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Abstract: Dengue is a distinctive and fatal infectious disease that spreads through female mosquitoes
called Aedes aegypti. It is a notable concern for developing countries due to its low diagnosis rate.
Dengue has the most astounding mortality level as compared to other diseases due to tremendous
platelet depletion. Hence, it can be categorized as a life-threatening fever as compared to the same
class of fevers. Additionally, it has been shown that dengue fever shares many of the same symptoms
as other flu-based fevers. On the other hand, the research community is closely monitoring the
popular research fields related to IoT, fog, and cloud computing for the diagnosis and prediction
of diseases. IoT, fog, and cloud-based technologies are used for constructing a number of health
care systems. Accordingly, in this study, a DengueFog monitoring system was created based on fog
computing for prediction and detection of dengue sickness. Additionally, the proposed DengueFog
system includes a weighted random forest (WRF) classifier to monitor and predict the dengue
infection. The proposed system’s efficacy was evaluated using data on dengue infection. This dataset
was gathered between 2016 and 2018 from several hospitals in the Delhi-NCR region. The accuracy,
F-value, recall, precision, error rate, and specificity metrics were used to assess the simulation results
of the suggested monitoring system. It was demonstrated that the proposed DengueFog monitoring
system with WRF outperforms the traditional classifiers.

Keywords: dengue; fog computing; cloud computing; IoT; random forest

1. Introduction

The illnesses transmitted by mosquitoes are deadly in nature and spread swiftly from
infected to uninfected individuals via bacteria, viruses, and parasites [1]. The bite of a fe-
male mosquito infected with the virus is the primary cause of transmission [2]. In addition,
the infected individual needs to be monitored regularly to diagnose a particular disease and
to determine a suitable legal therapy [3] These lethal infections include filariasis, malaria,
West Nile fever, chikungunya, Zika virus, yellow fever, and dengue fever. The speedy
blowout of this pollution is an outcome of a developing transportation network, environ-
mental and climatic change, and the inability to control mosquito reproduction [4]. The
cautioning symptoms and indicators of these lethal diseases remain almost identical; hence,
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it is quite difficult to distinguish and classify the exact condition. Therefore, for identifying
the specific condition, patients must undertake numerous medical tests [5]. Because of
the growing number of infected individuals and insufficient health care resources, these
tests are not administered to the majority of patients. Consequently, subsequent treatment
and imprecise diagnosis contribute to a high fatality rate, thereby promoting a hike in
mosquito-borne diseases [6]. Thus, it is a big problem for government health care insurance
companies to identify mosquito-borne illnesses at an initial phase and prevent their rapid
transmission. To treat the majority of mosquito-borne diseases, there is no specific therapy
or drug [7]. Thus, an intelligent framework is required to identify and prevent the rapid
spread of mosquito-borne illnesses from the outset. The patients affected by a disease
transmitted by mosquitoes require regular surveillance. Patients are not always able to
visit a hospital or health care facility for routine checkups. Thus, a remote health care
monitoring system may be created to promote ubiquitous health care services utilizing
emerging technical interventions such as Internet of Things (IoT), wearable devices, cloud
computing, wireless sensors, fog computing [8,9]. These technologies can be utilized for
the surveillance of key patient indicators and the provision of compassionate treatment. In
modern sensing technologies, numerous wearable gadgets such as inconspicuous, smart
fabrics, and printable electronic tattoos are employed [10–13]. The purpose of these gadgets
is to collect individual health data in order to anticipate a healthy lifestyle [14,15]. In
addition, wireless sensor mobile computing paradigms are frequently utilized in the health
care arena for data collecting and processing, despite the fact that the storage capacity of
mobile phones is ample for processing health-related data [16,17].

Due to centralized storage and advanced calculation facilities [18,19], cloud computing
is also utilized in medical informatics. Numerous health care applications employ IoT as
the vital acquisition module for creating a smart environment [20,21]. IoT is capable of
managing, storing, and analyzing voluminous amounts of data. Cloud computing, on
the other hand, offers resources based on the pay-per-service model. Multiple IoT-based
applications make use of these services. One of them is the remote health care monitor-
ing system [22–24]. Various computer tools, such as cloud computing, wireless sensors,
and mobile computing, are being used to boost the quality of health care amenities [25].
The advantages of cloud computing include storage size, availability, cost-effectiveness,
scalability, and accessibility. These characteristics help government agencies create remote
health monitoring systems [26]. In addition, unprecedented volumes of health data are kept
in the cloud-based data centers. Consequently, the price of health care amenities is dras-
tically decreased [27]. Moreover, the framework allowed by cloud computing efficiently
monitors patients affected by mosquito-borne diseases and seamlessly uses the medical
records across clinics for efficient administration of health statistics [28,29]. Managing
enormous amounts of data on the cloud, however, is extraordinarily difficult, and it slows
the transmission across the internet, which can have dire effects such as endangering the
lives of patients [30]. In addition, processing overhead, traffic across network, movement,
location consciousness, and correspondence overhead may develop. In context of patients’
personal information in medical informatics [31–33], privacy breaches and threats are an-
other concern. Fog computing might be seen as a solution to the aforementioned issues
and limitations of cloud computing. It can function as an intermediate between the end
user and the cloud server for providing health care services and resources [34].

Between centralized cloud infrastructure and the IoT is a stratum of fog computing for
managing messaging overhead, latency, decision-making, resident storage, and information
preprocessing problems between the end user and the cloud server [35–37]. Integration
of IoT, fog computation, and the cloud enhances scalability and agility for controlling the
mosquito-borne diseases by incorporating topographical areas and assessments based on
real-world data analytics [38]. It provides enhanced support to the Nano Data Centers in
terms of data storage and consumes minimum power compared to cloud computing. It
is the consequence of time consumption, application type, download counts, information
pre-loading, upgrades, and type of network accessed [39].
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In recent years, researchers have paid a great deal of attention to eHealth care appli-
cations in an effort to attain a healthy lifestyle with confidence and excitement, as well
as to improve well-being. The e-health applications must be accurate and must focus on
the patient. Such applications need constant patient health statistics, yet those data are
insufficient for accurately forecasting the illness status. It further needs contextual data for
diagnostic extraction [40]. Therefore, contextual information, patient input, and patient
profile information may be used to generate more precise patient-centric suggestions and
diagnoses [41]. The projected fog-based health monitoring system has the following prime
objectives:

� To develop a fog and IoT- based health monitoring arrangement to allow remote
diagnosis of dengue infection based on a patient’s health symptoms.

� To provide immediate treatment to dengue-infected patients, monitor infected pa-
tients, and routinely issue health-specific alert messages. Continuous monitoring and
timely notifications of blood pressure fluctuations should also be provided, allowing
users and physicians to make health decisions.

� To have an effective framework for sharing medical records in order to give preventive
measures and recommendations based on the present condition of hypertension.

2. Related Work

In order to offer a diagnosis, Shah et al. [42] integrated and analyzed historical patient
data with real-time patient data. The authors also looked into the problems with service
quality for medical applications. Cloud to fog (C2F) and IoT computing have been used to
design the u-health care monitoring system by Nandyala et al. [43]. Through end points,
the proposed system increases communication between hospitals and smart homes. It
has been found that the suggested system meets all the needs of evolving models and
offers quick processing with fewer delays than cloud-based systems. A trustworthy and
adaptable health care monitoring system for disease diagnosis was created by Costanzo
et al. [44]. Wearable technology and embedded technologies are discussed in the suggested
system. The main goal is to use mobile devices to monitor patients who are stationed far
away. For quick patient rescue in an emergency, the suggested monitoring technique is
used for interfacing by means of the first-aid software.

Oluwagbemi et al. [45] used fuzzy logic and expert systems to construct their Ebola
fuzzy informatics system. The suggested approach was made to diagnose and suggest treat-
ment for the Ebola virus disease. A health care system was introduced by Sood et al. [46] to
track and distinguish between the numerous diseases spread by mosquitoes. IoT sensors,
fog, and cloud computing make up the main components of the system. The suggested
system’s goal is to regulate diseases at their earliest stages. The suggested structure calcu-
lates similarity factors to distinguish between diseases. A security-based architecture for
geographically distant health care systems was created by Thota et al. [47]. The suggested
architecture enables asynchronous communication between cloud-based health applica-
tions and data servers. The tracking, identification, and security of authorization and
authentication for all devices are the primary goals of the proposed design. For a fog-based
eHealth architecture, Venckauskas et al. [48] offered a protected self-authenticable transfer
protocol. The communication between the fog nodes and the edge nodes is supplied by
the suggested protocol. Datagram Transport Layer Security (DTLS) and User Datagram
Protocol are replaced with the suggested protocol as a secure transport for Constrained Ap-
plication Protocol (CoAP) (UDP). A health care system [49] was used to manage mosquito
infections at an initial stage. The suggested solution uses wearables and IoT devices to
gather patient data. An account of the numerous Ayurvedic, complementary, and contem-
porary homeopathic treatments for the ZIKV virus was presented by Saxena et al. [50].
Additionally, the author discussed potential treatments for ZIKV infection.

According to Ginier et al. [51], Zika fever might be mistaken for dengue fever,
though Zika infection seldom causes fever. It has been observed that the only
symptoms of a Zika infection are skin rashes and slight edema in the patient. Reverse
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Transcription—Polymerase Chain Reaction (RT-PCR) assay was used by Pabbaraju et al. [52]
to identify the Zika, Dengue, and Chikungunya viruses. In order to identify and distinguish
between these viruses for the purpose of proper therapy, the RT-PCR assay was used for
testing the blood of a patient. A web interface was created by Campion et al. [53] to display
information regarding the frequency of the West Nile virus, the density of mosquitoes,
and the weather. Google Maps was used in the proposed interface. An age tracking tool
was developed by Lambert et al. [54] to accurately predict the age of the mosquito. The
suggested method made use of boosted regression trees, random forests, main components
regression, and neural networks with near-infrared spectroscopy, among other machine
learning approaches. The authors also made the argument that a crucial parameter for
killing adult mosquitoes is the mosquito’s age. This objective age assessment generates a
precise mosquito population.

Kirk et al. [55] created the DEAR (Detect, Evaluate, Assess, and Recommend action)
decision-making system. This system’s primary objectives are to identify environmental
changes, make risk assessments, and provide real-time advice for mitigating mosquito
illness outbreaks. A health care system was put into place by Devarajan et al. [56] dealing
with the Parkinson’s disease. The suggested system examined patient voice samples to
suggest the best course of action. In the suggested architecture, fog computing serves
as a midway layer in the end user and the cloud server. Further, the classification of
Parkinson and non-Parkinson subjects was performed using the fuzzy k-nearest neighbor
(FKN) classifier, case-based reasoning (CBR) classifier. A health monitoring system utilizing
cloud concept, multiple machine learning methods, and IoT structure was described by
Kaur et al. [57]. The recommendations for diagnostics were provided based on the past
data stored in the cloud. The judgments of how to hide the numerous patterns in the
database were also aided by the suggested method. Additionally, the authors used the
accuracy parameter to provide comparative analysis of prediction model’s performance.
Parthasarathy et al. [58] proposed LMM system for joint inflammatory disease made use
of wearable sensor devices and uric acid sensors as a component of IoT infrastructure.
The suggested technique is also utilized to transform health information and identify foot
motion in order to diagnose GOUT arthritis.

A novel model called HealthFog was created by Tuli et al. [59] for the automatic
analysis of cardiac disorders. HealthFog integrates edge computing (EC) hardware with
deep learning (DL). Additionally, the suggested model offered fog services via IoT de-
vices and maintained medical data in accordance with user requests. Using FogBus, the
implementation time, latency, power consumed, accuracy, bandwidth of network, and
jitter of HealthFog were evaluated. The findings demonstrated that HealthFog offers the
highest level of service quality and forecast accuracy. Priyadarshini et al. [60] developed the
DeepFog health care model to forecast overall wellness. Fog computing and deep learning
were combined to create DeepFog. It used fog computing to gather patient data and deep
neural networks to forecast three aspects of well-being, including stress level, hypertension
attacks, and diabetes. The recommender system was established by Jabeen et al. [61] to
diagnose heart illness. The primary purpose of the suggested system is providing con-
sumers nutrition and exercise advice. There are four sections to the suggested scheme. The
patient’s data are gathered in the first section utilizing biosensors, and then they are sent to
the server via an IoT environment.

A cyber–physical localization (CPL) system was proposed by Sood et al. [62] con-
structed on the concepts of cloud computation and neuro-fuzzy implication. The funda-
mental goal of the projected system is to assess the jeopardy of coronary heart disease,
for tracking patients’ ECG readings, to inform users and specialists when readings are
aberrant, and to suggest medications and preventive measures in accordance with risk
category. To alleviate the lack of domain expertise between computer scientists and physi-
cians, Gu et al. [63] established a Diagnostic Knowledge Model (DKM) for classifying
the clinical conditions. The suggested system’s main goals are to discharge the health
staff of the hefty weight of hospital duties and to offer appropriate decision-support. The
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proposed system incorporated medical devices and made use of knowledge systems using
the Component-Based Medical Cyber–Physical System framework (CBMCPS).

A health care system was introduced by Sood et al. [64] to identify early-stage hy-
pertension individuals based on user health data. The suggested method continuously
evaluates and keeps track of the patients’ blood pleasure. Four phases make up the planned
system. IoT sensors placed at the fog layer are used at the initial stage to gather user data.
Artificial neural networks are used in the second phase to forecast the likelihood of an
attack of hypertension. A health care system was developed by Lakshmanaprabu et al. [65]
employing IoT structure, MapReduce, the Enhanced Dragonfly Algorithm, and RF classifier.
There are two phases to the suggested system. Patients’ data are gathered in the first phase
utilizing IoT devices and the MapReduce method. During the second stage, the dataset’s
properties are chosen using an upgraded version of the Dragonfly algorithm. The final
phase uses an RF classifier to categorize the various diseases according to chosen criteria.

A hybrid framework was created by Anand et al. [66] to categorize the hepatic syn-
drome. The medical information was first categorized according to the presence of diseases.
The updated Particle Swarm Optimization technique was created in second stage to sep-
arate the attributes from the health dataset. The updated artificial neural network was
used to categorize diseases in third step. Sood et al. [67] suggested a diagnostic system
with NB network and fog computing for infection detecting. The planned system also
incorporates Social Network Analysis (SAS) in the cloud subsystem to offer a GPS-based
worldwide risk assessment of dengue infection on Google Maps and for preventing the
spread of the infection. Sood et al. [68] developed an IoT-based fog-cloud diagnosed system
for controlling and detecting dengue infection in 2021. The SVM methods is utilized in the
fog layer for evaluation. In addition, the proposed system uses Google Maps and Tempo-
ral Network Analysis (TNA) to classify places as infected, uninfected, or risky. Suggala
et al. [69] introduced a novel dengue prediction method using fog computing. The dengue
infected was detected by checking the similarity factors between the disease and the users.

Comparative analysis of the aforementioned literature is provided in Table 1.

Table 1. A summary of the literature referred in this study.

Author Work Description Data Traces

Shah et al. [42]
Addressed the problems with
service quality for medical
applications.

Historical patient data with
real-time patient data.

Nandyala et al. [43]
Enhanced communication
between hospitals and
smart homes.

Designed u-health care
monitoring system using
cloud to fog (C2F) and IoT
computing.

Costanzo et al. [44]

The main goal was to use
mobile devices to monitor
patients who are stationed far
away. For quick patient rescue
in an emergency, the suggested
monitoring technique was used
for interfacing by means of the
first-aid software.

Wearable technology and
embedded technologies-based
system was devised. The
overall goal of the suggested
monitoring system is to
suggest the appropriate
course of action in cases of
serious medical disorders.

Oluwagbemi et al. [45]

The suggested approach was
made to diagnose and suggest
treatment for the Ebola virus
disease. In a survey conducted,
61% of respondents agreed that
the suggested approach might
suggest a course of treatment
for the Ebola virus disease.

Constructed Ebola fuzzy
informatics system
using fuzzy logic and
expert systems.
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Table 1. Cont.

Author Work Description Data Traces

Sood et al. [46]

The proposed system was
devised to track and distinguish
between the numerous diseases
spread by mosquitoes. The
suggested system’s goal is to
regulate diseases at their earliest
stages. The suggested structure
calculates similarity factors to
distinguish between diseases.

IoT sensors, fog, and cloud
computing make up the main
components of the proposed
health care system. The
infected users are classified
using the J48 decision tree
classifier.

Thota et al. [47]

A security-based architecture
for geographically distant
health care systems was created.
The tracking, identification, and
security of authorization and
authentication for all devices are
the primary goals of the
proposed design.

The suggested architecture
enables asynchronous
communication between
cloud-based health
applications and data servers.

Venckauskas et al. [48]

Datagram Transport Layer
Security (DTLS) and User
Datagram Protocol are replaced
with the suggested protocol as a
secure transport for Constrained
Application Protocol (CoAP)
(UDP). The experimental
findings demonstrated that the
suggested protocol performs
better than DTLS and UDP in
lossy networks and with CoAP
block transfer mode.

For a fog-based eHealth
architecture, a protected
self-authenticable transfer
protocol was proposed.

Saxena et al. [49]
A health care system was
designed to manage mosquito
infections at an initial stage.

The suggested solution uses
wearables and IoT devices, fog
computing, fuzzy k-nearest
neighbor technique, and social
network analysis concepts.

Ginier et al. [50]

Zika fever might be mistaken
for dengue fever, though Zika
infection seldom causes fever. It
It has been observed that the
only symptoms of a Zika
infection are skin rashes and
slight edema in the patient.

A discussion on the potential
treatments for ZIKV infection
was carried out.

Pabbaraju et al. [52]

To identify and distinguish
between these viruses for the
purpose of proper therapy, the
RT-PCR assay was used for
testing the blood of a patient.
According to the findings, the
RT-PCR assay is completely
precise and did not exaggerate
any of the several viruses
examined.

Reverse
Transcription—Polymerase
Chain Reaction (RT-PCR)
assay was used to identify the
Zika, dengue, and
chikungunya viruses.
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Table 1. Cont.

Author Work Description Data Traces

Campion et al. [53]

Using data on trap counts from
2005 to 2015 and historical
weather data, the authors
suggested a prediction
technique using the partial least
squares regression technique to
forecast the mosquito
trap counts.

A web interface based on
Google Maps was created to
display information regarding
the frequency of the West Nile
virus, the density of
mosquitoes, and the weather.

Lambert et al. [54]

An age tracking tool was
developed to accurately predict
the age of the mosquito. The
author also argued that a crucial
parameter for killing adult
mosquitoes is the mosquito’s
age. This objective age
assessment generates a precise
mosquito population.

The suggested method made
use of boosted regression
trees, random forests, main
components regression, and
neural networks with
near-infrared spectroscopy,
among other machine
learning approaches.

Kirk et al. [55]

The system’s primary objectives
are to identify environmental
changes, make risk
as-assessments, and provide
real-time advice for mitigating
mosquito illness outbreaks.

The DEAR (Detect, Evaluate,
Assess and Recommend
action) decision-making
system was created.

Devarajan et al. [56]

A health care system was put
into place dealing with the
Parkinson’s disease. The
suggested system examined
patient voice samples to suggest
best course of action.

In the suggested architecture,
fog computing served as a
midway layer in the end user
and the cloud server. Further,
the classification of Parkinson
and non-Parkinson subjects
was performed using the
fuzzy k-nearest neighbor
(FKN) classifier, case-based
reasoning (CBR) classifier.

Kaur et al. [57]

The recommendations for
diagnostics are provided based
on the past data stored in the
cloud. The judgments of how to
hide the numerous patterns in
the database were also aided by
the suggested method.

A health monitoring system
utilizing cloud concept,
multiple machine learning
methods, and IoT structure
was described.

Parthasarathy et al. [58]

The proposed LMM system for
joint inflammatory disease
made use of wearable sensor
devices and uric acid sensors as
a component of IoT
infrastructure. The suggested
technique is also utilized to
transform health information
and identify foot motion in
order to diagnose GOUT
arthritis.

A leg movement monitoring
(LMM) system was designed
to identify the onset of disease
or joint pain.
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Table 1. Cont.

Author Work Description Data Traces

Tuli et al. [59]

The suggested model offered
fog services via IoT devices and
maintained medical data in
accordance with user requests.
Using FogBus, the
implementation time, latency,
power consumed, accuracy,
bandwidth of network, and
jitter of HealthFog are evaluated.
The findings demonstrated that
HealthFog offers the highest
level of service quality and
forecast accuracy.

A novel model called
HealthFog was created for the
automatic analysis of cardiac
disorders. The HealthFog
integrated edge computing
(EC) hardware with deep
learning (DL).

Priyadarshini et al. [60]

A DeepFog health care model to
forecast overall wellness was
developed. It used fog
computing to gather patient
data and deep neural networks
to forecast three aspects of
well-being, including stress
level, hypertension attacks,
and diabetes.

Fog computing and deep
learning was used for
constructing the model.

Jabeen et al. [61]

Recommender system was
established to diagnose heart
illness. The primary purpose of
the suggested system is
providing consumers nutrition
and exercise advice.

Biosensors, IoT, prediction
classifiers RF, NB, MLP, and
SVM used for designing
the system.

Sood et al. [62]

A cyber–physical localization
(CPL) system was proposed
with the fundamental goal of
assessing the jeopardy of
coronary heart disease, for
tracking patients’ ECG readings,
to inform users and specialists
when readings are aberrant, and
to suggest medications and
preventative measures in
accordance with risk category.

The proposed system is based
on the concepts of cloud
computation and neuro-fuzzy
implication.

Gu et al. [63]

A diagnostic knowledge model
(DKM) established for
classifying the clinical
conditions. The suggested
system’s main goals are to
discharge the health staff of the
hefty weight of hospital duties
and to offer appropriate
decision-support.

The proposed system
incorporated medical devices
and made use of knowledge
systems using the
Component-Based Medical
Cyber–Physical System
framework (CBMCPS).

Sood et al. [64]

A health care system was
introduced to identify
early-stage hypertension
individuals based on user
health data. The suggested
method continuously evaluates
and keeps track of the patients’
blood pleasure.

The system uses IoT sensors,
artificial neural networks,
mobile devices, and
cloud storage.
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Table 1. Cont.

Author Work Description Data Traces

Lakshmanaprabu et al. [65]

A health care system was
developed to categorize the
various diseases according to
chosen criteria. Using a
precision parameter, the
suggested system was assessed
using several real-time
hospital datasets.

The system employed an IoT
structure, MapReduce, the
enhanced dragonfly
algorithm, and RF classifier.

Anand et al. [66]

A hybrid framework was
suggested to categorize the
hepatic syndrome. The
suggested system’s performance
was assessed, and the findings
proved that it outperforms as
compared to existing systems
classification accuracy.

The techniques used are
updated particle swarm
optimization, updated
artificial neural network, the
SPARK tool.

Sood et al. [67]

A diagnostic system suggested
that incorporates social network
analysis (SAS) in cloud
subsystem to offer a GPS-based
worldwide risk assessment of
dengue infection on Google
Maps for preventing the spread
of the infection. The
effectiveness of the suggested
system’s diagnosis, warning
production, and risk assessment
based on GPS capability was
acknowledged using various
statistical measurements and
experimental methodologies.

A system with NB network
and fog computing suggested
and used Google Maps,
GPS, SAS.

Sood et al. [68]

An IoT-based fog-cloud
diagnosed system for
controlling and detecting
dengue infection in 2021. To
analyze the influence of the
proposed system, the
investigational findings were
assessed using a numeral of
analytical constraints.

The proposed system uses
SVM, Google Maps, and
temporal network
analysis (TNA).

Suggala et al. [69]

A novel dengue prediction
method using fog computing
introduced. The dengue
infected was detected by
checking the similarity factors
between the disease and the
users. Finally, at the cloud layer,
an innovative Temporal Social
Network Analysis (TSNA) was
designed to evaluate the risk of
disease outbreak, analyze sick
users, and direct an awareness
text to initiate preventive steps.

The proposed method uses
cloud concept and temporal
social network
analysis (TSNA).
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3. Proposed Monitoring System Based on Fog Computing

This section exemplifies the discussed DengueFog system. The main aim of Dengue-
Fog system is early prediction or identification, prevention, and monitoring of dengue
infection. Figure 1 illustrates the architecture of the proposed fog-based smart health
monitoring system. The DengueFog system can be utilized to predict the dengue infection
as well as inform the concerned stakeholders by generating the alarm in the condition of a
positive result. The DengueFog system has two spaces, namely cyberspace and the physical
space. The breeding places, mosquito count, patient’s personal information, symptoms,
and contact information are all captured in the physical space. In cyberspace, fog and
cloud computing are combined to process the data and a powerful cyber–physical system is
designed for health care application areas. Cloud servers are used to store vast amounts of
data and process large amounts of data. However, an intermediary fog computing system
was deployed to deliver lower latency and location consciousness. It also allows real-time
applications to use emergency notification services. A smart health monitoring system
consists of four layers. The layers are data collection layer (DCL), fog computing gateway
layer (FCGL), cloud processing layer (CPL), and end user layer (EUL). The DCL collects
the real-time information from diverse sensors, including the physiological data of users,
mosquito density, geographical location, and contextual information. This information or
data is represented as environment data, health data, behavioral data, location data, motion
data, and private data.
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Figure 1. Architecture of proposed fog computing-based monitoring system.

To evaluate and diagnose the data, the collected data are forwarded to the fog com-
puting gateway layer. An ensemble classifier is employed in this layer to forecast dengue
fever. Once dengue is anticipated, patients are notified by alert message so that preventive
measures can be performed. The cloud layer’s job is to store processed data and distribute
it to medical professionals, health care facilities, and patients’ families. The information is
also utilized to estimate the dengue fever’s effects in a certain area. Users who will visit
these locations can also receive some cautionary warnings. Figures 2 and 3 illustrate the
proposed DengueFog monitoring system’s flowchart. The flowchart demonstrates how
each layer of the proposed monitoring system operates.
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3.1. Patient Information Layer

The patient information layer is in charge of gathering user information based on
environmental factors and sickness symptoms. The data are categorized as behavioral,
personal, activity, health data. The information is gathered using a variety of wearable gad-
gets and sensors positioned on the subject’s body and in their environment. Additionally,
using WSN technologies, the captured data are communicated in a real-time context. The
following IoT sensor types are utilized to gather the required dataset of information for
dengue surveillance.
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• Health Dataset: Information about dengue disease symptoms can be found in the
health dataset. Vomit, a fever, rashes, body aches, headaches, abdominal pain, chills,
etc., are a few of the symptoms. These kinds of data are gathered for each person
using a health sensor. These health sensors are Wearable Sensors like fitness trackers,
smartwatches, or other health monitoring gadgets. These devices may continuously
collect data on various health parameters, including body temperature, heart rate,
and activity levels. For specific symptoms such as fever, body aches, and rashes,
non-invasive sensors like infrared thermometers or cameras may be used to measure
body temperature and detect skin conditions. Some symptoms, such as vomiting,
abdominal pain, and headaches, may require self-reporting by individuals, where they
input their symptoms into a health app or system.

• Environmental Dataset: Information about people’s physical surroundings is included
in this dataset. In case of dengue disease, the important parameter are mosquitoes,
their breeding, and locations. The other factor that can be considered for dengue
disease is water sources in terms of pond, well, cooler, etc., where mosquitoes can
breed. Sometimes, humidity level, temperature, rainfall parameters are also taken into
consideration.

• Location Dataset: It contains the information of suspected and infected people of
dengue disease. Further, the location of mosquito breeding and population is also one
of the important parameters. In addition, RFID tag is used for close proximity.

• Personal Dataset: Each person’s personal information is included in the data. This
dataset’s attributes include sex, address, name, qualification, occupation, etc. There-
fore, each individual’s confidential information is stored in a personal dataset. Table 2
summarizes the different datasets including possible attributes and attribute types.
The procedural steps of patient information layer are summarized to Algorithm 1.

Table 2. A summary of the information of different datasets collected in this study.

Dataset Symptoms/Attributes Attribute Type Attribute Sub Type

Health-Related
Data

Fever, Vomit, Severe Body
ache, Severe Headache,
Nausea, Abdomen Pain,

Joint Pain, Pain Behind Eye,
Muscle Pain, Skin Rashes,

Soft Bleeding, Red Eye,
Appetite Loss, Yellow Skin

Qualitative
attributes Binary Nominal

Environmental
related data

Humidity, Temperature,
Rainfall Parameters,

Carbon Dioxide Level

Quantitative and
Qualitative
attributes

Numeric and
Nominal

Location related
data

Breeding Side Count,
Mosquito Density,

Mosquito Breeding Sites,
Individual Count on Site

Quantitative and
Qualitative
attributes

Numeric and
Nominal

Personal data

Unique ID Number, Name,
Sex, Qualification,

Occupation, Phone
Number, Workplace

Address, Home Address

Quantitative and
Qualitative
attributes

Numeric, Binary
Nominal, Nominal
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Algorithm 1: Procedural Steps of Patient Layer

Step 1:

Collect the personal and behavioral data
of patients.

- Generate the unique id of each patient.
- Enter the basic information of patient like

age, gender, weight, qualification, etc.
- Enter the behavioral information of

patients such as occupation, working, etc.

Step 2:

Collect the patient physiological and
health data.

- Put wearable IoT devices on student
body.

- Collect the data related to temperature,
BMI, BP, CH, etc., of the patient.

- Collect health-related data of the patient
like vomiting, joint pain, itching, muscle
pain, skin redness, feeling of nausea,
tense muscle etc.

- Synchronize the structured and
unstructured data of the patient.

Step 3:

Collect the environmental and location data.

- Determine the environmental data such
as humidity, rainfall, temperature, etc.

- Determine the location data such as
breeding side count, mosquito density,
mosquito breeding sites etc.

- Synchronize the heterogeneous data
related to environmental and location
attributes.

Step 4:

Data Transmission

- Transfer the collected data to fog layer
using wireless technologies.

- Security issues should be ensured during
data transfer process.

3.2. Fog Computing Gateway Layer

The fog computing gateway layer lies among the cloud and the patient information
layer. This layer deals with processing and analyzing real-time data obtained from various
IoT devices and sensors, as well as identifying patients who may have dengue infection.
An alert message will be generated and sent to the appropriate patient if the patient has
dengue infection (infectious, positive, and recover). Additionally, this layer is linked to the
cloud layer on which the patient data are stored. Alert generation and dengue classification
are the two elements that make up this layer. The procedural steps for fog computing layer
are summarized in Algorithm 2.

3.2.1. Alert Generation and Monitoring

The history and progress reports of the infected patients are periodically checked. The
people who have contracted dengue are thought to be monitored at frequent intervals. In
general, infectious patients are observed every three hours, and positive patients every ten.
Patients recovering from dengue may take a variety of times and may vary depending on
the advice of their doctor. As a result, the Probability of Dengue Index (PDI), which may be
calculated using Equation (5), is used to monitor the patient.
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Algorithm 2: Steps of fog computing Layer

Step 1: Retrieve the data from repository on fog layer.

Step 2:
Perform the preprocessing technique on
collected data.

Step 3:
Applied random forest classifier for dengue
prediction (Algorithm 3).

Step 4:
Adopted Gini Index based feature selection
algorithm.

Step 5:
Monitor the dengue affected patients and
generate an alert message (Algorithm 4).

Step 6:
Store the data on fog computing layer for
future perspective.

Table 3. Dengue class classifications and description.

Dengue Class Description

Negative Patient exhibits no indications of illness

Infectious Patient has red eyes, high fever, abdominal pain, bleeding
disorder, low level of immunity and muscle pain

Positive Patient has fatigue along with headache and skin rashes
Recover Patient has no more infection

At the fog computing layer, the data are analyzed using techniques like missing
value imputation. The resulting dataset is used to forecast the dengue infection and is
diverse in character. The heterogeneous dengue dataset is assembled using fog node and is
transformed into a special format for dengue infection prediction. Weighted random forest
classifier is utilized in the fog computing layer to forecast dengue infection in patients. The
proposed weighted RF classifier’s operational procedures are provided in Algorithm 3.

3.2.2. Dengue Prediction

The data on dengue are divided into four classes by this module. According to Table 3,
these categories are negative, infectious, positive, and recover. The patient information
layer is in charge of gathering real-time, unprocessed health, personal, activity, behavioral,
environmental, dengue, and IoT sensor data.

PDI = P
(

G
(H1 ∪ H2 . . . . . . ∪ Hn)

)
(5)

Equation (1) shows the probability, the current dengue class (G), and the severity of
the occurrence (H1, H2. . ., Hn). By following the discovery of dengue infection, a message
of alert is transmitted via the fog computing layer. This alert message is delivered to the
end user’s registered mobile number and consists of various PDI ranges. Patients, patients’
families, hospitals, and doctors are examples of end users. A dengue negative alert message
is delivered to end users if the PDI value is normal. Users receive a warning message
with information on dengue infection, if the PDI number is abnormal. These warning
messages can aid medical professionals in making an early diagnosis of dengue infection.
The patient can then receive the appropriate care and safety measures in response to the
effects of the dengue virus. Additionally, the proposed system can reassess the dengue
illness and produce alert messages. The procedure for patient monitoring is summarized
in Algorithm 4.



Diagnostics 2024, 14, 624 15 of 24

Algorithm 3: Weighted random forest algorithm for dengue prediction

Input: Dengue Training Partition (P), Count of Trees (N), Features Subset—Random (FS)
Output: Random Forest (RF)
Tree with Dengue Prediction
For each i = 1 to N, do:
Apply bootstrap algorithm on training partition (P) such as Pi = bootstrap (P).
Apply the Decision Tree (DT), DTi = Random Decision Tree (P, FS).
Build the RF as RF = RF ∪ DTi.
End for
For each i = 1 to N, do:
Calculate the weight (wt

i ) of ith sample using Equation (1).

wt
i =

1
OB ∑

jϵOB

∣∣∣Xpredi,j − Xactuali,j

∣∣∣ (1)

End for
For each i = 1 to N, do:

∅i = f
(

AUC
(
wt)

IBi
, AUC

(
wt)

oBi

)
(2)

End for
For each i = 1 to, do:
Calculate the weight (wi) using Equation (3).

wi =
(N ∑ pi + 1)k

∑NT
k=1(N − pi + 1) k ′ (3)

For each i = 1 to N, do:
Calculate the Final Prediction using Equation (4).

X_predi =
1

NT ∑NT
j=1 X_predi,j × wj (4)

End for
Return RF.

3.3. Cloud Layer

The processed data are stored for communication purposes in the DengueFog moni-
toring system using a cloud layer. Data about patients are kept on the ubiquitous cloud
layer, which is accessible from anywhere at any time. The cloud database is currently not
shared. It includes details about the user’s health state, personal information, social contact
data, and medical history. This mode protects the privacy of the data from unauthorized
access and contains highly sensitive information.

Additionally, two different sorts of authorized users can access the stored data via
the cloud layer. Hospitals, doctors, or patients’ families are among these users. Affected
subjects and their families can view the patient’s health report and leave comments regard-
ing their experiences, health, and treatment. Similar patients utilize this input to guide
their care in a proper and exact manner. However, in order to treat patients, hospitals and
medical professionals access the patient’s data. The cloud layer’s operational procedures
are displayed in Algorithm 5.
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Algorithm 4: Process of patient monitoring

Step 1: If (Patient_Status == Dengue_Positive)

Step 2:
An alert message is sent patient regarding the
dengue and suggest the list of paneled
hospitals.

Step 3:
Take the appointment in the hospital and book
the doctor.

Step 4:
Send the message to doctor regarding the
patient health status.

Step 5: Else if (Patient_Status == Infectious)

Step 6:
Inform the doctor and patient regarding the
dengue infection.

Step 7:
An advisory is issued regarding the dengue for
the patient.

Step 8: Else if (Patient_Status == Recover)
Step 9: Book the patient for dengue test.

Step 10:
Check the test results, if satisfactory, give
advisory for further precaution.

Step 11: Else (Patient_Status == Dengue_Negative)
Step 12: No symptoms of dengue is detected in patient
Step 13: End if
Step 14: Add the entry of patient into dengue dataset.

Algorithm 5: Process of the cloud layer

Step 1:
If (Patient_Id == Exist) for storing the data into
cloud repository

Step 2: Update the patient information and store it.

Step 3:

Else
Generate the patient id.
Create a new data record in the dengue dataset.
Store the information of new patient in
repository.
End if

Step 4:
To access the data from cloud repository, do
following

Step 5:

If (User == Doctor)
-check the doctor id in database.
if (doctor_id == mapped)
Access the data on cloud layer
Else
Unauthorized user
End if

Step 6:

Else if (User == Patient)
Check the patient id in database.
if (Patient_id == mapped)
Access the data on cloud layer
Else
Unauthorized user
End if

Step 7:
Else
User is unauthorized, access is not granted.
End if

4. Experimental Results

The experimental findings of the suggested DengueFog system are presented in this
section. The system’s effectiveness was evaluated using the real-time dengue data set. The
dataset contained the data of dengue patients of year 2018–2020 from the Delhi-NCR region.
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According to Table 3, there are four classes. Additionally, a WRF classifier was used in the
proposed system to forecast patient dengue infection. A Windows 10 computer with an
Intel Core i5 (7th generation) processor, 8 GB of RAM, and an NVIDIA GEFORCE GPU
and CPU operating at 2.70 GHz was used to build the classifier. The experimental setting
was further separated into three phases, including Performance Measurement, Evaluation
of the Evolution of Proposed System, and Evaluation of Alert Generation.

4.1. Performance Management

The various performance parameters used to assess the performance of the proposed
system are accuracy, F-value, specificity, precision, sensitivity, and error rate [70–73].

• Accuracy of a proposed system is defined as the ratio of accurately predicted samples
to the total number of samples. For example, if there are 100 users in the dataset, 9 of
them are suffering from dengue infection, but the system predicts zero dengue patient,
the systems accuracy is 91/100 = 0.91%. The prediction’s accuracy is calculated by
following equation:

Accuracy =
∑ TP + ∑ TN

∑ TP + ∑ TN + ∑ FP + ∑ FN
(6)

where, TP, FP, FN, and TN represent the True Positive, False Positive, False Negative, and
True Negative, respectively.

• Precision is determined as the percentage of accurately predicted positive sample to
total number of positive samples, along with FP samples. For example, if 9 dengue
patients are predicted by system out of 100, but there are only 3 genuinely infected pa-
tients, the predicted precision is 3/9 = 0.333%. The prediction’s precision is computed
by following equation:

Precision =
∑ TP

∑ TP + ∑ FP
(7)

• Recall/Sensitivity is the ratio of correct positive samples to total positive samples; for
example, if 7 dengue patients are correctly predicted by the system and 4 patients are
mistakenly predicted, but in reality, there are 8 patients, the recall is 7/8 = 87.5%.

Recall = ∑ TP
∑ TP + ∑ FN

(8)

• F-Value is defined as harmonic mean of recall and precision. It is measured as follows:

F-Value = 2x
recall ∗ precision
recall + precision

(9)

• Specificity is the probability of a positive samples, how many patients who do not have
the dengue infection and obtained negative results? It is defined using equation.

Speci f icity =
∑ TN

∑ TN + ∑ FP
(10)

• Error Rate is the percentage of instances a decision model has categorized a sample
incorrectly.

4.2. Evaluation of Proposed Monitoring System Based on Fog Computing

The experimental outcome of the suggested system with WRF is compared with
the existing models: Decision Tree (DT), Naive Bayes (NB), Boosting, Random Forest
(RF), Artificial Neural Network (ANN), and Support Vector Machine (SVM) [49,74–77].
The proposed approach and the aforementioned classifiers’ performance comparison are
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shown in Table 4. As can be seen, the proposed approach outperforms the traditional
classifiers. Additionally, it has been shown that WRF-based health monitoring systems
achieve higher precision, specificity, recall, sensitivity, accuracy, F-value rate, and lower
error rates. Additionally, the DT classifier is the worst performing model. The F-value,
recall, precision, accuracy, and specificity of proposed system are increased, respectively, by
35.49 %, 33.84%, 37.06%, 14.47, 12.25% from NB classifier, 39.38%, 38.85%, 40.06%, 19.64%,
13.74% from SVM classifier, 44.93%, 46.16%, 44.06%, 19.81%, 12.44% from DT classifier,
10.38%, 11.04%,10.06%, 5.34%, 4.24% from ANN classifier, 35.65%, 31.18%, 39.18%, 13.55%,
5.79% from Boosting classifier, and 10.3%, 8.46%, 12.17%, 5.37%, 1.35% from RF classifier.
The error rate is decreased by 17.47%, 21.64%, 24.51%, 7.14%, 16.55% and 8.37% from NB,
SVM, ANN, Boosting, and RF classifier.

Table 4. Performance comparison of proposed DengueFog system with WRF classifier and traditional
models.

Performance
Measurement

Classifiers

NB SVM DT ANN Boosting RF Proposed System

F-value 50.78 46.89 41.34 75.89 50.62 75.97 86.27

Recall 54.47 49.46 42.15 77.27 57.13 79.85 88.31

Precision 47.56 44.56 40.56 74.56 45.44 72.45 84.62

Accuracy 79.17 74.00 73.83 88.30 80.09 88.27 93.64

Specificity 83.04 81.55 82.85 91.05 89.50 93.94 95.29

Error Rate 22.83 27.00 29.87 12.5 21.91 13.73 05.36

A graphic representation of the specificity, F-value, error rate, accuracy, precision,
and sensitivity rate to show efficiency of the models is shown in Figure 4. It is concluded
that the proposed WRF classifier achieved a higher specificity, F-value, accuracy, precision,
and sensitivity rate, and lower error rate for the dengue dataset, while the DT classifier
offered the worst performance. Based on the experimental study, the following points are
highlighted demonstrated in Figure 4:

• WRF classifier is used in the proposed system to forecast dengue illness, and it per-
forms with a higher accuracy than RF. Because the effectiveness of RF classifiers relies
on the quantity of the decision trees produced, RF cannot retain generality on small
size hardware. In this work, the weighted technique is combined with the RF tech-
nique to solve the drawbacks of RF. The purpose of this amalgamation is to retain
the generalization of RF even with fewer decision trees by leveraging the fact that
sequential training creates complementary DT for training samples.

• It has been shown that NB and Boosting classifiers perform somewhat differently over-
all, particularly for the F-value and accuracy metrics. This is because both classifiers
utilize distinct objective functions to predict dengue illness. Further, the Boosting
classifier increases the time, complexity, and computation.

• The performance of the RF classifier is observed to be superior to that of the NB,
Boosting, SVM, ANN, and DT classifiers. This is due to RF’s ability to be parallelized,
to handle unbalanced data, its excellent high-dimensionality performance, quick
prediction or fast training speed, resistance to non-linear data, moderate variance, and
low bias.

• ANN depicts the complicated relationship between output and input. Therefore, it
performed better than NB, Boosting, SVM, and DT classifiers.

• The DT classifier performs low compared to the other classifiers, because data are not
separated linearly and they ignore some important variables in the training data.

The result of proposed system with the 10- fold cross validation technique is also
presented in Table 5. Furthermore, Table 6 presents the evaluation results of the proposed
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system with detailed dengue class-wise performance analysis of the proposed system. The
outcomes illustrate that the proposed system has a higher accuracy rate when it comes
to predicting infected and recover people. The average accuracy of the proposed system
with RFB is 93.64%. The RFB has an average recall of 88.31%. The higher precision rate,
i.e., 84.62%, is generated by these higher accuracy and recall values, allowing the proposed
system to minimize the error rate. Furthermore, the RFB generates less prediction errors
due to its overall better specificity value of 95.29%. Similarly, higher F-value (86.27) and
accuracy (93.64) values show that the RFB-based prediction is more accurate. Hence, it is
concluded that the performance level fetched from the aforesaid parameters explains the
use of RFB in the suggested system for fog-based health monitoring system.
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Figure 4. Performance comparison of proposed DengueFog system with WRF classifier and tradi-
tional classifiers.

Table 5. 10-Fold classification results of proposed system.

Sr. No. Precision Recall F-Value Specificity

1 82.8856 82.1866 82.5346 98.8906
2 81.6784 81.8796 81.7789 99.5467
3 82.9099 79.4185 81.1267 98.3456
4 82.1519 83.6777 82.9078 98.2733
5 82.4562 81.1258 81.7856 99.6789
6 82.0067 85.8945 83.9056 99.8902
7 82.1224 82.0996 82.1110 99.6783
8 82.8112 84.9677 83.8756 98.0045
9 83.0789 79.4702 81.2345 99.5756
10 83.0707 83.5642 83.3167 98.8172

Table 6. Detailed dengue class-wise performance of WRFB.

Dengue Class Precision Recall F-Value Accuracy Specificity

Negative 83.93 87.17 85.52 89.65 93.55
Infectious 85.76 87.74 86.74 95.96 97.67
Positive 88.82 83.07 85.85 93.08 94.87
Recover 79.97 95.29 86.96 95.87 95.08
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4.3. Evaluation of Alert Generation

The suggested fog-based alert module offers timely information to the doctor, pa-
tient, patient’s family, and hospital about the dengue infection diagnosis. The reliability of
response time and generated warnings were deemed the essential characteristics for deter-
mining the alert generation module efficiency. The proposed alert generation module was
thoroughly investigated to determine its efficacy in delivering accurate and timely alerts to
the doctor, patient, patient’s family, and hospital. The proposed fog-based alert module
was tested on a snapdragon 636 1.8 Ghz with Octa-core processor and smartphone with 4
GB of memory and compared with EC2-based cloud instance alert generation system with
no fog computing provision but with the same WRF prediction technique. Both systems
were tested on the same dataset. The response time for both systems was measured from
the time an event occurs to the time the warning about the event is generated and provided
to the stakeholders. The alerts’ accuracy was determined in terms of the infection diagnosis
procedure’s capacity to determine the genuine alarms. Table 7 compares the performance
of the proposed fog-based and existing cloud-based alert generation module using vari-
ous parameters such as mean absolute error, root relative squared error, maximum delay,
etc., as presented in Table 7. When compared to the cloud-based system, the outcomes
show that the suggested system has considerably better alert production functionality,
taking approximately half the time on average to generate notifications. For accuracy, the
increased recall and precision values helped to minimize the error rate and reduce the
false prediction rate. The proposed system’s accessibility of resources near persons, its
prevention from delay of the network communication to the cloud subsystem, and its
availability of higher bandwidth and low latency in the fog-subsystem have enabled the
immediate alert generation from the edge of the network of persons to reduce the error,
data congestion, and data volume transmission over the network for prediction. Further,
the higher accuracy, recall, and specificity values suggest that the generated warnings are
reliable. The proposed alert generation module proves its utility with fewer false-positive
alerts, better results, lower error rates, and improved average delay or response time.

Table 7. Alert Generation Module Comparison.

Parameters Proposed System Cloud-Based Health
Monitoring System

Precision 84.62 76.55
Recall 88.31 80.13

Specificity 95.29 84.32
False Positive Rate 7.65 22.86

Mean absolute error 5.36 15.08
Average Delay 6.32 s 11.33 s

Maximum Delay 9.45 s 19.56 s
Minimum Delay 2.54 s 6.12 s

Delay in standard deviation 2.61 1.05 s
Relative absolute error 8.45 16.76

Root relative square error 36.89 45.02
Root average square error 3.80 9.66

Coverage 94.13% 83.78%

4.4. Limitations and Future Directions

While the proposed system demonstrates remarkable performance, there remains
room for improvement. Notably, its current scope is limited to addressing challenges spe-
cific to the dengue disease, potentially constraining its adaptability to other health-related
issues. Additionally, the sensitivity of WRF model to the initial hyperparameters under-
scores the need for a robust optimization strategy to fine-tune these parameters effectively.
To bolster the system’s overall resilience and comprehensibility, future endeavors will
focus on expanding the model to incorporate features that enhance interpretability and
explainability within the framework of the WRF model. This expansion aims to offer a
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clearer insight into the decision-making processes of the model, fostering increased trust
and understanding of its outcomes across diverse user groups.

5. Conclusions

For monitoring and predicting the dengue infection, a monitoring system based on
fog computing was proposed in this study. The proposed monitoring system is made up
of three layers: the cloud, the fog computing gateway, and the patient information layer.
Data on dengue cases were gathered and patient health was tracked using a variety of
IoT devices and sensors. Additionally, a WRF classifier was created to predict dengue
infection. To minimize the load on the cloud layer, the suggested WRF model was cou-
pled with the fog computing gateway layer. Additionally, an alert message module that
indicates the condition of dengue patients was also produced at the fog layer. By utilizing
the data of 1254 dengue patients, the efficacy of the suggested DengueFog system was
assessed and compared to traditional machine learning techniques. It has been found that
the DengueFog system method attains a greater accuracy rate when compared to other
classifiers. Additionally, the suggested system correctly sends end users alert messages.
The proposed DengueFog system also notifies registered users of the dengue infection via
proximity messages.
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