Skip to main content
. 2023 Oct 18;52(8):20230118. doi: 10.1259/dmfr.20230118

Table 3.

Performance results for each model

Models Backbone mAP1 Accuracy Precision Recall F1 Score Training duration
Faster R-CNN ResNet-101 0.926 0.747 0.910 0.788 0.840 2 h 16m
RetinaNet Resnet-101 0.953 0.777 0.910 0.743 0.814 1 h 42m
YOLOv3 DarkNet53 0.845 0.772 0.829 0.918 0.871 56m
SSD VGG16 0.832 0.673 0.825 0.785 0.8 1 h 14m
Libra RCNN Xception-101 0.920 0.740 0.890 0.784 0.833 2 h 34m
Dynamic R-CNN Resnet-50 0.904 0.747 0.930 0.780 0.848 1 h 36m
Cascade R-CNN Resnet-101 FPN 0.913 0.724 0.897 0.790 0.840 1 h 54m
FoveaBox ResNet-50 FPN 0.895 0.745 0.931 0.788 0.853 1 h 5m
SABL Faster R-CNN ResNet-101 FPN 0.894 0.732 0.921 0.780 0.844 2 h 23m
ATSS ResNet-101 FPN 0.939 0.812 0.886 0.906 0.895 1 h 33m

ATSS, Adaptive Training Sample Selection; SABL, Side-Aware Boundary Localization.