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The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from
infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity,
but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral
spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in
the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss
of NTD-specific antibody COVA2-17 binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation
switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform
differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we
evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some
mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation
and SARS-CoV-2 antibody binding profiles.
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Introduction

In December of 2019, a new coronavirus was detected
in Wuhan, China which has subsequently been named
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). SARS-CoV-2, the causative agent of COVID-19,
has accounted for more than 651 million infections and
more than six million deaths worldwide (World Health
Organization Coronavirus 2019 (COVID-19) Dashboard;
https://covid19.who.int/, Accessed 03 January 2023). Virus
genomic sequences are being generated and shared at an
unprecedented rate, with more than one million SARS-CoV-
2 sequences available via the Global Initiative on Sharing
All Influenza DATA (GISAID), permitting near real-time
surveillance of the unfolding pandemics.

The SARS-CoV-2 spike (S) glycoprotein is composed of
two subunits: S1, which contains the receptor-binding domain
(RBD) responsible for interaction with receptors on host cells,
and S2, which mediates membrane fusion and viral entry.
The S1 subunit contains two highly immunogenic domains,
the N-terminal domain (NTD) and the RBD, which are the
major targets of neutralizing antibodies. While the RBD binds
to the host cell receptor angiotensin-converting enzyme 2

(ACE2), the NTD is proposed to interact with auxiliary
receptors including DC-SIGN/L-SIGN (Chiodo et al. 2020;
Thépaut et al. 2021). Serological analysis of plasma or
serum from SARS-CoV-2 infected individuals has revealed
only ∼6%–20% of circulating antibodies target the NTD
compared to ∼65%–80% that target the RBD, with the
remaining ∼4%–20% targeting the S2 subunit (McCallum
et al. 2021). Nonetheless, NTD-targeting mAbs can neutralize
SARS-CoV2-2 infection in vitro and in vivo, suggesting they
could be useful for COVID-19 prophylaxis or treatment (Chi
et al. 2020; Liu et al. 2020; Cerutti et al. 2021; McCallum
et al. 2021; Sun et al. 2021; Voss et al. 2021). The NTD-
directed monoclonal antibodies identified to-date recognize a
glycan-free epitope named the NTD-supersite (residues 14–
20, 140–158 and 245–264 (Harvey et al. 2021; McCallum
et al. 2021)). NTD-directed antibodies are a major selective
pressure against the virus, and promote the emergence of
NTD escape mutations of SARS-CoV-2 variants (McCallum
et al. 2021).

In late 2020, the SARS-CoV-2 variant of concern (VOC),
designated P.1 or Gamma, was first detected in Manaus,
Amazonas state, Brazil. This lineage was first detected in
four travelers returning to Japan from Amazonas state on
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Fig. 1. Mutations of the spike protein of the SARS-CoV-2 gamma variant and evolution of T20N and R190S mutations. A) Schematic of the key domains
of spike and locations of the 12 mutations present in the gamma variant. SS, signal sequence; HR, heptad repeat; CH, central helix; CD, connector
domain; TM, transmembrane domain; CT, cytoplasmic domain. The spike construct used in this study comprised residues 1,204 of SARS-CoV-2 S with
“GSG” substituted at the furin cleavage site and a molecular clamp substituted for the TM and CT domains. B) Early evolution and fixation of
SARS-CoV-2 spike glycoforms in gamma (P.1 and descendent lineages). The left y-axis shows the proportion of sequences with complete collection
dates on GISAID harboring T20N (red), R190S (blue) or both T20N/R190S (green). The right y-axis shows the cumulative number of P.1 sequences
deposited on GISAID between 20 Nov 2020 to 1 Jul 2021.

2 January 2021 (Fujino et al. 2021) and was soon recognized
as an emergent lineage in Manaus (Faria et al. 2021). Gamma
evolved from a local B.1.1.28 clade and replaced the parental
lineage in <2 months. The Gamma spike protein harbors
multiple substitutions: L18F, T20N, P26S, D138Y, R190S,
K417T, E484K, N501Y, D614G, H655Y, T1027I and V1176F
(Fig. 1A). Most of these mutations localize to the NTD and
RBD, which are the major targets of neutralizing antibod-
ies in convalescent and vaccinated individuals, raising con-
cerns about the efficacy of available vaccines and therapeutic
monoclonal antibodies towards this lineage. Some of these
mutations had occurred in other VOCs: E484K was shared
with B.1.351 (Beta), and N501Y was shared with B.1.1.7
(Alpha) and B.1.351 (Beta). Both these mutations reduce
the neutralization potency of some monoclonal antibodies
(Zhang et al. 2021; Wang et al. 2021c).

A key post-translational modification that can also
modulate the biophysical properties of proteins is glycosyla-
tion, whereby carbohydrate moieties (glycans) are attached
to nascent proteins during synthesis in the endoplasmic
reticulum (ER) (Lee et al. 2015). Asparagine- (N-) glycans are
attached at acceptor asparagine residues within an amino acid
consensus motif or sequon (Asn-Xaa-Thr/Ser; Xaa �= Pro).
This peptide motif binds with high affinity to the active site
of the oligosaccharyltransferase, the enzyme that catalyzes
N-glycosylation in the ER (Shrimal and Gilmore 2019).
Glycans play critical roles in virus-host interactions, including
stabilizing the conformation of viral and host proteins;
serving as viral attachment factors, co-receptors, or receptors;
promoting structural conformations that facilitate or enhance
receptor binding; shielding or presenting underlying viral
epitopes; and acting as antigens to direct immune response
(Bagdonaite and Wandall 2018; Watanabe et al. 2019; Dugan
et al. 2022). Indeed, the spike protein is heavily glycosylated,

with 22 occupied N-glycosylation sequons present per
protomer (Watanabe et al. 2020) and glycosylation has
been shown to influence SARS-CoV-2 infection (Reis et al.
2021). Host glycans act as ligands, facilitating virus binding
and uptake (Clausen et al. 2020; Nguyen et al. 2022) and
inhibiting cellular glycosylation blocks SARS-CoV-2 entry
(Yang et al. 2020). Furthermore, molecular dynamics (MD)
studies indicate that spike N-glycosylation sites N165, N234,
and N343 (Casalino et al. 2020; Sztain et al. 2021; Harbison
et al. 2022), stabilize the protein in an open conformation
allowing more favorable interactions with the ACE receptor,
and that glycan-protein and glycan-glycan interactions form
between ACE and spike (Zhao et al. 2020).

The glycosylation profile of spike has been extensively
investigated (Praissman and Wells 2021; Chawla et al.
2022a). Minimal differences in glycosylation have been
observed between vaccine constructs of trimeric ancestral
spike held in a pre-fusion conformation and native (virion
derived) spike (Allen et al. 2021). Conversely, glycosylation
differs substantially between native spike and a monomeric
form of the S1 subunit from a non-stabilized protein
construct (Brun et al. 2021). These studies indicate that
the glycosylation profile of spike is relatively stable when
proteins are produced in similar cell lines, and overall spike
architecture is conserved. However, specific amino acid
substitutions in spike can modify site-specific glycosylation.
A single substitution D614G (present in the Alpha variant
and subsequent VOCs) and mutations specific to the Alpha
variant, alter glycosylation profiles at selected sites compared
to the ancestral Wuhan-Hu-1 strain (Wang et al. 2021a; Kuo
et al. 2022).

In addition to sequence variations that may promote con-
formational changes, mutations can also introduce, remove,
or change N-glycosylation sequons (NxT/S; x �= Pro) which
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may alter the structure and function of spike. For instance,
a mutation (NST372 > A) in spike of human SARS-CoV-2
results in the loss of an N-glycosylation sequon when com-
pared to other related coronaviruses (Kang et al. 2021). MD
simulations (Harbison et al. 2022) and binding assays (Kang
et al. 2021) reveal that the loss of this site increases the binding
affinity of the spike RBD to host ACE2 by stabilising the open
conformation of the RBD. In VOCs, a mutation at position
19 in the Delta variant abolishes the N-glycosylation sequon
containing site N17 (NLT19 > R) but has little impact on the
overall glycosylation profile of spike compared to the ances-
tral strain (Newby et al. 2022). The Gamma variant muta-
tions T20N and R190S introduce two new N-glycosylation
sequons, N20RT and NLS190, respectively. In addition, the
Gamma substitution L18F changes the middle amino acid
within the native N-glycosylation sequon containing site N17
(NF18T). The introduced site N188 in Gamma is occupied
with oligomannose type glycans (Yang et al. 2021; Newby
et al. 2022), and occupancy of the second introduced site,
N20, has been confirmed through cryo-EM mapping (Yang
et al. 2021; Zhang et al. 2021) and was found to contain
predominantly complex type glycans (Newby et al. 2022;
Shajahan et al. 2022). Intriguingly, molecular modelling of the
Gamma spike NTD predicts additional N20 and N188 gly-
cans could sterically block NTD-specific antibodies targeting
the supersite (Yang et al. 2021). To our knowledge, the impact
of these Gamma NTD mutations on spike-antibody binding
has not been described.

With new and emerging variants and the threat of reduced
neutralizing antibody capacity, understanding the effects of
different mutations on the antibody and glycosylation pro-
files of the NTD is critical to fully understand SARS-CoV-2
immunity during pandemics. Here, we produced nine trimeric
prefusion-stabilized spike proteins that included the ancestral
spike (Wu-1), the Gamma variant with all 12 substitutions and
Wu-1 spike with single, double or triple mutagenesis of L18F,
T20N or R190S. We analyzed the mAb binding profiles of
each spike protein and measured site-specific N-glycosylation
occupancy and glycoform abundance at the acquired N20 and
N188 N-glycosylation sites, and at the native N-glycosylation
site N17. In addition, we measured NTD-specific IgG titers in
sera from COVID-19 convalescent individuals.

Results and discussion

Sensitivity of gamma spike and its mutations to
NTD-specific mAbs

The emergence of the Brazilian VOC (Gamma lineage, P.1)
impacted the epidemiological profile of COVID-19 cases
due to its higher transmissibility and immune evasion ability
(Dejnirattisai et al. 2021; Faria et al. 2021; Imai et al. 2021;
Naveca et al. 2021; Souza et al. 2021). It emerged after a
period of rapid genetic diversification (Naveca et al. 2021)
and accumulated 17 non-synonymous defining mutations, ten
of which are in the S gene. Mutations in the RBD at K417T,
E484K and N501Y are involved in immune escape (Harvey
et al. 2021), while the NTD also contained five mutations, two
of which, T20N and R109S, introduce new N-glycosylation
sequons (Fig. 1A). Interestingly, sequence analysis revealed the
early detection of mutations at T20N and R190S prior to the
description of the gamma variant (Fig. 1B). Although several
studies documented Gamma’s increased transmissibility and
immune evasion, there is limited data about the glycosylation

profile of Gamma and its impact on antibody binding,
particularly within the NTD. Such data may help us better
understand immune responses to emerging variants and help
mitigate the severe impact of the ongoing pandemic.

To examine potential changes in antibody binding of
Gamma spike, we generated recombinant trimeric SARS-CoV-
2 spike proteins of the ancestral Wu-1 strain and Gamma
with a modified furin cleavage site from Chinese Hamster
Ovary (CHO) cells, as described previously (Watterson et al.
2021) and assayed their binding to defined neutralizing mAbs
originally isolated from SARS-CoV-2 patients (Fig. 2). We
found that structurally defined epitope-specific monoclonal
antibodies (mAbs) including anti-RBD (B38, CB6, CR3022,
2M10B11 and S309) and anti-NTD (4A8, COVA2-17 and
COVA1-22) bound differently to Wu-1 and Gamma spike
proteins, consistent with previous studies (Caniels et al. 2021;
Tao et al. 2021; Wang et al. 2021b). All class I (B38 and
CB6) and class IV (CR3022 and 2M10B11) RBD-specific
mAbs exhibited lower binding affinity to Gamma spike than
to Wu-1 spike, whereas the class III (S309) mAb showed no
difference in binding. NTD-specific mAbs also had lower
binding affinity to Gamma spike than to Wu-1 spike: 4A8,
recognizes the NTD supersite; and COVA1-22, where the
binding mode has not yet been determined. Interestingly,
the COVA2-17, NTD-specific neutralizing antibody, bound
strongly to Wu-1 spike, but its binding was completely
abolished for Gamma spike. Although broadly defined as
anti-NTD, it should be noted that COVA2-17 was found to
bind recombinant RBD (Brouwer et al. 2020) and binding
is moderately affected by the mutation N501Y in the RBD
(Rees-Spear et al. 2021). Thus, Gamma RBD mutations may
also have influenced binding in our assays. In addition to
changes in antibody binding, Gamma spike showed slightly
lower affinity to monomeric ACE2 (ACE2 FcM). Influenza
hemagglutinin specific C05 (Ekiert et al. 2012) and anti-clamp
(Young et al. 2022) antibodies served as negative and positive
controls for these binding assays, and showed no differences
in binding. Together, these data showed substantial changes to
antibody binding across the RBD and NTD of Gamma spike.

Antibody binding of trimeric spike from the gamma
variant with selected mutations

Although multiple antigenic sites, including one at the surface
of the NTD, are present on both Wu-1 and Gamma, a
single supersite of vulnerability is targeted by neutralizing
Abs elicited upon infection and vaccination (Lok 2021;
McCallum et al. 2021). This antigenic supersite (designated
site i) comprises the NTD N-terminus (residues 14 to 20),
a β-hairpin (residues 140 to 158), and a loop (residues
245 to 264). In the context of this antigenic supersite,
the Gamma spike substitutions L18F and T20N are of
particular interest, as they alter the native N-glycosylation
sequon at N17 (NL18T > NF18T) and introduce a new
N-glycosylation sequon at N20 (T20RT > N20RT). Given
the proximity of the additional Gamma mutation R190S to
the antigenic supersite and predictions that glycans at the
resulting introduced N-glycosylation sequon (NLS190) could
alter antibody binding (Yang et al. 2021), this substitution
is also of high interest. To dissect the consequences of these
substitutions, we performed all combinations of single, double
or triple mutagenesis at L18F, T20N, and R190S on Wu-1
spike, resulting in seven proteins that were expressed and
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Fig. 2. Wu-1 and gamma SARS-CoV-2 spike proteins exhibit different sensitivities to RBD and NTD specific mAbs. A) Indirect ELISA show binding curves
of Wu-1 (red) and gamma (blue) spike to RBD- and NTD-specific antibodies as indicated. Kd shown for each curve, nM.

purified in addition to Wu-1 and Gamma. We then tested
binding affinities for selected mAbs to these variant spike
proteins (Fig. 3). As expected, these substitutions in the NTD
did not affect binding of the anti-RBD mAb CB6. Despite
anti-NTD mAb COVA1-22 having reduced binding to
Gamma, its binding was not reduced to the variant spike pro-
teins with targeted substitutions. In contrast, while anti-NTD
COVA2-17 mAb bound Wu-1 spike with high affinity (Kd
∼0.77 nM), the spike variants T20N (Kd ∼8.35 nM), L18F/
T20N (Kd >10 nM), and L18F/T20N/R190S (Kd >10 nM)
showed substantially reduced or completely abrogated bind-
ing for this mAb. COVA2-17 binding affinity did not change
with the L18F single mutation (Kd ∼0.5 nM). This data
suggests that introduction of a new N-glycosylation sequon
with the T20N substitution, particularly in combination with
L18F, eliminated binding of the anti-NTD COVA2-17 mAb.

N-glycosylation occupancy of introduced sites N20
and N188 and native N17 in the NTD of gamma
The introduction of the Gamma mutations T20N and R190S
creates two additional N-glycosylation sequons (N20RT
and NLS190) in the spike protein, while L18F changes the
middle residue of the native N17 sequon proximal to N20
(N17F18TN20RT). To confirm if the decreased antibody
binding we observed (Fig. 3) was associated with changes
in glycosylation at this region, we performed biochemical
confirmation of glycosylation site-occupancy in spike from
Wu-1, Gamma, and variant spike proteins with selected
Gamma substitutions introduced by site-directed mutagenesis.
We measured site-specific N-glycosylation occupancy and
glycoform abundance at the acquired N20 and N188
N-glycosylation sites, and at the native N-glycosylation site
N17. To increase the accuracy with which we could measure
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Fig. 3. Binding characterization of SARS-CoV-2 spike proteins of Wu-1, gamma and NTD mutants. A). Indirect ELISA show binding curves of RBD- and
NTD-specific antibodies as indicated. B) Dissociation constant of mAbs against Wu-1 or gamma, mutated SARS-CoV-2 spike proteins.

site-specific N-glycosylation occupancy, we aliquoted pools
of peptides and N-glycopeptides into two equal portions, one
for endoglycosidase treatments with peptide-N-Glycosidase F
(PNGase F) in 18O water to obtain de-glycosylated peptides,
and one left untreated for intact glycopeptide analyses.
PNGase F removes N-glycans converting the previously
glycosylated Asn to Asp which results in a mass shift of
+0.984 compared to unmodified Asn. In the presence of
18O water, the mass difference is increased to +2.984 Da
which increases the confidence of site assignment, partic-
ularly when multiple N-glycosylation sites are potentially
present on the same peptide. Using LC-MS/MS, we then
measured the abundance of the resulting peptides and de-
glycosylated peptides (Supplementary Table 1) and validated
N-glycosylation occupancy through the identification of
glycopeptides. We observed high occupancy at N17 in the
Wu-1 spike. High occupancy was also observed at N17 in
Wu-1 spike proteins with one or both of the introduced
L18F and R190S mutations (Fig. 4A). However, in Gamma
spike and all variant proteins with the T20N substitution, the
introduction of the sequon at N20 resulted in a switch in site
usage, with the new sequon being fully occupied and minimal
occupancy at the original N17 site (Fig. 4A and B). Similarly,
occupancy was high at all variants with the introduced N-
glycosylation sequon at N188 (Fig. 4C). Together, this data
showed that loss of binding of the COVA2-17 mAb was
associated with N-glycosylation site switching from N17
to N20.

The N-linked sites N17 and N20 are adjacent to each
other in Gamma (N17FTN20RT), and glycosylation sites can
be skipped when sequons are closely spaced (Shrimal and
Gilmore 2013). The competitive higher occupancy at N20
may be due to the type of amino acid in the middle of the
N-linked sequon (NxS/T; x �= P) as sequons with Leu/L
or Phe/F, as at position X of the N17 sequon in the vari-
ant proteins, are less efficiently glycosylated (Malaby and
Kobertz 2014). The positioning or Phe at −2 relative to
N20 may also play a role, as aromatic residues at that posi-
tion have been reported to enhance glycosylation efficiency
(Murray et al. 2015).

Glycoform abundance
The precise glycan structures present at specific N-glycosylation
sites can be critical for various aspects of spike’s function.
We therefore used intact glycopeptide analyses to determine
the glycosylation profiles at the native N17, the newly
introduced N20 and N188, and six other native N-linked
sites reliably measured after trypsin digestion (N122, N165,
N234, N282, N801, N1098) (Supplementary Fig. 1 and
Supplementary Table 2). Principal component analysis (PCA)
revealed clear separation of glycoforms between Wu-1,
Gamma, and the variant spike proteins (Fig. 4D). The site-
specific glycosylation profile of both N17 and N20 showed
predominately complex N-glycans with a high degree of
fucosylation. These profiles are similar to those reported at
N17 after production of trimeric spike in mammalian cell
lines (Watanabe et al. 2020; Yao et al. 2020; Zhao et al.
2020; Allen et al. 2021; Brun et al. 2021; Newby et al. 2022;
Chawla et al. 2022b), and are consistent with the surface-
exposed location of N17 and N20 on the NTD, which would
allow processing of glycans to more mature forms (Yang et al.
2021; Newby et al. 2022). Glycan heterogeneity was greater
at N17, with more sialylation (NeuAc, N-acetylneuraminic
acid). The glycans at N20 were more homogenous and
contained two predominant forms: HexNAc4Hex3Fuc1 and
HexNAc5Hex3Fuc1 (HexNAc, N-acetylhexosamine; Hex,
hexose; Fuc, fucose) (Fig. 4E). Compared to Wu-1, there was
a substantial decrease in sialylation in Gamma and all seven
variants, with the greatest difference apparent in the variants
with the T20N mutation (Fig. 4F). Site-specific glycosylation
analyses of N188 revealed predominantly oligomannose N-
glycans for all proteins in which it was present (Fig. 4G), in
agreement with previous reports (Yang et al. 2021; Newby
et al. 2022), and consistent with its inaccessible location
within a cleft in the NTD (Newby et al. 2022). N188 resides
in a region of the spike NTD that binds the heme metabolites
biliverdin and bilirubin (Rosa et al. 2021). When biliverdin
is at physiological concentrations, binding of the ligand by
spike Wu-1 results in a rearrangement of an antigenic loop
in NTD (amino acid positions 174–188) and a reduction in
the activity of a number of antibodies including COVA2-17

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwad097#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwad097#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwad097#supplementary-data
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Fig. 4. Site-specific N-linked glycosylation occupancy and structural heterogeneity of SARS-CoV-2 spike proteins of Wu-1, gamma and NTD mutants.
Site-specific N-glycosylation occupancy at sites (A) N17, (B) N20 and (C) N188. D) Principal component analysis (PCA) of glycoform abundances excluding
N188. Site-specific glycoform analysis at sites (E) N17 and N20 with the (F) log2 fold change relative to Wu-1 (blue increased abundance, red decreased
abundance, P < 0.05). For N17 in (E) the unmodified intensity for T20N, L18F/T20N, L18F/T20N/R190S and gamma were inferred from the occupancy
analysis. (G) Site-specific glycoform analysis at site N188. HexNAc, N-acetylhexosamine; hex, hexose; Fuc, fucose; NeuAc, N-acetylneuraminic acid.

and COVA1-22 (Rosa et al. 2021). It has been proposed that
glycosylation of N188 exerts an allosteric effect similar to the
Wu-1 spike-biliverdin complex (Newby et al. 2022), although
we did not observe changes in the affinities of COVA2-17 and
COVA1-22 to the R190S variant which we confirmed was
glycosylated at N188.

To gain insights into the global glycosylation profiles of
the various spike proteins, we performed a clustered heatmap
analysis of their site-specific N-glycosylation profiles (Fig. 5).

This analysis revealed that Gamma clustered distinctly from
Wu-1, while the other variant spike glycoproteins clustered
together. This clustering was primarily driven by abundant
sialylation in Wu-1, in contrast to abundant fucosylation and
short complex glycans (HexNAc(3-6)Hex(3)) in Gamma. Both
Wu-1 and Gamma had similar afucosylation and oligoman-
nose glycans, while these were more abundant in the site-
directed mutagenesis variants. To confirm these differences
were due to the protein sequence, rather than being expression
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Fig. 5. SARS-CoV-2 spike proteins of Wu-1, gamma and NTD mutants have diverse glycosylation profiles. Clustered heatmap of the relative abundance
of all identified glycoforms in all replicates, excluding N188. Both rows and columns were clustered using correlation distance and average linkage. The
percentage of types of glycans observed in each selected cluster are represented in bar graphs (refer to the methods for the allocation of glycan-types).
The full clustered heatmap with labelled rows (glycopeptide glycoforms) is shown in Supplementary Fig. 3A.

artefacts, we performed independent expression, purification,
and glycosylation analysis, which revealed these glycosylation
profiles were robust and reproducible, and were driven by
spike protein sequences (Supplementary Figs 1–3 and Sup-
plementary Table 3). Together, our site-specific glycosylation
analysis showed that in addition to causing N-glycosylation
site switching from N17 to N20, the protein sequence changes
in Gamma spike caused changes to the N-glycan structures
at multiple sites across spike, with an overall decrease in
sialylation compared to Wu-1.

Previous comparisons of the glycosylation of Gamma and
Wu-1 spike produced in HEK cells observed less sialylation on
Gamma, although less extreme than we observe here in spike
produced in CHO cells (Newby et al. 2022; Shajahan et al.
2022). It is therefore possible that the considerable differences
in glycosylation of Gamma and Wu-1 we report here may
be cell line specific. Nonetheless, the mechanisms underlying
the reduced sialylation of N-glycans at diverse sites across
Gamma spike compared with Wu-1 spike remain unclear.

Antibody binding of sialidase treated spike proteins

Our site-specific glycosylation analysis showed two key
changes that correlated with reduced binding of select mAbs
to Gamma compared to Wu-1 spike: glycosylation site

switching from N17 to N20; and lower sialylation at N-
glycosylation sites across Gamma spike. We therefore tested if
this reduced binding was due to N-glycosylation site switching
or changes in global sialylation. Variant spike proteins were
treated with sialidase or left untreated, with removal of sialic
acid confirmed by mass spectrometry. The proteins were
then tested for anti-RBD (CB6) and anti-NTD (COVA2-17)
binding. No change in mAb binding was observed in any
neuraminidase-treated spike compared to untreated spike
(Fig. 6). These results indicated that the significant changes
in sialylation associated with the Gamma mutations were not
responsible for the decreased binding of CB6 and COVA2-
17 to Gamma, but that these changes in mAb binding were
driven by protein sequence changes in the case of CB6, and
N-glycosylation site switching in the case of COVA2-17.

These results are consistent with previous reports show-
ing that global changes in spike glycosylation have minimal
influence on its antibody binding profile. For instance, the
binding profile of spike to sera from patients previously
infected with COVID-19 was similar in spike with near-native
glycosylation or which had been engineered to contain only
oligomannose glycans (Chawla et al. 2022b). Furthermore,
glycosidase digestion of spike glycans to leave only the core
GlcNAc elicited effective immune responses in in vitro and
in vivo and protected mice from challenge with the Gamma

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwad097#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwad097#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwad097#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwad097#supplementary-data
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Fig. 6. The binding affinities of SARS-CoV-2 spike proteins of Wu-1, gamma and NTD mutants are not dependent on sialic acid content. Variant spike
proteins were treated with neuraminidase for 1 h or left untreated. The proteins were then coated on ELISA plates and binding affinities determined for
COVA2-17 or CB6 mAb.

variant (Huang et al. 2022). Glycosylation of spike also likely
affects its interactions with innate immune regulators and
receptors. For example, spike lacking sialylation has decreased
binding avidity for ACE2 (Huang et al. 2022), while RBDs
with complex glycans bind the receptor with greater affinity
than RBDs with high mannose glycans (Bouwman et al. 2021).
Lectins, including the sialic acid-binding immunoglobulin-like
lectin 1 (SIGLEC1) have also been demonstrated to function
as attachment factors for SARS-CoV-2 (Lempp et al. 2021).
The global changes we observe in Gamma spike glycosylation
may therefore have diverse unexpected biophysical or biolog-
ical consequences.

ELISA of convalescence sera (3mths after
exposure) against NTD domains

The mutations in Gamma spike reduced binding to mAbs
with binding sites across the NTD and RBD (Figs 2 and 3).
To extend these observations, we characterized the total IgG
antibody titers from infected individuals (3 months after
infection in 2020, most probably with the Wu-1 strain) against
Wu-1, Gamma, and the seven variant spikes. COVID-19
convalescence sera had high affinity to Wu-1, and approxi-
mately two to five times lower affinity to L18F, T20N and
L18F/T20N/R190S, but not to Gamma (Fig. 7). It was unex-
pected that we observed a reduction in IgG binding titer
to spike variants with few targeted site-directed mutations
but not in Gamma spike, which contains those same muta-
tions as well as additional sequence changes, including P26S
and D138Y. It is possible that the single, double, or triple
point mutant variants induce subtle global changes to spike
structure or dynamics that perturb domain folding and IgG

binding in isolation, but that these changes are rescued by the
additional mutations in Gamma Spike. It is also possible that
the introduction of the N188 glycan and associated allosteric
effects that mimic heme-metabolite binding (Rosa et al. 2021;
Newby et al. 2022) may allow the recognition of Gamma
NTD by Wuhan raised mAbs, but that in the absence of heme
metabolites or a glycan at the NTD pocket, the effects of
single point mutations near to the NTD supersite are more
pronounced.

Conclusion

The emergence of new SARS-CoV-2 variants and evolution of
existing variants will result in ongoing diversification of spike
protein sequences in circulating virus. Many of these sequence
changes may impact a key feature of spike—its glycan shield.
The associated impacts of changes in glycosylation on spike
function and antibody-mediated immunity are yet to be fully
understood. Our results here emphasize that biochemical val-
idation is required to confirm how protein sequence changes
that introduce or alter N-glycosylation sequons actually affect
glycosylation occupancy and associated antibody binding and
neutralization. We found that the structures of N-glycans
across spike were altered in Gamma compared to Wu-1, high-
lighting that sequence changes in proteins can globally alter
their glycosylation profile. We found no evidence that glycan
structure affects antibody binding to spike, but it is likely
to impact other spike functions including receptor binding,
protein stability, and diverse protein–protein interactions. Our
results highlight the importance of continued monitoring of
the glycosylation profiles of spike from emerging variants and
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Fig. 7. NTD-specific IgG titer of 30 COVID-19 patients (COVID-19 pos) and close contact (COVID-19 neg). Blood samples were obtained from 30
COVID-19 patients and close contact at 3 months after infection IgG titers against the recombinant NTD domains (∗∗P-value < 0.01, ∗∗∗P-value < 0.001).

consideration of the structural, functional, and immunological
functions of glycosylation in infection, and in vaccine design
and production.

Materials and methods

Analysis of P.1 SARS-CoV-2 spike T20N and R190S
variation over time

The metadata of SARS-CoV-2 sequences from the P.1 lineage
a with complete collection dates (n = 75,879) were down-
loaded from the GISAID EpiCoV™ portal. Accession IDs
with combinations of individual T20N and R190S mutations
and combined T20N/R190S mutations were programmati-
cally identified using base Unix grep and sort commands.
Cumulative proportions of sequences were calculated using
Excel and visualized using GraphPad Prism (v9.0.0).

Recombinant protein production

For spike protein, soluble, trimeric spikes (residue 1–1,204
amino acid) of SARS-CoV 2 /human/China/Wuhan-Hu-
1/2019 (GenBank: MN908947), Gamma variant (P.1) (L18F,
T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G,
D655Y, T1027I and V1176F) were generated using an addi-
tional trimerization domain (Chappell et al. 2021; Watterson
et al. 2021). Mutations at residue 18, (L18F), 20, (T20N)
or 190 (R190S) were introduced as single/double/triple
mutations by mutagenesis. Spike mutations were added
through PCR into the codon-optimized Wuhan reference stain
and were cloned into pNBF plasmid via standard infusion
cloning procedures. Spike proteins contain substitutions at
the furin cleavage site (residues 682–685) (Watterson et al.
2021). For monoclonal antibodies, heavy and light chains of
S309 (Pinto et al. 2020), CB6 (Shi et al. 2020), B38 (Yuan
et al. 2020), CR3022 (Yuan et al. 2020), 2M-10B11 (Chi
et al. 2020), COVA1-22, COVA2-17 (Brouwer et al. 2020)
and C05 (Ekiert et al. 2012) were cloned into a human IgG1
expression vector as described previously (Modhiran et al.
2021). For N-terminal domain, sequence encoding residue

1–305 amino acid of SARS-CoV 2 was cloned in-frame with
maltose-binding protein for purification purpose. In brief,
proteins were produced in ExpiCHO cells transfected with
Expifectamine™ reagent (Thermo Fisher Scientific) as per
manufacturer’s protocol (Watterson et al. 2021). Clarified
supernatants were then filtered using 0.22 μm and were
affinity purified, concentrated and buffer exchanged into PBS
pH 7.4.

Enzyme-linked immunosorbent assay (ELISA)

To test antibodies, SARS-CoV-2 spike variant proteins in PBS
pH 7.4 were immobilized on Maxisorb ELISA (Nunc) plates
at a concentration of 2 μg/mL overnight. Serial 5-fold dilu-
tions of Fc-fusion nanobodies or antibodies in blocking buffer
(Seracare) were incubated with the immobilized antigen,
followed by incubation with horseradish peroxidase (HRP)-
coupled anti-human IgG (MilleniumScience) before adding
the chromogenic substrate 3,3′,5,5′-Tetramethylbenzidine
(TMB) (ThermoFisher). Reactions were stopped with 2 M
H2SO4 and absorption measured at 450 nm.

For sialic acid removal, 15–20 μg of each sample was
treated with Neuraminidase A (α2-3,6,8,9 specific, New Eng-
land Bioloabs, catalogue number P0722S) using 4 U/μg of
protein in 100 μL of PBS for 1 h at 37 ◦C. Confirmation
of sialic acid removal was confirmed by mass spectrometry
using 2.5–5 μg of protein, which was proteolytically digested
as described in Proteomic and glycoproteomic sample prepa-
ration.

Proteomic and glycoproteomic sample preparation

Spike protein samples (10 μg of protein) were prepared in
triplicate (n = 3, total samples 27). Proteins were denatured,
reduced, alkylated, quenched and methanol/acetone precipi-
tated overnight as previously described (Pegg et al. 2020). Pro-
tein pellets were resuspended in 50 μL of 50 mM NH4HCO3
and digested for 16 h with trypsin (Sigma-Aldrich, Product
code T6567) with an enzyme to protein ratio of 1:20. The
proteolytic enzyme was inactivated by heating for 5 min at
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95 ◦C before incubation with 1 mM phenylmethylsulfonyl
fluoride at room temperature for 10 min. The proteolytic
digests were aliquoted into two equal volumes (containing
5 μg of protein each, total samples 54) and one aliquot was
dried. At the same time, 15,000 U of glycerol free PNGase
F (New England Bioloabs, catalogue number P0705S) was
also dried. From here, all steps were preformed quickly to
prevent exposure to air. The freshly dried PNGase F was
resuspended in 50 mM NH4HCO3 prepared in 18O water
(Sigma-Aldrich, Product code 329878) and 500 U of PNGase
F was added to the dried proteolytic digests. The tubes were
flushed with nitrogen and the samples were incubated at
37 ◦C for 4 h with gentle shaking. The peptides were desalted
and concentrated with a C18 ZipTip (10 μL pipette tip with a
0.6 μL resin bed; Millipore, Part No: ZTC18S960) according
to the manufacture’s recommendations. Samples were dried
and stored at −20 ◦C then reconstituted in 0.1% formic acid
directly before mass spectrometry analysis. Protein samples
(5 μg of protein) from a second batch of spike were prepared
in triplicate (n = 3, total samples 27) on a different day in the
same manner described above except that the PNGase F steps
were omitted.

Mass spectrometry for site occupancy analysis

The samples (+/− PNGase F) were randomized and run on an
Orbitrap Elite mass spectrometer (Thermo Fisher Scientific)
as three full experimental technical replicates (n = 3, total
samples 54) with ∼100 ng of peptides injected for each
chromatographic run using a Dionex UltiMate 3,000 uHPLC
system (Thermo Fisher Scientific, Bremen, Germany). Solvent
A was 1% CH3CN in 0.1% (v/v) aqueous formic acid and sol-
vent B was 80% (v/v) CH3CN containing 0.1% (v/v) formic
acid. Samples were loaded onto a C18 Acclaim™ PepMap™
trap column (100 Å, 5 μm x 0.3 mm x 5 mm, Thermo Fisher
Scientific) and washed for 3 min at 30 μL/min before peptides
were eluted onto a C18 Acclaim™ PepMap™ column (100 Å,
5 μm x 0.75 mm x 150 mm, Thermo Fisher Scientific) at
a flow rate of 0.3 μL/min. Peptides and glycopeptides were
separated with a gradient of 3%–8% solvent B in 5 min
to 50% solvent B over 40 min. Survey scans of peptide
precursors from m/z of 300 to 1,800 were acquired in the
Orbitrap at a resolution of 60 K (full width at half-maximum,
FWHM) at 400 m/z using an automatic gain control target
of 1000,000 and maximum injection time of 200 ms. The
ten most intense precursors with an intensity over 1,000
and charge states above two were selected for fragmentation
by beam-type collision-induced dissociation (CID) using a
normalized collision energy of 35% with a precursor isolation
window of 2 Da. Fragment ions were acquired in the Orbitrap
at a resolution of 30 K using an automatic gain control target
of 100,000 and maximum injection time of 200 ms.

Mass spectrometry for glycoform analyses and
confirmation of sialic acid removal

For glycoform analyses of each batch, samples were ran-
domized and run as technical replicates with ∼300 ng of
peptides injected. Batch 1 (n = 3, total samples 27) and 2
(n = 3, total samples 27) were run on different days. For
confirmation of sialic acid removal, each of the samples
(+\− Neuraminidase A) were analyzed (n = 1, total sam-
ples 18). LC-ESI-MS/MS was performed using a Prominence
nanoLC system (Shimadzu) coupled to a TripleTof 5,600

instrument (SCIEX) using a Nanospray III interface using a
data-dependent acquisition method as described (Zacchi et al.
2021) with minor alterations. Peptides and glycopeptides were
separated with solvent A (1% CH3CN in 0.1% (v/v) aqueous
formic acid) and solvent B (80% (v/v) CH3CN containing
0.1% (v/v) formic acid) with a gradient of 2%–60% solvent
B in 45 min. Full MS scans were obtained with a range of m/z
350–1,800 with accumulation times of 0.5 s. High sensitivity
mode was used where the top 20 most intense precursors
with charge states of 2–5 and intensities greater than 100
were selected for fragmentation with a collision energy (CE)
of 40 V and a 15 V spread. An accumulation time of 0.05 s
was used with a scan range of m/z 40–1,800 and precursors
were excluded for 5 s after two selections.

Data analysis N-glycosylation occupancy at N17,
N20 and N188

The Sequest HT node in Proteome Discoverer (v. 2.0.0.802
Thermo Fisher Scientific) was used to search RAW files from
the PNGase F treated samples. The protein FASTA files con-
tained the relevant SARS-CoV-2 spike-clamp protein sequence
without the signal peptide combined with a custom contam-
inants protein database that included porcine trypsin and
PNGase F and the UniProt proteome for Chinese hamster
(Cricetulus griseus, UP000001075, downloaded 20 March
2018). Cleavage specificity was set to specific, allowing one
missed cleavage. Mass tolerances of 10 ppm and 0.02 Da
were applied to precursor and fragment ions, respectively.
Cys-S-beta-propionamide was set as a static modification
and dynamic modifications were set to deamidation of Asn
(Asn>Asp, +0.984, and +2.984), pyroglutamic acid forma-
tion from N-terminal Gln and mono-oxidized Met. A maxi-
mum of four dynamic modifications were allowed per peptide.
Confident peptide-to-spectrum matches (PSMs) were assigned
using the “Fixed PSM Validator” node and a maximum Delta
Cn of 0.05 was applied. Precursor peak areas were calculated
using the Precursor Ions Area Detector node. The results from
the Sequest HT search were investigated using a modified
version of an in-house Python script (Pelingon et al. 2020).
Each Asn residue in an N-glycosylation consensus site from
identified PSMs (with AUC values greater than 1×10∧6)
was assigned U (unmodified), D (deamidated), 18O-D (deami-
dated). Occupancy was defined as the proportion of the ion
intensity peak area of a peptide with U or D (unmodified)
or 18O-D (occupied) identified in all charge states to the sum
of the intensities of all peptide ions. All PSMs were manually
validated.

Data analysis glycoforms

Searches of the proteolytic digests without PNGase F were
used to investigate site-specific glycosylation. Glycopeptide
identification was performed using Byonic (v2.13.2, Protein
Metrics). Cleavage specificity was fully specific with two
missed cleavages allowed. Mass tolerances of 50 ppm and
75 ppm were applied to precursor and fragment ions,
respectively. For the samples acquired on an Elite Orbitrap
instrument to validate occupancy data, mass tolerances of
10 ppm and 20 ppm were applied to precursor and fragment
ions, respectively. Cys-S-beta-propionamide was set as a
static modification and dynamic modifications were set to
deamidation of Asn (common 2), pyroglutamic acid forma-
tion from N-terminal Gln (common 1) and mono-oxidized
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Met (common 1). The N-linked database (rare 1) contained
243 N-glycans (Supplementary Material 1; N-linked glycan
database), the O-linked database (rare 1) was “6 most
common” (Supplementary Material 1; O-linked glycan
database) with the addition of three NeuGc glycans -
HexNAc(1)Hex(1)NeuAc(1)NeuGc(1), HexNAc(1)Hex(1)
NeuGc(1) and HexNAc(1)Hex(1)NeuGc(2). A maximum of
three common modifications and one rare modification were
allowed per peptide. Before the glycopeptide searches were
conducted, a focused protein database was created in Byonic
using the protein FASTA files described in the Sequest HT
searches, and the parameters described above but without
the dynamic glycan modifications. Glycopeptide PSMs were
manually validated and occupancy was calculated using the
Molecule Interface of Skyline (v20.2.0.343). A unique list
of glycoforms was produced using the Byonic results. The
unique list of glycopeptides contained the precursor name,
precursor (m/z), charge and retention time were inserted into
the Transition List in Skyline. A retention time window of
4 min was applied and quantification was performed at MS1
level with a mass tolerance of 0.05 (m/z). Instrument settings
were specific to an ABSCIEX 5600 instrument. The results
from the Skyline were converted to a readable format for
GlypNirO (Phung et al. 2020). Heatmaps and bar graphs were
produced using PRISM v9.1.0 (GraphPad Software, La Jolla
California USA). PCA and clustered heatmaps were produced
with ClustVis (Metsalu and Vilo 2015) where glycoform
abundances were normalized to the summed abundance
of all detected forms with the same site. Glycans were
categorized as follows: Oligomannose, contains HexNAc(2);
Hybrid, contains HexNAc(3); Complex, contains more than
3 HexNAc; Complex short, contains Hex(3) and more than
3 HexNAc; Fucose, contains at least one Fuc; Sialic acid,
contains at least one NeuAc.

Human convalescent sera

Subjects were identified from samples stored in the David
Serisiser Research Biobank (DSRB) (HREC/14/QPAH/275)
at Mater Misericordiae Ltd. Previously biobanked sera from
a total of 30 subjects who had been infected with SARS-
CoV-2, and 6 non-infected close contacts were used in this
project. Subjects were at least 3 months following a PCR
defined SARS-CoV-2 infection and were not unwell at the time
of sample collection. Samples were predominantly collected
during mid to late 2020 and likely represent infection with
the original “Wuhan” strain. In addition to sample collec-
tion, demographic data and clinical details pertaining to the
original infection were also noted. All data and biological
samples held within the DSRB are de-identified prior to
sharing between collaborating sites. Access to samples for
this project was approved by the DSRB biobank advisory
committee under project number HREC/MML/68320.

Human ethics statement

All human sera collections were approved by the relevant
ethics committees either by Mater Misericordiae Ltd Human
Research Ethics Committee (Reference: HREC/MML/68320)
or the University of Queensland (Reference: 2021/HE000139).
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