Table 3.
Models | Backbone | mAP1 | Accuracy | Precision | Recall | F1 Score | Training duration |
---|---|---|---|---|---|---|---|
Faster R-CNN | ResNet-101 | 0.926 | 0.747 | 0.910 | 0.788 | 0.840 | 2 h 16m |
RetinaNet | Resnet-101 | 0.953 | 0.777 | 0.910 | 0.743 | 0.814 | 1 h 42m |
YOLOv3 | DarkNet53 | 0.845 | 0.772 | 0.829 | 0.918 | 0.871 | 56m |
SSD | VGG16 | 0.832 | 0.673 | 0.825 | 0.785 | 0.8 | 1 h 14m |
Libra RCNN | Xception-101 | 0.920 | 0.740 | 0.890 | 0.784 | 0.833 | 2 h 34m |
Dynamic R-CNN | Resnet-50 | 0.904 | 0.747 | 0.930 | 0.780 | 0.848 | 1 h 36m |
Cascade R-CNN | Resnet-101 FPN | 0.913 | 0.724 | 0.897 | 0.790 | 0.840 | 1 h 54m |
FoveaBox | ResNet-50 FPN | 0.895 | 0.745 | 0.931 | 0.788 | 0.853 | 1 h 5m |
SABL Faster R-CNN | ResNet-101 FPN | 0.894 | 0.732 | 0.921 | 0.780 | 0.844 | 2 h 23m |
ATSS | ResNet-101 FPN | 0.939 | 0.812 | 0.886 | 0.906 | 0.895 | 1 h 33m |
ATSS, Adaptive Training Sample Selection; SABL, Side-Aware Boundary Localization.