellular components, endothelial cells (ECs), vascular smooth muscle cells
(VSMCs), fibroblasts, and pericytes, concurrent with the activation of several signaling pathways,
calcium, Wnt, BMP/Smad, and Notch, and the regulation by different molecular mediators, growth
factors (GFs), osteogenic factors and matrix vesicles (MVs). In the present review, we aim to explore
the cellular players, molecular pathways, biomarkers, and clinical treatment strategies associated
with vascular calcification to provide a current and comprehensive overview of the topic.

Keywords: vascular calcification; signaling pathways; endothelial cells (ECs); vascular smooth
muscle cells (VSMCs); biomarkers
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1. Introduction to Pathological Calcification

Calcification is a process of accumulation of calcium in tissues and deposition of
calcium salts by the crystallization of PO4

3− and ionized calcium (Ca2+). While it serves
as an essential mechanism for bone and teeth development and maturation, pathological
calcification can manifest in almost all soft tissues, which is associated with aging and
a variety of diseases [1]. In bone physiology, calcification plays a pivotal role in skeletal
growth and strength [2]. This process involves the deposition of calcium phosphate crystals
within a matrix, transforming into a rigid and resistant skeletal framework, and it is finely
regulated by a network of osteoblasts, osteoclasts, stem cells, and signaling molecules,
ensuring the formation of robust bone tissue [3]. Proteins and inorganic crystals combine
to form the composite tissues of mammalian teeth and bones. These tissues are made up
of about 70% inorganic materials, 20% proteins, and 10% water by weight [4]. Inorganic
crystals resist compressive stresses and increase tissue toughness by depositing on matrix
proteins; type I collagen is the main protein component of the matrix, and hydroxyapatite
is the main inorganic component of the tissues [5].

Aging is the primary cause of pathological calcification, although tumors, blood
vessels, and joints are often associated with this process [6]. Pathological calcification
occurs through various pathways with varying levels of cellular control in non-skeletal
tissues such as the vasculature and neoplasms [7]. Calcified deposits can be adverse by
causing mechanical stress or stiffness in affected tissues and have been linked to cellular
damage and inflammation, although they are often used as a marker of disease [8]. Calcified
deposits are calcium phosphate crystals anchored within the extracellular matrix.

Depending on the conditions leading to the development of calcium phosphate crys-
tals, dystrophic calcification manifests as the accumulation of calcium in regions affected
by trauma or necrosis, which is derived from various causes such as blunt trauma, inflam-
mation, injections, and the presence of parasites, with normal plasma levels of calcium and
phosphate [9]. In contrast, metastatic calcification occurs when abnormalities in the levels
of calcium and phosphate ions in the blood serum, i.e., hypercalcemia, lead to calcification
in previously normal tissue [10–12]. Furthermore, iatrogenic calcification can be caused
by some medical procedures, such as surgery, radiation therapy, or the administration of
calcium or phosphate-containing agents [13]. For example, the calcification of skin known
as calcinosis cutis appears after patients with tuberculosis receive intravenous calcium
gluconate, calcium chloride, and para-aminosalicylic acid [14]. Although pathological
calcification can occur in almost all soft tissues of the body, the most prone areas are
blood vessels, heart valves, brain, breast, kidneys, gastric mucosa, lungs, and tendons, and
research has focused primarily on vascular calcification [15–22] (Figure 1).

The mineral produced in ectopic calcification is less ordered, has variable crystal
sizes and shapes, and is composed of calcium phosphate crystals and other calcium salts
in contrast to physiological mineralization [23]. Glycosaminoglycans are present on the
surface of hydroxyapatite crystals in both blood vessel calcification and bone mineralization,
according to chemical and nuclear magnetic resonance (NMR) investigations. In general,
calcium is deposited in the form of fine white granules or gritty clumps [24]. Microscopically,
in sections stained with hematoxylin and eosin, calcium appears as basophilic, amorphous
granular, or agglomerated and appears in black with the von Kossa stain. Interestingly,
the presence of ribosomal RNA (rRNA) derived from ribosome degradation and nuclear
chromatin contributes to aortic valve calcification through the stimulation of hydroxyapatite
nucleation capacity exerted by the cell membrane-derived substance containing acidic
phospholipid substrates (PPM/PPLs) with their anionic charges [25].

The deposition of calcium salts in blood vessels is known as vascular calcification.
The calcium phosphate deposits can be found in the medial and intimal layers and aortic
valves [26,27]. The intimal calcification is associated with atherosclerosis. Normally, the
calcium salts are formed in the ECM rather than intracellular in the intimal layer, which
is associated with atherosclerotic plaques, medial layer, or aortic valves [28]. The min-
eral phases can be apatite, whitlockite, or octacalcium phosphate ranging in sizes from
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submicron to larger than 0.5 mm [29]. Vascular calcification together with remodeling
of the extracellular matrix (ECM) results in arterial stiffness and contributes to vessel
rupture [30]. Recent findings with Raman spectroscopy indicate an interaction between
intimal and medial calcifications related to atherosclerosis, demonstrating an elevation
of the apatite/whitlockite ratio in the aortic media precisely beneath an atherosclerotic
plaque [31]. Medial calcification, also termed Mönckeberg sclerosis, occurs preferentially
along the elastic lamina and is usually identified in small and medium-sized arteries of the
lower extremities. It is associated with advanced age, diabetes, and chronic kidney disease
(CKD), and, unlike intimal calcification, it occurs independently of atherosclerosis [32–34].
It is a process similar to intramembranous bone formation, involving the transdifferentia-
tion of vascular smooth muscle cells (VSMCs) to mineralizing cells. Arterial stiffness and
calcification of the arterial media create a vicious circle, in which ECs are often the initia-
tors [35]. The calcific aortic valve disease (CAVD) is the cause of the thickening, fibrosis, and
mineralization of the aortic valve leaflets, which ranges from aortic sclerosis (mild valve
thickening) to aortic stenosis (severe calcification with impaired leaflet motion) [36–39].
The valve endothelial and interstitial cells and immune cells promote the remodeling of
aortic valve leaflets. Atherosclerotic risk factors contribute to the risk of CAVD, such as age,
smoking, hypertension, hyperlipidemia, and diabetes [40].
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Figure 1. Schematic representation of the main anatomical locations susceptible to the deposition
of calcium salts: blood vessels, aortic valves, breast cancer, brain, tendons, or kidneys. In black
appear the anatomical locations of calcium deposits and in red the related diseases. FIBGC: familial
idiopathic basal ganglia calcification, AD: Alzheimer’s disease, CAVD: calcific aortic valve disease,
MI: myocardial infarction, CKD: chronic kidney disease, PAD: peripheral artery disease.

On the other hand, the structure–function relationship of soft tissue calcification is
a very dynamic and intricate process that still requires further understanding. Different
cellular types play a role in the process and multiple signaling pathways have been recog-
nized, including Ca2+ signaling, Wnt/β-catenin, BMP/Smad, and Notch pathways, and
different molecular mediators are involved, such as osteogenic factors, growth factors (GFs)
or matrix vesicles (MVs) [1,41–45]. The study of the molecular pathways may drive the
exploration of potential therapeutic targets and the use of proper biomarkers. Therefore,
the present review aims to explore the cellular players, molecular pathways, biomarkers,
and clinical treatment strategies associated with calcification to provide a current and
comprehensive overview of the topic.
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2. Cellular Players in Vascular Calcification

Several actors are involved in soft tissue calcification: not only cells but also cell matrix
components. In this section, we will center on the main cell types playing a role in the
deposition of calcium, including specialized cells in which changing microenvironments
led to an osteogenic-like phenotype. The study of the mechanisms governing vascular
calcification is difficult, which is mainly due to the unresolved origin of calcified cells
within cardiovascular lesions. These cells could originate from various sources: VSMCs
undergoing dedifferentiation and proliferation, bone marrow-derived stem cells present
from the bloodstream, or multipotent calcifying vascular cells resident in the vascular
wall which can differentiate into osteoblasts and chondrocytes with the contribution of
endothelial cells, macrophages, pericytes, and fibroblasts [46]. These cells are characterized
by the expression of calcification markers, including some transcription factors such as Msx2
(Msh homeobox 2) and Runx2, which are both responsible for the osteogenic phenotype,
Cbfa1 (core-binding factor α1), SP7/Osterix or SOX9, some proteins such as osteopontin
(OPN), osteocalcin (OC), alkaline phosphatase (AP), bone sialoprotein and collagens II
and X, while the contractile markers are decreased or lost [47,48]. Runx2 is the principal
activator of mineralization, as it is the transcription factor that upregulates the expression
of osteoblastic differentiation genes, e.g., osteocalcin and osteopontin.

2.1. Endothelial Cells

ECs are the vascular inner lining epithelium and have a critical role in the maintenance
of blood flow. The EC plasticity is responsible for vascular calcification, specifically the
endothelial-to-mesenchymal transition, which is a phenomenon also found in normal
biological processes such as embryonic development. In both cases, ECs lose their cell
features and acquire new markers that characterize the osteogenic lineage through the
increase in the osteocalcin expression in areas where stretching occurs [49,50]. These places
will be areas for ectopic calcification due to the EC dysfunction that affects endothelial
secretory function and inflammatory regulation [51]. The human umbilical vein ECs
(HUVECs) could suffer a mesenchymal transition through the overexpression of OCT-4
in the presence of some members of the transforming growth factor-β (TGF-β) family,
specifically bone morphogenetic protein type 4 (BMP4), to induce osteogenesis in vitro
experiments [52].

2.2. Vascular Smooth Muscle Cells

Vascular smooth muscle cells (VSMCs) form the middle layer of the vascular tree or
the contractile layer of the digestive or genitourinary systems, contributing to the optimal
functioning of the body. In the vascular system, the VSMCs are the major cellular compo-
nent of the middle layer and are directly involved in the intimal metastatic calcification in
several pathologies, because these cells can switch toward an osteogenic phenotype when
the deposition of calcium increases in these tissues [53,54]. Sometimes, VSMCs can become
foam cells changing the expression of SMCs markers as α-smooth actin and increasing
macrophage markers as CD68+ and ABCA1 [55]. In addition, interaction between ECs
and VSMCs can exacerbate arterial calcification in cases of hyperphosphatemia [56]. This
occurs through the release of endothelial cell-derived exosomal miR-670-3p, which targets
IGF-1 upon uptake by VSMCs. The osteoblastic/chondrogenic differentiation of VSMCs
is regulated by various factors, including mechanical, biochemical, and molecular signals.
Mechanical forces, such as transmural pressure, pulsatile pressure, and shear stress, pro-
mote dedifferentiation toward the synthetic phenotype through the mechanotransduction
signals from the cytoskeleton [53,57,58]. Hypoxia within the vascular microenvironment
can trigger signaling cascades that contribute to the differentiation of VSMCs toward a
chondrogenic phenotype [59]. The mechanisms underlying VSMC calcification under hy-
poxic conditions require either hypoxia-inducible factor (HIF) activation or the production
of mitochondrial-derived reactive oxygen species (ROS) [60,61]. High levels of inorganic
phosphate (Pi) increase VSMC migration and calcification and are related to impaired
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Pi/calcium balance and miR-223 involvement, whereas TGF-β/Smad3 signaling plays
an inhibitory role in Pi-induced VSMC calcification [62–64]. Various cytokines and GFs
regulate VSMC differentiation, such as TNF-α, IL-1β, IL-6 or TGF-β. The tumor necrosis
factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) enhance the VSMC cal-
cification through their receptors [54,65,66]. M1 macrophages secrete TNF-α, and it is
upregulated by miR32-5p in the microenvironment [67,68].

2.3. Macrophages

Macrophages are antigen-presenting cells (APCs) involved in inflammation processes
releasing different cytokines; these cells detect phagocyte-damaged cells and pathogens, such
as bacteria. Several subsets of macrophages are observed in tissues, depending on the le-
sion characteristics, being M1 and M2 as the predominant subtypes. M1 macrophages are
considered classically activated and exhibit a proinflammatory profile, being responsible for
removing pathogens and the release of ROS, and they are associated with the presence of
microcalcifications; M2 macrophages or activated macrophages have an anti-inflammatory
profile and promote tissue repair, being involved in the macrocalcification development [69,70].
Their plasticity is a key in some pathological processes to control the progression of abnor-
malities in tissues, as in the atherosclerotic plaque, where M1 is predominant in the lesion
shoulder, M1 and M2 in the necrotic core, and M2 in the adventitia [71]. In addition, the
calcium–phosphate imbalance impairs the phagocytic clearance of VSMCs-derived apop-
totic bodies (ABs) by macrophages and promotes the release of pro-calcific MVs [72,73].
The accumulation of ABs serves as a nucleation site for the deposition of Ca/P nanocrystals,
contributing to vascular calcification [74,75].

2.4. Pericytes and Fibroblasts

Pericytes are perivascular cells covering microvascular capillaries, and they are con-
sidered as a reservoir of precursor cells. These cells have been shown to have an osteogenic
potential in a model of in vivo osteogenesis, forming mineralized nodules, and they have
been able to express osteoblastic markers such as osteonectin, OPN, osteocalcin, and bone
sialoprotein [76,77]. In addition, pericytes by the secretion of osteoprotegerin (OPG) may
be involved in the formation of osteoid metaplasia [78].

Fibroblasts can acquire a “myofibroblast” phenotype, essentially muscle-fibroblast
intermediate cells with contractile properties, which are connected to vascular calcification.
These present the capacity to transition into calcifying osteoblast-like cells under specific
conditions and mechanical and inflammatory stresses [79]. In these processes, TNF-α,
elastin degradation products, TGF-β1 or ROS are involved [80,81].

3. Molecular Networking in Vascular Calcification
3.1. Signaling Pathways in Vascular Calcification

Different signaling pathways and molecular mediators lead to both physiological and
pathological tissue calcification. Primarily, the activation of fundamental pathways such as
calcium, Wnt/β-catenin, BMP/Smad, and Notch initiate this phenomenon [1,42,82,83]. In
addition, molecular mediators regulate this process, including osteogenic factors, GFs, and
MVs [84–86].

The calcium ion is the most versatile cellular messenger, and its functions are cellular
communication, intracellular signaling, neuronal function, muscle contraction, cell cycle
regulation, cell death, or enzyme activation [87,88]. Extracellular calcium serves as the
primary initiator of vascular calcification. Dysfunctions in calcium regulatory proteins,
including calcium-sensing receptors (CaSRs), calmodulin, and other associated molecules,
lead to pathological calcification. It has been observed an increased CaSR expression in
valvular interstitial cells (VICs) of calcified aortic valves and its modulation of CaSR expres-
sion in these cells has been shown to reduce calcium-induced valve calcification in vitro [89].
The upregulation of CaSR expression in VSMCs reduces cellular calcium deposition and
difficulties in their transition to a calcifying phenotype [90]. VEGF-driven Runx2, a marker
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of calcification whose expression in VICs operates through the IP3R/CaMKII/CREB axis
and, in hypoxic conditions, miR-7-5p, facilitates osteoblastic differentiation and the cal-
cification of human aortic smooth muscle cells (HASMCs) by activating calponin-3 and
CaMKII [91,92]. Also, the calcium-dependent cytosolic phospholipase A2α (cPLA2α)
contributes to aortic valve calcification in vitro [93].

The Wnt pathway plays diverse functions in embryonic development and adult home-
ostasis [94]. The activation of different Wnt signaling pathways promotes vascular calcifica-
tion and valve sclerosis through different mechanisms [95]. The canonical Wnt/β-catenin
functions by the binding of an extracellular Wnt ligand to a seven-pass transmembrane
Frizzled (Fz) receptor and co-receptor low-density lipoprotein receptor-related protein
(LRP5/6) activating β-catenin. Inside the nucleus, β-catenin forms a transcriptional com-
plex with LEF-1/TCF DNA-binding transcription factors and induces the expression of
specific target genes. In the case of pathological calcification, it upregulates markers of
calcification, such as Runx2, BMPs, PPAR, or OPN [82,95]. On the other hand, the non-
canonical Wnt signaling pathway stimulates pathological calcification through the Ror1/2
co-receptor and activates both branches, the Planar Cell Polarity pathway or PCP pathway
and the Wnt/Ca2+ pathway [96,97]. The former triggers the activation of small GTPases
Rho and Rac, leading to alterations in the cell cytoskeleton and lateral asymmetry. The
latter implies the increase in cytosolic Ca2+ through phospholipase C (PLC), which activates
both calmodulin-dependent protein kinase II (CamKII) and protein kinase C (PKC) [98].
These lead to the upregulation of target genes via the activation of transcription factors,
such as nuclear factor-κB (NF-κB) or cAMP-responsive element binding.

Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily essential
for development, but they also participate in the regulation of cardiovascular structure
and function. The extracellular binding of BMP to type I and type II receptors leads to the
formation of heteromeric signaling complexes [99,100]. The canonical pathway induces
the phosphorylation of Smad1/5/8 (R-Smad), which binds to Smad4 and the complex
translocates into the nucleus to regulate gene expression [101]. The Smad-independent
non-canonical pathway activates the ERK, JNK, and p38 MAPK signaling pathways, lead-
ing to the phosphorylation of several transcription factors (TF), such as serum response
factor (SRF), ternary complex factor (TCF) family members, activator protein 1 (AP1) com-
plexes and activating transcription factor 2 (ATF2) [102,103]. Several investigations have
highlighted the ability of BMP-2, BMP-4, and BMP-6 to stimulate the development of
vascular calcification in association with atherosclerosis [104,105]. These BMP ligands
direct osteogenic programming and promote the expression of Runx2 and Msx2. The
receptor activator of nuclear factor κB ligand (RANKL) increases VSMC calcification by
promoting BMP-4 expression [106]. Altered blood flow in large vessels downregulates
KLF2 expression, leading to endothelial–mesenchymal transition (EndoMT) and increased
vascular calcification through BMP-4/Smad1/5 signaling [107]. BMP-6 and ox-LDL syner-
gistically induce osteogenic differentiation and mineralization, highlighting an important
connection between BMP signaling, oxidative stress, and inflammation in vascular calcifi-
cation associated with atherosclerosis [108]. Conversely, BMP-7 exogenous administration
has demonstrated anti-calcifying effects in rodent models of uremia, where it attenuates
vascular calcification together with the downregulation of Runx2 and osteocalcin [109,110].

Lastly, Notch signaling is crucial for development, differentiation, and tissue home-
ostasis. It consists of a juxtacrine signaling between Notch transmembrane receptors
making contact with Notch transmembrane ligands in neighboring cells. This interaction
triggers the proteolytic cleavage of the Notch receptor, resulting in the release of the Notch
intracellular domain (NICD). This acts as a transcription regulator of CSL, HES/Hey, and
Runx2 [111,112]. The Notch/RBP-Jk signaling directly upregulates Msx2 gene expression in
VSMCs [83]. On the other hand, Notch presents inhibitory effects of vascular calcification.
The activation of Notch1 induced by USP9X S-nitrosylation inhibits the calcification of
porcine aortic VIC regulated by nitric oxide (NO) [113]. Elevated Wnt16 levels stimulate
Notch activity and counteract TGFβ3-induced Notch suppression in VSMCs [114]. This
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process leads to reduced chondrogenesis in VSMCs exposed to TGFβ3, suggesting that the
absence of Wnt16 plays a pivotal role in TGFβ3-induced chondrogenic change in VSMCs.
Moreover, exosomal Notch3 released by endothelial cells, when present in high glucose
environments, decreases vascular calcification by inhibiting mTOR [115]. Lastly, the induc-
tion of Notch1 and matrix γ-carboxyglutamate (Gla) protein (MGP) by shearing results in
the downregulation of osteoblast-like genes in human aortic valve endothelial cells [116].

3.2. Molecular Mediators of Vascular Calcification

In addition to the above-mentioned signaling pathways, multiple molecular mediators
play an important role in the process of vascular calcification, including GFs, osteogenic
factors, and MVs. Within the GFs, some of the ones that stand out are TGF-β, in particu-
lar the aforementioned BMPs, platelet-derived growth factor (PDGF), fibroblast growth
factor 21 and 23 (FGF21/23), and vascular endothelial growth factor (VEGF). PDGF ac-
celerates vascular calcification through different mechanisms that combine the induction
of inflammation (IL-1β, IL-6, MCP-1, and ICAM-1), oxidative stress (ROS), phenotype
transition (BMP2, Pit-1, OPG, and CNP), and mesenchymal stem cells (MSCs) migration
A [117]. Elevated levels of circulating FGF23 and its overexpression in blood vessels are
associated with vascular calcification [85]. Contrary to this, FGF21 has gained special
attention due to its anti-calcifying effects [118,119]. In rats, it alleviates the endoplasmic
reticulum stress-mediated apoptosis pathways. Lastly, it has been proposed that VEGF
induces Ca2+/CaMKII activation through VEGF receptor 2, leading to the upregulation of
Runx2 and therefore vascular calcification [92].

The osteogenic factors are those that regulate the process of calcification, both promot-
ers and inhibitors. Among these promoters, cadherin-11 (Cad11) is a cell–cell adhesion
protein related to inflammation in rheumatoid arthritis. Cad11 induces aortic valve cal-
cification through Rac1, and its overexpression leads to the upregulation of RhoA and
Sox9 and extracellular matrix remodeling [120,121]. Calcific nodule morphogenesis by
valvular myofibroblasts requires robust cell–cell connections regulated by Cad11 [122,123].
In contrast, the several osteogenic factors that inhibit vascular calcification include MGP,
OPN, OPG, fetuin-A, and also small molecules, such as inorganic pyrophosphate (Ppi), bis-
phosphonates, and magnesium [124,125]. MGP has been proposed to act through the direct
inhibition of calcium–phosphate precipitation, the formation of MVs, the formation of ABs,
and the transdifferentiation of VSMCs, and it is an independent predictor of both intimal
and medial vascular calcification in CKD [126–128]. Phosphorylated OPN acts as a physi-
ological inhibitor of vascular calcification and reduces inflammation factors in osteoclast
formation by the regulation of macrophage activation in hypertensive patients [129,130].
Endogenous arterial OPG shows a protective role against vascular calcification through
different mechanisms in animal models, such as the inhibition of ALP-mediated osteogenic
differentiation of vascular cells and downregulation of the Notch1–RBP–Jκ signaling path-
way, while in humans, plasma OPG is probably produced as a response against vascular
calcification [131–133].

MVs are tiny extracellular structures originating from chondrocytes and osteoblasts,
essential in early mineralization, especially in the formation of hydroxyapatite. Ranging in
size from 100 to 700 nm, MVs contain hydroxyapatite nanocrystals, which are observed
in aortic and media valve calcification and atherosclerotic lesions [45]. Unlike spherical
particles in aortic valve calcification, MVs are observed in vessel walls with a hollow core
and amorphous minerals [86]. Their formation is linked to intercellular calcium signaling
and contains calcium-binding annexins and alkaline phosphatase, which hinders the action
of pyrophosphate and favors hydroxyapatite formation [134]. VSMCs regulate mineral-
ization; under healthy conditions, inhibitors prevent their calcification [135]. VSMCs in
atherosclerosis and CKD lack mineralization despite their presence in the tissue, which
is associated with elastin and collagen fibrils [136]. Elevated extracellular calcium trig-
gers VSMC responses, influencing MV-related calcification, but the exact mechanisms are
under exploration.
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Also, MVs released locally or the presence of circulating nucleation complexes serve
as sites for calcium complex crystallization. Indeed, increased bone turnover, such as
in the case of postmenopausal osteoporosis, is related to the release of circulating nucle-
ation complexes that contribute to vascular calcification [137,138]. The process of bone
remodeling regulates the calcium levels in the body and is masterly modulated by the
OPG–RANK–RANKL system [139].

The vascular calcification process is influenced by many more factors, which present a
balance between inhibitors and promoters (some of them are reviewed below). This is im-
paired under pathological conditions, leading to a decrease in protective inhibitors. Among
the factors known to decrease calcification are osteopontin, OPG, BMP-7, magnesium ions
(Mg2+), osteonectin, vitamin K, high-density lipoprotein cholesterol (HDL-C), growth arrest-
specific protein 6, albumin, parathyroid hormone, parathyroid hormone-related peptide,
phosphonoformic acid, C-type natriuretic peptide, and adrenomedullin [130,133,140–151].

Conversely, factors that promote calcification include TNF-α, TGF-β, ROS, platelet-
derived growth factor (PDGF), cadherin-11 (cad-11), the BMP-2/Smad pathway, klotho, IL-1,
-4, and -6, oxidized and acetylated low-density lipoprotein cholesterol (LDL-C), C-reactive
protein (CRP), leptin, advanced glycation end products, glucocorticoids, type I collagen, fi-
bronectin, 25-hydroxycholesterol, 17β-estradiol, uremic serum, 1,25-dihydroxycholecalciferol,
and cyclic adenosine monophosphate (cAMP) [117,120,152–169].

4. Pathological Implications

Pathological calcification does not usually cause clinical dysfunction, but significant
deposits in organs can cause organ damage, such as nephrocalcinosis, leading to renal
failure. Calcium deposition decreases the mechanical elastance of the arteries required
for physiological functions; this is especially risky for the aorta, which has an impact on
cardiovascular hemodynamics and contributes to significant morbidity and mortality [26].
Vascular calcification has been related to different cardiovascular diseases, including my-
ocardial infarction (MI), stroke, aortic and peripheral arterial disease, heart failure, chronic
kidney disease, diabetes, aortic stenosis, and calciphylaxis [48].

Vascular calcification, particularly in the coronary arteries, significantly influences the
trajectory and outcome of myocardial infarction (MI) [170]. Coronary artery calcification
(CAC) is a key marker of plaque burden, as elevated CAC, often identified by computed
tomography, substantially increases the risk of future MI or coronary heart disease mortality.
Although statins effectively attenuate overall plaque growth and subsequent events, they
paradoxically accelerate CAC progression, raising difficulties in treatment monitoring [171].
This unique response of statins contrasts with that of other cholesterol-lowering drugs,
such as PCSK9 inhibitors, which show less impact on CAC progression, especially when
used concomitantly with statins [172]. Furthermore, during coronary stenting for acute MI,
severe and moderate calcification in culprit lesions significantly increases complications
such as thrombosis or restenosis, highlighting the complexities imposed by calcification in
clinical interventions for MI [173]. Therefore, it is imperative to understand the relationship
between vascular calcification, CAC, and treatment responses to optimize risk assessment,
guide therapeutic decisions, and improve outcomes after MI.

Vascular calcification, especially in the intracranial, coronary, and carotid arteries,
significantly influences stroke risk, prognosis, and response to treatment [174]. Vascular cal-
cification also affects cerebral hemodynamics and contributes to small vessel disease [175].
Recent studies exploring intracranial artery calcification (IAC) to predict stroke occurrence
and post-stroke mortality revealed that patients with IAC face an increased risk of stroke
and recurrence but not necessarily post-stroke mortality [176]. Despite the frequency and
detectability of IAC on computed tomography angiography (CTA), its role as a prognostic
tool for stroke risk or recurrence remains limited. Although it is recognized that atheroscle-
rosis in intracranial arteries frequently contributes to stroke, the possible predictive value
of IAC on stroke incidence, recurrence, and response to treatment of acute ischemic stroke
is an area under exploration that requires further investigation.
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Vascular calcification is highly prevalent among people with chronic kidney disease
(CKD), increasing the risk of cardiovascular morbidity and mortality. Its development
involves an interaction between altered mineral balance, chronic inflammation, and cellular
responses of VSMCs, macrophages, and ECs [177]. CKD risk factors accelerate and initiate
calcification earlier, often earlier than in the general population [178]. Alterations in mineral
metabolism, especially calcium and phosphorus homeostasis, play a central role in the
initiation and promotion of CV, as observed in clinical and experimental studies [179]. Low
vitamin K levels lead to inactive forms of MGP, a calcification inhibitor, which is associated
with CV acceleration.

Vascular calcification is related to diabetes mellitus (DM), in which several signaling
pathways, such as TNF-α, and ILs, contribute to the development of vascular calcifica-
tion [180]. Despite advances in antidiabetic drugs, their effects on the regression of vascular
calcification remain unexplored. Similarly, in type 2 diabetes mellitus (T2DM), there is
a strong association with vascular calcification driven by the OPG/RANKL/TRAIL sys-
tem, which is normally involved in bone remodeling [181]. RANKL promotes vascular
calcification, while OPG acts as a counterbalance, deviating from its functions in bone
metabolism. Arterial calcification, prevalent in metabolic syndrome and diabetes, impairs
vessel function and increases the risk of adverse outcomes [182]. Preclinical models point
to BMP–Wnt signaling and endothelial–mesenchymal transition guiding arterial calcifi-
cation in these conditions. Furthermore, elevated levels of dp-ucMGP, an inactive form
of vitamin K-associated MGP, are associated with below-knee arterial calcification in pa-
tients with T2DM, warranting further exploration of its clinical significance and possible
reversibility [183].

The echocardiographic examination is often used to establish the diagnosis of aortic
stenosis (AS), which provides a wealth of information on the structure of the heart valve
and blood flow characteristics [184]. Most patients are referred for echocardiography
because of the appearance of symptoms such as dyspnea, angina pectoris, syncope, and
dizziness, or because a systolic murmur is auscultated.

The occlusion of blood arteries in the dermis and subcutaneous fat causes calciphylaxis,
also known as calcific uremic arteriolopathy, which is a cutaneous ischemic infarction that
evolves into ulcerative lesions at risk of superinfection and sepsis [185]. Calciphylaxis
is extremely debilitating due to severe pain and predisposition to infection; the annual
mortality rate ranges from 40% to 80% [186]. Primarily, calciphylaxis is a condition of renal
failure, and most patients are on or about to receive dialysis [187]. When a patient with end-
stage renal failure presents with painful indurated plaques or ulcers on the belly and/or
legs, the diagnosis can be determined solely from clinical considerations [188]. Physicians
with expertise in nephrology, dermatology, plastic surgery, nutrition, and wound care are
needed to treat calciphylaxis in a multidisciplinary fashion.

5. Translational Opportunities
5.1. Biomarkers of Vascular Calcification

The list of proposed biomarkers of vascular calcification is so extensive that it includes
MGP, osteoprotegerin, bone morphogenetic proteins, fetuin-A, fibroblast growth factor
23, osteocalcin, osteopontin, osteonectin, sclerostin, pyrophosphate, Smads, fibrillin-1 and
carbonic anhydrase II [189,190]. Therefore, we will review a few of them in the next section.

Fetuin-A is a circulating negatively charged protein, known as α2-Heremans–Schmid
glycoprotein, that is produced by the liver and functions as an important local and systemic
inhibitor of vascular calcification. It eliminates ectopic vascular calcification through several
mechanisms, including the prevention of the growth of hydroxyapatite crystals outside
cells and reducing OS and inflammation [191]. Fetuin-knockout mice showed severe and
lethal extraosseous calcification in the heart, lungs, kidneys, and skin after treatment with
a diet rich in vitamin D and phosphorus, confirming its crucial role as an inhibitor of
calcification. It is intriguing to speculate that the measurement of serum fetuin-mineral
complexes may function as a potential biomarker of ectopic calcification in addition to
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serum and hepatic fetuin-A levels [192]. Also, MGP is a vitamin K-dependent protein
that is expressed locally by VSMCs and is considered inhibitory of vascular calcification.
However, its corresponding inactive form, the uncarboxylated MGP (ucMGP), accumulates
at sites of calcification [128,193]. Moreover, vitamin K deficiency, commonly found in CKD,
is associated with higher levels of ucMGP. Therefore, the regulation of MGP is involved in
the pathogenesis of vascular calcification and may be employed as a useful biomarker for
risk assessment [127].

Smad proteins are vital for signal transduction from the receptor to the nucleus within
the cell when the type I receptor is activated. The BMP-2/Smad signaling pathway is
crucial for the osteoblastic differentiation of VSMCs, resulting in vascular calcification [164].
Osteoblast development is inhibited by a reduction in Smad11/5/8 expression when the
BMP-2 signaling pathway is inhibited [194].

Fibrillin-1 is a 350 kDa glycoprotein rich in cysteines that produces elastic fibers and
microfibrils in connective tissue. The flexibility of arterial walls is facilitated by elastic fibers,
and vessel diseases are a consequence of the rupture of these fibers [195]. The control of
elastic fiber homeostasis and cellular repair, two processes involved in matrix remodeling,
depend on FBN-1 [196]. It is likely that FBN-1 is involved in VC through these pathways
and is possibly a therapeutic target.

Two phosphate ions combine to generate PPi, which are tiny molecules that attach
to hydroxyapatite and prevent further crystallization. They are believed to be potent
inhibitors of medial vascular calcification. VSMCs secrete PPi. Three factors regulate
local PPi concentrations: ectonucleotide pyrophosphatase phosphodiesterase (ENPP1), the
multi-pass transmembrane protein encoded by the progressive ankylosis locus (ANK),
and nonspecific tissue alkaline phosphatase (TNAP) [197]. The limiting enzyme ENPP1
controls the intracellular production of PPi, whereas ANK regulates the proper transport of
PPi out of the cell. TNAP breaks down excess extracellular PPi into phosphate ions, which
aids local defense against vascular calcification [198]. In humans, severe calcification, heart
failure, and early mortality in the arteries of neonates and infants are the hallmarks of a
debilitating disease known as generalized arterial calcification of infancy [199]. Mutations
in ENPP1 induce the disease and cause its dysfunction.

FGF-23 is a protein that has 251 amino acids, a molecular weight of 32 kDa, and
two distinct regions. Bone osteocytes release FGF-23 in response to an increase in dietary
phosphate load, resulting in phosphaturia and a decrease in calcitriol levels [200]. For
FGF-23 to be activated, it must bind its receptor and the co-receptor Klotho, which facilitates
the binding of FGF-23 to FGFR [201]. Both FGF-23 and Klotho are important players in the
pathophysiology of vascular calcification complications in CKD and can be used as early
biomarkers as well as potential targets for vascular calcification and CKD therapy.

Carbonic anhydrase II (CA II) is a class of zinc-containing proteins that catalyze the
reversible conversion of carbon dioxide to bicarbonate. It plays a role in gluconeogenesis, li-
pogenesis, osteoclast differentiation, acid–base balance, and volume contraction in humans.
Proton generation in osteoclasts is facilitated by CA II, which in turn causes the acidification
of resorption lacunae and ultimately dissolves bone. Macrophages also show significant
levels of CA II expression [202]. In a genome-wide microarray analysis investigating the
differential transcriptional pro-life for vascular calcification, CA II overexpression was
found in human atheroma plaques compared with normal arterial tissue from the same
individual [203]. Compared with normal tissue, atheroma plaque was found to overexpress
CA II by a factor greater than 1.7 [68]. In conclusion, given that vascular calcification is
linked to CA II production, this enzyme can be employed both as a potential therapeutic
target and as a biomarker of calcification.

In the case of patients with CKD, serum calciprotein particles and serum calcification
propensity are hallmarks of vascular calcification [204]. Serum calciprotein particles (CPPs)
are colloidal nanoparticles composed of a combination of proteins, including fetuin-A,
albumin, and Gla-rich protein (GRP), and calcium phosphates. We can distinguish two
differentiated states regarding their level of maturation and aggregation: the primary CPPs
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(CPP I), which are small and spherical, and the secondary CPPs (CPP II), which are larger
and have a damaging needle-shaped structure [205,206]. The serum calcification propensity
is the intrinsic ability of serum to facilitate or inhibit the precipitation of calcium phosphate
complexes. It is quantified by a recently developed in vitro assay termed T50 based on
the half-transformation time from CPP I to CPP II. T50 is currently employed in research
projects only. However, T50 is associated with cardiovascular events, mortality, and kidney
disease progression, underscoring its importance as a prognostic marker, as a potentially
therapeutic target, and as a management parameter of vascular calcification in patients
with CKD, including those undergoing hemodialysis [207]. The presence of vascular
calcification contributes significantly to increased mortality rates in patients with CKD due
to cardiovascular complications, making these biomarkers of high clinical importance.

Lastly, PET-MDCT is a practical and repeatable technique that combines the anatomical
images of MDCT with the molecular images of PET, which is used to identify biomarkers
of aortic valve biology and flow patterns [208,209]. PET-MDCT measurements of valvular
18F-sodium fluoride (18F-NaF) uptake serve as a marker of the active mineralization process
taking place within the valve.

5.2. Therapeutic Approaches

Modulation of the main regulators of vascular calcification is the basis of vascular
calcification treatment. However, effective drugs or non-drug therapies against vascular
calcification have not yet been found due to the complex underlying molecular regulation.
The options better studied try to reduce the amount of calcium consumed (Table 1). Most
of these therapeutic alternatives are being studied in clinical settings.

Elevated phosphate values are indicative of vascular calcification. Phosphate binders
have been shown to reduce serum phosphorus levels by decreasing FGF23, which accel-
erates phosphorus excretion and prevents vascular calcification. Compared to calcium
phosphate binders, a recent randomized study showed that the phosphate binder sevelamer
reduced mortality more in elderly hemodialysis patients [210,211].

Ppi analogs and bisphosphonates have been used to treat osteoporosis by interfer-
ing with hydroxyapatite nucleation and development. In more recent research, when
pamidronate and etidronate were administrated at the same dose, uremic mice also demon-
strated the prevention of vascular calcification independent of bone resorption [212,213].
Exactly how bisphosphonates work is currently unknown; these drugs have different effects
in different people, and there is a lack of information on patient safety with long-term use.

Vitamin K supplementation is necessary to maintain balance in calcium formation and
blood clotting. Menaquinones (vitamin K2) and phylloquinone (vitamin K1) are the two
naturally occurring forms of vitamin K. According to previously published research, the
very active process of vascular calcification is partially controlled and prevented by MGP,
which in turn is triggered by the carboxylation of glutamic acid residues in hemodialysis
patients who are dependent of vitamin K [214,215]. Oral vitamin K2 administration to
hemodialysis patients reduced serum uc-MGP levels but did not influence the progression
of aortic calcification.

Sodium thiosulphate (NaTS) functions as an antioxidant and chelating agent, it is used
as a treatment for cyanide poisoning and as a preventive measure against cisplatin toxicity.
Compared to calcium oxalate or calcium phosphate, NaTS can chelate calcium to create
very soluble complexes in the human body. It has been possible to treat individuals with
nephrolithiasis, vascular calcification, and skin necrosis with NaTS [216,217]. Although
clinical data are scarce, it is hypothesized that the antioxidant activity may function as an
adjuvant in repairing damaged endothelial cells.

To evaluate the effects of drugs that allosterically activate calcium-sensing receptors to
mimic the impact of calcium on cells, clinical studies on calcimimetics are ongoing. Regard-
ing vitamin D and calcimimetic-guided therapy for the treatment of mineral bone disease
and life-limiting cardiovascular disease in the CKD population, a few sophisticated and
well-planned controlled studies are available. It has been documented that calcimimetics
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such as R-568 and AMG-641 can inhibit vascular calcification [218]. This action is also re-
lated to the increased sensitivity of calcium-sensing receptors to extracellular calcium [219].
However, due to the evidence, their ability to prevent calcification remains in question.

The natural substance myo-inositol hexaphosphate (IP6), which is an endogenous
intracellular phosphate storage molecule in plants and mammals, prevents the production
and development of hydroxyapatite microcrystals without directly affecting blood levels of
calcium and phosphate [220,221]. Due to its short plasma half-life (minutes) and poor oral
absorption, its infusion is administered intravenously.

The human monoclonal antibody denosumab can bind to and inhibit human RANKL
like the inherent bone-protective properties of OPG. Clinical studies with patients with
breast cancer or bone metastases from multiple myeloma demonstrated that an injection of
denosumab suppressed bone turnover markers rapidly and persistently. Based on calcium
measurements, research in human RANKL knock-in (huRANKL-KI) mice revealed that
huRANKL-KI mice treated with prednisolone had a 50% decrease in aortic calcium deposits
when treated with denosumab [222,223].

Table 1. Main therapeutic opportunities against different targets of vascular calcification. Ppi:
inorganic pyrophosphate, MGP: matrix Gla protein, NaTS: sodium thiosulphate, IP6: myo-inositol
hexaphosphate, RANKL: receptor activator of nuclear factor κB ligand.

Compound Target Mechanism of Action References

Sevelamer Phosphate Phosphate binder [210,211]

Ppi analogs Hydroxyapatite Disruption of
hydroxyapatite nucleation [212,213]

Vitamin K2 MGP Activation of MGP [214]

NaTS Calcium Chelation of calcium [216]

Calcimimetics Calcium-sensing
receptors

Increase the sensitivity of
calcium-sensing receptors [219]

IP6 Hydroxyapatite Disruption of
hydroxyapatite nucleation [220]

Denosumab RANKL Inhibition of RANKL signaling [223]

6. Conclusions

Cellular interactions, signaling pathways, and molecular mediators are involved in
vascular calcification. Cells such as VSMCs, ECs, and macrophages play critical roles in
vascular calcification through phenotypic changes and the expression of mineralization-
related proteins. Calcium, Wnt, BMP, and Notch signaling pathways are involved in
promoting or inhibiting calcification in a complex interplay, suggesting possible thera-
peutic targets to mitigate vascular calcification. Some studies, such as those investigating
vitamin K2 in hemodialysis patients or the interaction between intimal and medial calcifi-
cations, provide clinical information. However, gaps remain, such as the limited effect of
certain interventions on disease progression. Despite advances, the mechanisms driving
vascular calcification remain incompletely understood. Future research should deepen
into molecular networking and cellular interactions to identify specific therapeutic targets
and interventions.
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