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Abstract: This paper aims to elucidate the differentially coexpressed genes, their potential mecha-
nisms, and possible drug targets in low-grade invasive serous ovarian carcinoma (LGSC) in terms of
the biologic continuity of normal, borderline, and malignant LGSC. We performed a bioinformatics
analysis, integrating datasets generated using the GPL570 platform from different studies from the
GEO database to identify changes in this transition, gene expression, drug targets, and their relation-
ships with tumor microenvironmental characteristics. In the transition from ovarian epithelial cells to
the serous borderline, the FGFR3 gene in the “Estrogen Response Late” pathway, the ITGB2 gene in
the “Cell Adhesion Molecule”, the CD74 gene in the “Regulation of Cell Migration”, and the IGF1
gene in the “Xenobiotic Metabolism” pathway were upregulated in the transition from borderline
to LGSC. The ERBB4 gene in “Proteoglycan in Cancer”, the AR gene in “Pathways in Cancer” and
“Estrogen Response Early” pathways, were upregulated in the transition from ovarian epithelial cells
to LGSC. In addition, SPP1 and ITGB2 genes were correlated with macrophage infiltration in the
LGSC group. This research provides a valuable framework for the development of personalized
therapeutic approaches in the context of LGSC, with the aim of improving patient outcomes and
quality of life. Furthermore, the main goal of the current study is a preliminary study designed to
generate in silico inferences, and it is also important to note that subsequent in vitro and in vivo
studies will be necessary to confirm the results before considering these results as fully reliable.

Keywords: low-grade serous ovarian cancer; borderline; gene coexpression network; in silico
integrative data analysis

1. Introduction

Borderline ovarian tumors exhibit moderate nuclear atypia and modestly elevated
mitotic activity, placing them in an intermediate state between benign and malignant
tumors. It is a well-known fact that differentiating them from ovarian carcinomas is the
lack of stromal invasion and rapid infiltrative development. The majority of borderline
ovarian tumors (65–70%) exhibit serous histology; however, they only account for 15–20%
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of all serous ovarian tumors [1]. Surgery is the standard therapy for borderline ovarian
tumor treatment.

Patients diagnosed with borderline ovarian tumors and exhibiting peritoneal dissem-
ination, lymph node involvement, or those with invasive implants have a higher risk of
recurrence and progression to low-grade invasive serous carcinoma (LGSC) [2]. LGSC is
an invasive carcinoma that can be differentiated from serous borderline neoplasms by the
presence of destructive stromal invasion. LGSC is distinguished from high-grade serous
carcinoma HGSC by its lower mitotic activity. Similar to HGSC, LGSC is commonly de-
tected at an advanced stage, resulting in a poor long-term prognosis. Nevertheless, these
neoplasms exhibit different biological characteristics compared to HGSC and have a low
growth rate, making them less responsive to platinum-based treatment [3].

Numerous molecular analysis studies have demonstrated that the mitogen-activated
protein kinase (MAPK) pathway is commonly altered in LGSC. Among the detected
mutations, KRAS, NRAS, and BRAF mutations are the most frequently observed, while
TP53 mutations, which are characteristic of HGSC, are either absent or infrequent [4].

In some examples of bioinformatics methods used in borderline serous and low serous
ovarian cancer research, whole-exome sequencing identified novel candidate driver genes
in low-grade serous ovarian cancer [5]. Also, RNA sequencing revealed distinct molecular
subtypes of borderline serous ovarian tumors [6].

This current research involved the analysis of nine GEO datasets, focusing on gene-
expression data in different groups of ovarian cancer. Data preprocessing, coexpression
network and differential expression analysis, and gene-set enrichment led to the identifica-
tion of key genes and pathways related to low serous ovarian cancer progression, along
with potential drug-gene interactions. In addition, drug response data of potential target
genes in cancer cell lines and correlations of these genes with tumor microenvironment
were evaluated to reveal a holistic approach. In summary, this study offers a valuable
framework for personalized ovarian cancer treatments, emphasizing the importance of
molecular profiling in advancing precision medicine in oncology.

In this paper, it was aimed to elucidate the molecular differences among normal
ovarian epithelial cells, borderline serous ovarian tumors, and low-grade serous ovarian
tumors in order to establish a basis for targeted therapy strategies.

2. Materials and Methods
2.1. Dataset Selection

We downloaded nine gene-expression datasets from the Gene Expression Omnibus
database (GEO http://www.ncbi.nlm.nih.gov/geo/ accessed on 15 December 2023) with
the filters Study type = ‘Expression profiling by array’, Organisms = ‘Homo sapiens’, and
Platform = ‘GPL570 ([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array)’.
We selected datasets containing normal, borderline, and low serous samples (Table 1).
Figure 1 provides a visual representation of the study design, offering an extensive overview
of the key elements and methodologies used in the research.

Table 1. Data selected for the study from the GEO public functional genomics data repository.

Batch Chip GEO Series Healthy Ovarian Borderline Low Serous

1 GPL570 GSE18520 10
2 GPL570 GSE27651 6 8 13
3 GPL570 GSE14001 3 10
4 GPL570 GSE27659 10
5 GPL570 GSE73091 3
6 GPL570 GSE9891 18
7 GPL570 GSE14407 12
8 GPL570 GSE36668 4 4
9 GPL570 GSE54388 6

Total 41 30 36 107

http://www.ncbi.nlm.nih.gov/geo/
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The datasets we have analyzed are listed below.
The GSE18520 study utilizes whole-genome oligonucleotide arrays to conduct expres-

sion profiling on microdissected late-stage, high-grade papillary serous ovarian adenocar-
cinomas, identifying and validating a prognostic gene signature associated with survival
and uncovering novel survival factors in ovarian cancer. The study includes 63 samples
with healthy and advanced ovarian tumors.

The GSE27651 study investigates the molecular progression from serous borderline
ovarian tumors (SBOT) to LGSC and HGSC, identifying the upregulation of the anterior
gradient homolog 3 (AGR3) gene in SBOT, suggesting its potential role as a prognostic
marker for improved survival in both LGSC and HGSC. The study includes 49 samples
with healthy, borderline, LGSC, and HGSC.

The GSE14001 study identifies and validates higher PAX2 expression in ovarian tu-
mors of low-malignant potential (LMP) and low-grade serous carcinomas compared to
high-grade serous carcinomas, supporting the two-tiered hypothesis of distinct tumori-
genic pathways, and suggesting PAX2 as a potential biomarker and therapeutic target
for individualizing chemotherapy in ovarian LMP tumors and LGSC. The study includes
23 samples with healthy, LGSC, and HGSC.

The GSE27659 study investigates the genetic features of advanced-stage, low-grade
ovarian serous carcinomas, finding that those with and without adjacent serous borderline
tumors share similar loss of heterozygosity patterns. While TP53 mutations are absent,
BRAF mutations are rare in aggressive LGSC, suggesting their potential derivation from
serous borderline tumors without BRAF mutation, with patients harboring BRAF or KRAS
mutations displaying a better clinical outcome. The study includes 91 samples with healthy,
borderline, and LGSC.

The GSE73091 study investigates the gene-expression profiles of LGSC cancer com-
pared to HGSC, revealing distinct molecular alterations during LGSC progression by ana-
lyzing nine magnetically sorted epithelial tumor samples from matched primary tumors,
ascites, and metastases. The study includes 9 samples with LGSC, ascite, and HGSC.

The GSE9891 study employed microarrays to analyze the expression levels of 285 ovar-
ian samples from the Australian Ovarian Cancer Study (AOCS) on the Affymetrix U133
Plus 2.0 platform (GPL570), aiming to identify novel molecular subtypes of ovarian tumors
through disease-state analysis.

The GSE14407 study utilized gene-expression profiling to compare 12 healthy ovarian
surface epithelial cells with 12 laser-captured microdissected serous papillary ovarian
cancer cells, revealing over 2000 significantly differentially expressed genes, implicating
key signaling pathways and suggesting that ovarian surface epithelial cells function as
an adult stem-cell niche, with the deregulation of genes associated with maintaining
quiescence playing a crucial role in the initiation and development of ovarian cancer. The
study includes 24 samples with healthy and serous ovarian tumors.

The GSE36668 study identifies and validates 21 mRNAs differentially expressed
between moderately/poorly differentiated serous ovarian carcinomas (MD/PD SC), serous
ovarian borderline tumors (SBOT), and superficial scrapings from normal ovaries (SNO),
revealing significant correlations with clinical parameters, such as VEGFA and ZNF385B
correlating with survival and FOXM1 and TPX2 correlating with the normalization of
serum CA125, providing insights into potential molecular pathways, including VEGFA,
FOXM1, TPX2, BIRC5, and TOP2A, implicated in the tumorigenesis of MD/PD SC. The
study included 12 samples with healthy, borderline, and serous ovarian tumors.

The GSE54388 study aims to explore the transcription factors associated with the
pathogenesis of HGSC utilizing transcriptome profiling on laser microdissected epithelial
tumor samples from ovarian cancer patients and ovarian surface epithelium (HOSE) sam-
ples, with the Affymetrix human genome U133 Plus 2.0 microarray. The study included
22 samples with healthy and HGSC.
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2.2. Microarray Gene-Expression Data Preprocessing

We normalized microarray data using the robust multiarray average (RMA) approach.
Gene probe names were converted to EntrezID, and we merged the datasets. The results of
the normalization of the datasets are summarized in Supplementary Figures S1–S9.

2.3. Data Aggregation and Data Integration with Batch-Effect Correction

We aggregated multiple probe values mapped to the same EntrezID using median
values. We did batch-effect correction using the combat method, since the data had been
collected by different labs.

2.4. Coexpression Network Analysis

Weighted gene-coexpression network analysis was performed using the WGCNA R
package (1.71-1) [7]. The aim of this analysis is to extract gene-expression modules that have
the highest correlation with phenotypes, namely normal ovary, borderline serous, and low
serous ovarian cancer. Initially, a soft threshold power was chosen with a scale-free topology
criterion, and, with this threshold power, a weighted gene adjacency matrix representing a
gene-coexpression network was constructed, where each link shows the coexpression simi-
larity between gene pairs. The adjacency matrix was transformed into a topological overlap
matrix (TOM) to minimize the effects of noise, and the dissimilarity matrix was computed
as 1-TOM. The hierarchical clustering of the dissimilarity matrix was used to identify the
modules in the network and a dendrogram was constructed. Modules were identified where
the dendrogram was cut. We used a standard method to cut the branches using the “dynamic-
TreeCut” package (1.63-1). Dynamic tree cutting was used to identify modules with highly
similar gene-expression profiles. Highly coexpressed modules were merged.

2.5. Differentially Expressed Genes Analysis

We used differential gene-expression (DGE) analysis to identify genes that are differ-
ently expressed between different groups of samples. This helps us identify genes that may
be involved in specific biological or clinical conditions. In this study, we used DGE analysis
to compare the gene expression between healthy ovarian tissue, borderline serous ovarian
tumor tissue, and low-grade serous ovarian cancer tissue. We used two methods to identify
differentially expressed genes: limma (linear models for microarray data) method followed
by p-value adjustment (Benjamini–Hochberg method) and fold change. We identified
significant differentially expressed genes by filtering for the genes with an absolute log2
fold-change value greater than 1.0 and adjusted p-value less than 0.05, then intersected
these genes with the genes that were identified as important (correlation value > 0.3) in the
WGCNA modules between phenotype and gene-expression profiles. This allowed us to
identify genes that are both differentially expressed and important for ovarian cancer.

2.6. Gene-Set Enrichment Analysis

Gene-set enrichment analyses were performed utilizing KEGG, GO-BP, Cancer Hallmark,
and TRRUST Transcription Factors databases with the enrichR [8] package. We identified
significant pathway terms by filtering out terms with adjusted p-values less than 0.05.

2.7. Drug–Gene Interaction Analysis

We queried the Drug–Gene Interaction Database (DGIdb) for drugs that could bind
to target genes that we identified at the intersection of coexpression network modules
and DEGs [9]. We selected inhibitors for the overexpressed genes and activators for the
underexpressed genes.

2.8. Visualization of the Integrated Pathway Results

We integrated the pathways associated with significantly overexpressed and underex-
pressed genes as well as drug targets and subsequently visualized them using Cytoscape
via the RCy3 package (2.22.1) [10].
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2.9. Estimation of Tumor-Microenvironment Infiltration

The microenvironment cell populations counter (MCP-counter) method was used to
estimate the amount of immune and stromal cell populations infiltrating the tissue [11].
T-cell, T-cell CD8+, cytotoxicity score, NK cell, B cell, macrophage–monocyte, myeloid
dendritic cell, neutrophil, endothelial cell, and cancer-associated fibroblast abundances
were estimated as the amount of immune and stromal cell populations infiltrating the
tissue. We compared cell-type abundances in samples from different phenotypes using the
Kruskal–Wallis test.

2.10. Drug Sensitivity Analysis of Potentially Important Genes

We employed the Gene Set Cancer Analysis (GSCA) [12] web tool, which retrieves
results from the Genomics of Drug Sensitivity in Cancer (GDSC) database and Cancer
Therapeutics Response Portal (CTRP), to correlate the drug-response data acquired for the
characterized human cancer cell lines associated with our coexpressed and DEGs.

2.11. Software Environment and Packages

We listed the packages/tools and the analysis we performed using them in Table 2.

Table 2. Tools and packages with their versions and the analyses performed using them.

Package/Tool Version Aim Reference

1 R 4.3.1 All analyses [13]
2 Cytoscape 3.10.1 Pathway–gene–drug term figure plotting [14]

3 Affy 1.80.0 Microarray gene-expression data
Preprocessing [15]

4 SVA 3.50.0 Batch-effect correction [16]
5 M3C 1.24.0 UMAP plots [17]
6 WGCNA 1.71–1 Coexpression network analysis [7]
7 enrichR 3.2 Gene-set enrichment analysis [8]
8 RCy3 2.22.1 Visualizing networks from Cytoscape R [10]
9 rDGIdb 1.28.0 Drug–gene interaction analysis [18]
10 immunedeconv 2.1.0 Estimation of tumor-microenvironment infiltration [19]
11 ggpubr 0.6.0 ‘ggplot2’-based publication ready plots
11 GSCA Genomics of Drug Sensitivity in Cancer [12]

3. Results
3.1. Batch-Effect Removal

We performed batch-effect removal on the datasets downloaded from the GEO
database (Table 1) and merged the datasets. Figure 2 shows the UMAP plots labeled
by the phenotypes and batches before and after removing the batch effects. Before batch-
effect removal, the sample batches drove the clustering; after batch correction, the samples
were clustered based on their phenotypes (healthy, borderline, and low serous) (Figure 2).

3.2. Differential Gene-Expression Analysis

Upon comparing the healthy and borderline groups, 1640 differentially expressed
genes were detected, 765 were downregulated and 875 were upregulated in the borderline
compared to healthy. When the borderline and low serous groups were compared, we
observed that, of 1098 differentially expressed genes, 749 were downregulated and 349 were
upregulated in the low serous compared to the borderline. When the healthy and low serous
groups were compared, we found that, of 2158 differentially expressed genes, 1192 were
downregulated and 966 were upregulated in the low serous compared to the healthy
(Supplementary Sheets S1–S3).
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When we intersected the DEGs between the healthy and borderline groups with the
WGCNA modules that we selected in relation to the Healthy(−) vs. Borderline(+) and
Healthy(+) vs. Borderline(−), 629 genes and 679 genes were found to be in the module and
DEGs intersection, respectively.

Likewise, when we intersected the DEGs between the borderline and low serous
groups with the WGCNA modules that we selected in relation to Borderline(−) vs. Low
serous(+) and Borderline(+) vs. Low serous(−) related modules, 120 genes and 400 genes
were found to be in the module and DEGs intersection, respectively.

When we compared the DEGs between the healthy and low serous groups with
the WGCNA modules that we selected in relation to Healthy(−) vs. Low serous(+) and
Healthy(+) vs. Low serous(−) related modules, 914 genes and 562 genes were found to be
in the module and DEGs intersection, respectively (Table 3).

Table 3. The number of genes in the selected significant WGCNA modules.

Group Modules Number of Genes Total Number of Genes
in the Modules

Intersection
with DEGs

Intersection
Total

Healthy(−) vs. Borderline(+) m1, m2, m9 51, 1476, 354 1881 29, 572, 28 629
Healthy(+) vs. Borderline(−) m12, m13, m15, m16 1571, 92, 218, 2376 4257 384, 30, 72, 193 679

Borderline(−) vs. Low serous(+) m11 839 839 120 120
Borderline(+) vs. Low serous(−) m5, m8 44, 3486 3530 10, 390 400

Healthy(−) vs. Low serous(+) m3, m4 4543, 2996 7539 640, 274 914
Healthy(+) vs. Low serous(−) m12 1571 1571 562 562

3.3. Gene-Coexpression Network Analysis

Weighted gene-coexpression network analysis (WGCNA), identifies groups of co-
expressed genes in high dimensional datasets, helping uncover functional relationships.
Undirected correlation measures the strength of relationships between genes without im-
plying causality. WGCNA utilizes undirected correlations to construct gene-coexpression
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networks, revealing interconnected gene clusters with shared functions. WGCNA con-
structs a gene-coexpression network in accordance with the scale-free topology criterion [7].
As shown in Figure S10, the soft threshold value “8” was selected where the scale-free
topology fit index curve reached the lowest value, indicating R2 > 0.8 [7].

The correlations (together with p values) between WGCNA modules and phenotypes
are shown in Figure 3. Dynamic tree cutting was used to identify modules with similar
gene-expression profiles. Similar modules were combined according to a height cutoff
threshold of 0.25, and 19 modules were obtained.
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Figure 3. A module-trait heatmap is a visual representation of the correlations between the expression
levels of genes in each module and different clinical and pathological traits. The heatmap is generated
by calculating the Pearson correlation coefficient (PCC), also known as the eigengene significance,
between the expression levels of genes in each module and each trait. The PCCs are then color
coded, with red representing positive correlations and green representing negative correlations. The
darker the color, the stronger the correlation. (Each box displays a correlation value above and a
corresponding p-value in parentheses below.).

WGCNA helps prioritize groups of genes with potential functional significance, while
DGE analysis helps identify specific genes within these groups that are critical for understand-
ing the observed changes in gene expression between different conditions. Together, they offer
a comprehensive view of the gene-expression data and its biological implications. We selected
modules with a correlation value > 0.3 between phenotype and gene-expression profiles.

3.4. Gene-Set Enrichment and Drug–Gene Interaction Analysis

We performed gene-enrichment analysis using the genes at the intersection of coexpres-
sion and differential expression analysis. Utilizing KEGG, Gene Ontology-Biological Pro-
cesses, Cancer Hallmark, and TRRUST Transcription Factors databases, we considered path-
ways with an adjusted p-value less than 0.05 as significant (Supplementary Sheets S4–S11).
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For genes in significant pathways, we searched the DGIdb database for drug–gene interac-
tions using the rDGIdb package, retrieving results from more than thirty reliable sources.
For upregulated genes, we used the interaction types (“antagonist”, “antibody”, “antisense
oligonucleotide”, “blocker”, “cleavage”, “inhibitor”, “inhibitory allosteric modulator”,
“inverse agonist”, “negative modulator”, “partial antagonist”, and “suppressor”) to find
inhibitory drug interactions. For downregulated genes, we used the interaction types
(“activator”, “agonist”, “chaperone”, “cofactor”, “inducer”, “partial agonist”, “positive
modulator”, “stimulator”, and “vaccine”) to find activator drug interactions. We provide
Tables 4 and 5, where coexpressed genes, differentially expressed genes, gene-set enrich-
ment, and drug-interaction analysis results can be analyzed together. Additionally, the
associated results are visualized and summarized in Figure 4A,B.
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Table 4. Pathway term gene–drug interaction results for genes in the intersection of modules and
DEGs in healthy vs. borderline and borderline vs. low serous groups.

Healthy vs. Borderline

Pathway Type Name Gene Drug Effect Type

KEGG

Rheumatoid arthritis

ITGB2
Mlnm-2201, Ame-133v, Erlizumab,

Efalizumab, Rovelizumab, Lifitegrast
InhibitoryCell-adhesion molecules

Staphylococcus aureus infection
Viral myocarditis

GO-BP Regulation of cell migration
(GO:0030334) CD74 Milatuzumab Inhibitory

Hallmark Estrogen response late FGFR3

Derazantinib, Rabeprazole Sodium,
Enmd-981693, Dovitinib, Pazopanib,

Hydrochloride, Masitinib, Infigratinib,
Hesperadin, Brivanib Alaninate,
Ponatinib, Orantinib, Azd-4547,

Enmd-2076, Cp-459632, Rogaratinib,
Xl-228, Brivanib, Nintedanib Esylate,

Xl-999, Nintedanib, Ly-2874455

Inhibitory

Borderline vs. Low Serous

Pathway Type Name Gene Drug Effect Type

Hallmark Xenobiotic Metabolism IGF1 Dusigitumab Inhibitory

Table 5. Pathway term gene and transcription factor gene–drug interaction results table for modules
and DEGs intersection genes of healthy vs. low serous groups.

Healthy vs. Low Serous

Pathway Type Name Gene Drug Effect Type

KEGG

Proteoglycans in cancer ERBB4
(HER4)

Osimertinib Mesylate, Poziotinib, Vandetanib,
Dacomitinib, Pelitinib, Afatinib Dimaleate, Ac-480,

Gefitinib, Bms-690514, Jnj-26483327, Canertinib
Dihydrochloride

Inhibitory

Pathways in cancer AR
(TF gene)

Clascoterone, Apalutamide, Bicalutamide, Galeterone,
Flutamide, Nilutamide, Enzalutamide, Darolutamide,

Apc-100
Inhibitory

ECM-receptor interaction SPP1 Ask-8007 Inhibitory
Proteoglycans in cancer

PRKACA GSK-690693 InhibitoryWnt signaling pathway
Pathways in cancer

Tight junction

HALLMARK

Interferon Gamma Response
PSME2 Carfilzomib, Bortezomib Inhibitory

Interferon Alpha Response

Adipogenesis PIM3 SGI-177, LGH-447, AZD-1208 Inhibitory
DGAT1 Pradigastat Inhibitory

Hypoxia PGF Conbercept, Aflibercept Inhibitory

Bile Acid Metabolism
AR

Nilutamide, Galeterone, Flutamide, Enzalutamide,
Darolutamide, Clascoterone, Bicalutamide,

Apc-100, Apalutamide
InhibitoryEstrogen Response Early

Estrogen Response Late
SCNN1A Triamterene, P-1037, Amiloride Hydrochloride Inhibitory

Estrogen Response Early
TNF-alpha Signaling via NF-kB

CCND1 Palbociclib, Briciclib Inhibitory
Estrogen Response Late
Estrogen Response Early

Apoptosis
Androgen Response

Apoptosis HSPB1 Apatorsen Inhibitory
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Table 5. Cont.

Healthy vs. Low Serous

Pathway Type Name Gene Drug Effect Type

HALLMARK

Complement

CLU Custirsen Sodium, Custirsen InhibitoryCoagulation
Cholesterol Homeostasis

Apoptosis

Cholesterol Homeostasis FDPS Zoledronic Acid, Risedronate Sodium, Pamidronate
Disodium, Ibandronate Sodium Inhibitory

Epithelial–Mesenchymal
Transition OXTR Retosiban, Relcovaptan, Epelsiban, Barusiban Inhibitory

KRAS Signaling Up
SPP1 Ask-8007 Inhibitory

Epithelial–Mesenchymal
Transition

Epithelial–Mesenchymal
Transition

PDGFRB

Xl-999, Xl-820, X-82, Vatalanib, Tg100-801, Telatinib,
Tandutinib, Tak-593, Sunitinib Malate, Sunitinib,

Su-014813, Sorafenib Tosylate, Sorafenib, Rg-1530,
Regorafenib, Quizartinib, Puquitinib, Pd-0166285,
Pazopanib Hydrochloride, Pazopanib, Orantinib,

Nintedanib Esylate, Nintedanib, Nilotinib, Motesanib,
Midostaurin, Masitinib, Linifanib, Ji-101, Imatinib

Mesylate, Imatinib, Ilorasertib, Hesperadin, Foretinib,
Famitinib, Enmd-981693, Dovitinib, Dasatinib,

Crenolanib, Cm-082, Cep-2563, Cediranib, Cdp-860,
Axitinib, Anlotinib

Inhibitory

Apoptosis

3.5. Gene-Set Cancer Drug Sensitivity (GDSC) Analysis

We used the GSCA tool to correlate the drug sensitivity with the expression of genes
that were found to be significant in between groups and the drugs that target them. A
positive correlation coefficient shows that upregulated gene expression is associated with
drug resistance. We found that increased mRNA expression levels of the FGFR3 gene
(indicated by red bubbles) in the transition from healthy to borderline showed resistance to
drugs. Purple bubbles show the sensitivity of ITGB2 and CD74 to a group of known drugs
such as Methotrexate, 5-Fluorouracil in the transition from healthy to borderline and IGF1
in the transition from borderline to low serous in Figure 5A–C. Increased SPP1 gene shows
sensitivity to Selumertinib and Trametinib, increased PDGFRB gene shows sensitivity to
AZD4547 for PDGFRB, and increased ERBB4 gene shows sensitivity to isoliquiritigenin in
the transition from healthy to low serous (Figure 5B–D). Although drug responses are very
tissue dependent, the results obtained from the GSCA query are valuable for discussion
in terms of repositioning. Purple bubbles represent higher sensitivity, while red bubbles
represent less sensitivity with increased gene expression.
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Figure 5. (A,C) show the correlation of drug sensitivity with gene expression for the healthy to
borderline and borderline to low serous transition (IGF1) in our results from the GDSC and CTRP
databases. (B,D) show the drug sensitivity results from the GDSC and CTRP databases for healthy to
low serous transition genes. Purple bubbles represent higher sensitivity, while red bubbles represent
lower sensitivity with increasing gene expression.

3.6. Estimation of Tumor-Microenvironment Infiltration

While there was an increasing trend in T-cell population abundance in the transi-
tion from healthy tissue to low serous, this was the opposite for myeloid dendritic cells.
The abundance of T-cell CD8+, NK-cell, B-cell, neutrophil, endothelial cell, and cancer-
associated fibroblast populations decreased in the transition from healthy to borderline but
increased in the transition from borderline to low serous Figure 6.
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3.7. Correlation Analysis for Gene Expression and Tumor Microenvironment

We found a moderate correlation between ITGB2 expression and the macrophage–
monocyte proportion in borderline and low serous tissue (r = 0.5, p = 0.0051, r = 0.5,
p = 0.0023, respectively), as well as a moderate correlation with myeloid dendritic cell
(r = 0.49, p = 0.006) and neutrophil (r = 0.48, p = 0.008) in borderline tissue (Figure 7A). A
moderate correlation between CD74 expression and B cell in borderline tissue (r = 0.46,
p = 0.012), a moderate correlation between macrophage–monocyte in borderline and low
serous tissue (r = 0.5, p = 0.0051, r = 0.5, p = 0.0023, respectively) was found. We also
found a moderate correlation between myeloid dendritic cell (r = 0.49, p = 0.006) and
neutrophil (r = 0.48, p = 0.008) in borderline tissue. For IGF1, whose expression increases in
the transition from borderline to low serous, we found a moderate correlation between its
expression and T cell in low serous tissue (r = 0.5, p = 0.002), and a moderate correlation
between cancer-associated fibroblast in borderline and low serous tissue (r = 0.5, p = 0.0059,
r = 0.48, p = 0.0036, respectively). For SPP1 in the EMT pathway, whose expression increases
in the transition from healthy to low serous, there is a moderate correlation between its
expression and T cell in low serous tissue (r = 0.4, p = 0.017), a moderate negative correlation
between B cell in low serous tissue (r = −0.39, p = 0.019), a moderate negative correlation
between macrophage–monocyte in low serous tissue (r = 0.43, p = 0.0088) and a moderate
correlation between cancer-associated fibroblast in borderline and low serous tissue (r = 0.37,
p = 0. 047, r = 0.35, p = 0.037, respectively) (Figure 7B). For PDGFRB, which is in the EMT
pathway with increased expression in the transition from healthy to low serosa, we found a
moderate correlation between its expression and cancer-associated fibroblast in borderline
tissue (r = 0.56, p = 0.0016) and a high correlation in low serous (r = 0.75, p = 6.6 × 10−7). For
ERBB4 in the proteoglycans in cancer pathway, whose expression increases in the transition
from healthy to low serosa, we found a moderate correlation between its expression and
myeloid dendritic cell in borderline tissue (r = −0.59, p = 7 × 10−4), neutrophil in borderline
tissue (r = −0.56, p = 0.0017), and cancer-associated fibroblast in borderline tissue (r = 0.37,
p = 0.0045). For AR gene, which is in the estrogen response early pathway with increased
expression in the transition from healthy to low serosa, correlation of its expression with T
cell in borderline tissue (r = −0.39, p = 0.035), with macrophages–monocyte in low serous
tissue (r = −0.37, p = 0.028), with myeloid dendritic cells in borderline tissue (r = 0.4,
p = 0.029), and with neutrophil (r = −0.49, p = 0.0063), we found a moderate negative
correlation (Supplementary Figures S11–S20).
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Figure 7. (A). Scatter plots with Spearman correlation between ITGB2 gene expression and TME
infiltration proportion. (B). Scatter plots with Spearman correlation between SPP1 gene expression
and TME infiltration proportions.

4. Discussion

Ovarian cancer is a very heterogeneous disease. The most common type is epithelial
ovarian cancer, and high-grade (HG) serous tumors are the most common histology [20].
Recent data suggest that HG serous tumors mostly. originate from fallopian tube epithelium
(STIC lesions) with p53 abnormality. Other rare histological subtypes, such as clear-cell
and endometrioid tumors, arise from endometriotic cysts associated with endometriosis,
and MOC from transitional cell nests at the tubal–mesothelial junction [21,22]. Just one
histological type, low-grade (LG) serous tumors, are accepted to have a clearer progression
model from benign serous cystadenoma to borderline serous tumor and then low-grade
carcinoma [23,24]. Since the behavior and the prognosis of each histology differ from each
other, adjuvant treatment of each case has been managed individually and translational
medicine evolves the treatment modalities from “one fits for all” to targeted therapies
according to molecular alterations. In this unique study, we investigated the differentially
expressed genes and performed gene-coexpression network and drug–gene interaction
analyses to identify the potential targeted therapies in the biologic continuum of normal
ovarian epithelial cells, borderline serous ovarian tumor cells, and, finally, low-grade serous
ovarian epithelial cells.

Most of the studies regarding LG serous tumors demonstrated that K-RAS and B-RAF
proto-oncogene mutations are frequent, and RAS mutations were found to be associated
with the recurrence of LG serous tumors [25–27]. Since standard chemotherapy regimens
are not as effective in LG tumors as they are in HG tumors, recent studies have focused
on targeted therapies related to aforementioned mutations and also hormonal therapies.
Tamoxifen, letrozole, anastrozole, and fulvestrant were used in the studies as maintenance
therapy after platinum and taxane chemotherapy or single-agent therapy after surgery,
both in primary treatment and recurrent settings [28,29]. Gershenson et al. reported the
objective response rate (ORR) for aromatase inhibitors was 13% compared with only 5.9%
for tamoxifen in recurrent LG serous ovarian tumor patients [30]. In a similar phase-II study
with 36 LG serous ovarian tumor patients, ORR for anastrozole was only 14% [29]. MEK
inhibitors are the second group of drugs of interest for the treatment of LG serous tumors
since they target RAS and RAF mutations. In a recent study, trametinib was compared with
standard therapy in 260 recurrent LG serous tumor patients [31]. In this study, the median
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PFS was in favor of the trametinib group, 13 vs. 7.2 months (HR 0.48; 95%CI: 0.36–0.64) and
ORR was 26% vs. 6%. Selumetinib is another MEK inhibitor used for LG serous tumors. In
a phase-II study including 52 recurrent LG serous tumor patients, RR was 15%, and 65% of
patients had stable disease [30].

Our study aims to bring new perspectives to the treatment of LG serous ovarian
tumors by focusing on the molecular alterations between normal tissue, borderline, and
LG serous tumors. To do so, an in silico integrated data analysis was performed to provide
explanations adaptable to clinical practice, and the results were evaluated with current
literature. FGFR3 (fibroblast growth factor receptor 3) is a protein-coding gene and one
of the most important genes differentially expressed between normal ovarian tissue and
borderline serous tumors in our study. Amplification of FGFR leads to enhanced activation
of downstream signaling pathways (such as phospholipase Cγ (PLCγ), PI3K–AKT, Ras–
Raf–MAPK, and STATs), resulting in an increased sensitivity to FGF and the promotion of
tumor growth [32]. Researchers have detected mutations in the FGFR gene in ovarian and
other gynecological tumors [33,34]. The association between the FGFR3 gene mutation and
ovarian cancer has been the primary focus of research. Nevertheless, certain investigations
that yielded similar findings to our own study also demonstrated the presence of FGFR3
mutations in borderline serous tumors, particularly those with invasive implants [35]. This
provides encouragement for the development of targeted therapies to stop borderline
serous tumors from progressing into LG serous tumors. Potential therapeutic drugs that
target the FGFR3 gene are listed in Table 4.

The US Food and Drug Administration approved pazopanib (VotrientTM, Glaxo-
SmithKline) in October 2009 for the treatment of advanced renal cell carcinoma. It is an
oral angiogenesis inhibitor that targets the VEGF receptor (VEGFR), the platelet-derived
growth factor receptor (PDGFR), and c-Ki. Even though it has been suggested as a poten-
tial treatment for ovarian cancer, more recent research suggests that it is ineffective. The
phase-III AGO-OVAR16 trial evaluating the use of pazopanib as a maintenance treatment
for ovarian cancer showed a slight improvement in progression-free survival. However, it
regrettably did not achieve the desired outcome of improving overall survival [36]. Debra L.
reported that the combination of pazopanib and paclitaxel did not demonstrate superiority
over paclitaxel alone in cases of resistant or recurrent ovarian cancer [37] Although this
agent, which has undeniable antitumor activity, seems ineffective in advanced ovarian
tumors, it may be a new treatment option to prevent the transition to LG serous tumors in
borderline tumors.

Nintedanib is an oral tyrosine kinase inhibitor targeting VEGF receptor 1–3, FGFR
1–3, and PDGFR α and β. Progression-free survival in advanced ovarian cancer was found
to be significantly improved when nintedanib was used in combination with carboplatin
and paclitaxel in first-line treatment, albeit with more gastrointestinal side effects [38].
Single-agent nintedanib treatment has been shown to increase progression-free survival in
patients with bevacizumab-resistant epithelial ovarian cancer. However, more research is
required to confirm these findings [39].

Infigratinib is an orally bioavailable selective FGFR1-3 inhibitor. In clinical trials,
infigratinib demonstrated disease control in 84% of patients diagnosed with advanced
cholangiocarcinoma and in 64% of patients diagnosed with advanced urothelial carci-
noma [40]. Jing Zhao’s work has demonstrated that infigratinib effectively inhibits the
activation of the PI3K/AKT pathway and stimulates cell apoptosis. Consequently, it
enhances the sensitivity of cisplatin-resistant ovarian cancer cells [34].

A few studies examined the relationship between ovarian cancer and dovitinib,
AZD4547, ENMD, and brivanib, which are some other FGFR inhibitors that could be
potential treatment agents (Table 4). More research needs to be done on efficiency [41–44].

The other differentially expressed gene between normal ovarian tissue and borderline
serous tumors in our study, CD74, plays a crucial role in controlling the internal functioning
of class-II MHC molecules and acts as a receptor for macrophage migration inhibitory factor
(MIF). Cell proliferation, prostaglandin E2 synthesis, and extracellular signal-regulated
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kinase activation are some of the signaling processes triggered by MIF binding to CD74. The
involvement of this ligand–receptor interaction in chronic inflammation and carcinogenesis
has been reported. The expression of CD74 has been investigated in several types of cancer,
but not ovarian cancer [45]. Hagemann reported that MIF expression increased in both
borderline and malignant ovarian tumor cell lines compared to normal tissue. Considering
the relationship between MIF and CD74, we can say that it is parallel to our findings [46].

Milatuzumab (hLL1, IMMU-115), is a humanized anti-CD74 monoclonal antibody.
Preclinical research has shown that milatuzumab is effective against hematological malig-
nancies [47]. Govindan S.V. reported that, although milatuzumab’s efficacy was high in the
lymphoma model, it was also found to be effective in solid tumors when combined with
SN-38 [48]. Additional research is required to assess the effectiveness of milatuzumab in
solid tumors and ovarian cancer.

Integrin beta 2 (ITGB2) (CD18/LFA-1), a member of the leukocyte integrin family, is
one of the differentially expressed genes between normal ovarian tissue and borderline
serous tumors in our study. Integrins are a type of cell-surface protein involved in cell
adhesion and cell-surface-mediated signal transduction. They play a critical role in the
immune response by contributing to cell migration, proliferation, differentiation, and
survival [49]. Research has shown that ITGB2 is highly expressed in a number of cancers,
such as colorectal cancer, renal clear-cell carcinoma, papillary thyroid cancer, and breast
cancer [50]. Many studies have demonstrated that ITGB2 is overexpressed in ovarian
cancer relative to normal ovarian tissue; it is linked to metastasis and poor prognosis in
ovarian cancer and can be used as a prognostic immunomarker [51]. Existing ovarian
cancer studies suggest that ITGB2 targeted therapy should be explored. ITGB2-specific
antibodies, potential target agents, have not yet been studied in solid tumors (Table 4).
Their use in cases with inflammatory processes has been investigated, and their efficacy has
been established [52]. To establish their efficacy in solid tumors, more research is required.

One of the most important differentially expressed genes between borderline and
LG serous tumors is IGF-1, as mentioned in Table 4 part 2. The IGF pathway with its
downstream effectors, which are PI3K/AKT/mTOR and RAF/MAP kinases, have well-
defined roles as mitogens in carcinogenesis [53]. Its role in LG serous ovarian tumors
was demonstrated in a study by King et al. [54]. They reported that the IGF-1 gene was
upregulated and IGF-1 and IGF-1R were overexpressed in LG serous tumors with respect
to borderline tumors, which is similar to our findings. Additionally, LG serous tumor cells
were found to be more sensitive to IGF-1R inhibition than borderline cells. Dusigitumab, a
human monoclonal antibody that binds to IGF-I/II, was studied in colorectal cancer cells,
solid tumors, and sarcomas, revealing promising results [55–57].

ERBB4 is another upregulated gene in LG serous tumors compared to normal ovarian
cells. The ERBB4 gene encodes an enzyme, receptor tyrosine-protein kinase erbB-4, which
is a member of the epidermal growth factor receptor family [58]. Current evidence suggests
that ErbB4 may act as a proto-oncogene, and it is primarily based on its association with
other ErbB receptors. As yet, there is no strong evidence that either ERBB4 mutation or
overexpression can induce cancer development and/or progression [59]. Many reports
have highlighted the role of ERBB4 in cancer, and it is also related to the pathogenesis and
prognosis of ovarian cancer [60,61]. Inhibitors of tyrosine kinases and blocking the acti-
vation of downstream pathways improved patient outcomes in various solid tumors [62].
Poziotinib, a panhuman epidermal growth factor receptor, was reported to decrease sphere
formation, viability/proliferation, and induced G1 cell-cycle arrest and apoptosis in ovarian
cancer stem cells [62,63]. In a study by Coleman et al., vandetanib, an oral tyrosine kinase
inhibitor of VEGFR2/3, EGFR, and RET, was reported to have clinical activity as a single
agent or in combination with taxane. However, vandetanib plus docetaxel combination
failed to show a positive effect in women with progressive or refractory ovarian cancer [64].
This study did not provide detailed information on the percentage of LG serous tumors.
Since ERBB4 is upregulated in LG serous tumors. The latter tyrosine kinase inhibitors
and other drugs such as Osimertinib Mesylate, Dacomitinib, Afatinib Dimaleate, Ac-480,
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Gefitinib or Pelitinib that have not been studied in LG serous tumors but were shown to
have clinical effects on other solid tumors [62] may be potential treatments for low serous
ovarian cancer. Another orally administered small molecule inhibitor of BTK, which has
also been reported to have off-target activity against the ERBB/EGFP family, ibrutinib, is
an FDA-approved drug for hematological diseases [65–67]. Interestingly, in a case report
by Gray et al., a significant clinical response was obtained by ibrutinib in LG serous tumors
after organoid drug testing [68].

Another potential mechanism is related to the AR gene and its metabolism. This
gene encodes a kind of nuclear receptor that is activated by the binding of androgenic
hormones. In addition to its well-known physiological roles, it is also related to prostate,
breast, and ovarian cancers [69]. In vitro studies suggested that AR activation is related
to the induction of tumorigenesis and cancer progression as well as chemoresistance in
ovarian cancer [70]. Antiandrogenic agents are commonly used for prostate cancer, but
since the correlation was shown in preclinical studies in ovarian cancer, phase studies
have been coming forward recently. In a phase-II trial, Geist et al. investigated the role of
enzalutamide, in AR-positive recurrent high and low-grade serous ovarian cancer patients.
The administered dose until disease progression or discontinuation was 160 mg of daily
enzalutamide, and 6 months PFS was 19.8% for HG serous tumors and 38.5% for LG serous
tumors [71].

Last but not least, the epithelial–mesenchymal transition (EMT) is the cornerstone
in the metastasis of epithelial tumors. In our study, OXTR, SPP1, and PDGFRB genes
found upregulated in LG serous tumors with regard to normal cells are related to EMT.
OXTR (oxytocin receptor) has a well-known role in the mechanism of labor. This receptor
was also shown to have roles in colon and ovarian cancer [72,73]. Ji et al. reported that
oxytocin inhibits ovarian cancer cell metastasis by suppressing the expression of MMP-2
and VEGF [73]. In our study, OXTR was upregulated in LG serous tumors, contrary to
the findings in the latter study. This conflict may be due to the types of ovarian cancer
cells since Ji et al. studied SKOV3 cells, which is the model for HG serous tumors. SPP1 is
another upregulated gene in our study related to the EMT mechanism. Wang et al. reported
that SPP1 overexpression relates to T-cell exhaustion and a more aggressive phenotype in
ovarian cancer [73,74]. In a similar study, Gao et al. emphasized that SPP1 expression is
strongly correlated with tumor-infiltrating lymphocytes in ovarian cancer [75]. Thus, SPP1
expression may both be related to the metastasis mechanism and tumor microenvironment
and may have a role in immunotherapies in ovarian cancer treatment. Table 5 contains
information on additional differentially expressed genes (DEGs) and potential drugs that
may be considered for future treatment of low-grade serous tumors.

Very little is known about the tumor microenvironment in LG serous tumors; one of
those studies compared the lymphocyte infiltration in LG and HG serous tumors. Figure 6
shows immune-cell infiltration in benign, borderline, and LG serous tumor cells in our study.
According to Ciucci et al., LG tumors exhibited a lower density of tumor-infiltrating CD68+
macrophage, along with an attenuated M2-skewed (CD163+) phenotype than benign and
borderline tumors [76]. In another study by Li et al., M2 macrophage infiltration is strongly
correlated with ITGB2 expression in ovarian cancer patients [51]. Similarly, SPP1, which
is also an important DEG in our study, was reported to be significantly correlated with
infiltrating levels of CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic
cells [75]. The correlation of the tumor microenvironment according to ITGB2 and SPP1
expressions is shown in Figure 7A,B.

Based on the performed bioinformatics analyses, the above-mentioned discussions pro-
vide insightful definitive conclusions. We promote to the readers the necessary molecular
validation (in vivo/in vitro experiments). Taken together, the present study is a pioneering
study in the field and can inspire remarkable various studies in the future.
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5. Conclusions

This paper is one of the few studies that comprehensively discusses the genetic
expression differences and their potential mechanisms in LG serous ovarian tumors in
a biologic continuum from benign to borderline and malignant transformation. Since it
is a rare type of epithelial ovarian tumor, its management is unsatisfactory, especially in
advanced stages. This study provides a global view to investigate the specific targets and
their downstream pathways. However, it is important to note that the current study is
preliminary, and before considering these outcomes as fully reliable, subsequent in vitro
and in vivo studies will be necessary to validate the results. Future research should focus on
conducting targeted molecular and cellular studies to validate and expand upon the genetic
targets and pathways identified here, offering the potential for more effective therapeutic
strategies and improved management of LG serous ovarian tumors.
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