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Abstract: Lignin is complex, three-dimensional biopolymer existing in plant cell wall. Lignin
biosynthesis is increasingly highlighted because it is closely related to the wide applications in
agriculture and industry productions, including in pulping process, forage digestibility, bio-fuel, and
carbon sequestration. The functions of lignin in planta have also attracted more attentions recently,
particularly in plant defense response against different pathogens. In this brief review, the progress in
lignin biosynthesis is discussed, and the lignin’s roles in disease resistance are thoroughly elucidated.
This issue will help in developing broad-spectrum resistant crops in agriculture.
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1. Introduction

Lignin is a main structural component of cell walls in vascular plants (pteridophytes,
gymnosperms, and angiosperms) during the process of thickening the secondary wall.
Lignin is principally deposited in the secondary wall of certain plant tissues, including
xylem, sclerenchyma, phloem fiber, and periderm, which are involved in hydrophobic
protection and the mechanical support of plant tissues. Some parenchyma cells may also
have the lignin deposition in the primary wall, but the degree of lignifications is low.
Lignin is linked to cellulose and hemicellulose in the cell wall to form an extracellular
matrix. This structure increases the mechanical intensity and supportable ability of plant
tissues. It contributes to rigidity and strength of the plant stem, which is related to the
lodging-resistant and seed-coat-protecting phenotypes in crop plants [1–3]. Because the
natural property of hydrophobicity, lignin imparts water impermeable plant cells. This
function is very important, not only for xylem and phloem to transport water and mineral
components, but also for the successful colonization of land by plants. In fact, the terrestrial
vascular plants are proposed to evolve on the earth by the concomitant evolution of lignin
biosynthesis that originated about 450 million years ago in the Silurian Period [4]. Therefore,
lignin is a substance unique to vascular plants such as pteridophytes, gymnosperms, and
angiosperms. The unicellular and non-vascular plants, such as algae and bryophytes, do
not contain the cells filled with lignin, but they do have some lignin biosynthesis-related
genes [5]. In addition, lignin accumulation in the cell wall forms a physically structural
barrier to effectively protect the plant from pathogens, and the lignin synthesis is induced
in response to various kinds of abiotic and biotic stresses [6,7]. We will discuss this topic in
later sections.

Second only to cellulose, lignin is one of the most plentiful biopolymers on earth,
which accounts for about 1.4 × 1012 kg of carbon fixed into terrestrial plants annually [8].
Lignin content varies among different classes of plants. In trees, lignin content represents
27–32% of dry weight, while it accounts only 14–25% of dry weight in herbaceous plants.
As a bio-undegradable biopolymer in plant, lignin is also intimately related to industry
and agriculture. Lignin content and composition are limiting factors associated with
both the quality of paper production and the digestibility of forage crop. In the pulping
process, lignin must be removed by costly and environmentally hazardous protocols,
spending large amounts of energy and chemicals which may lead to serious environmental
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pollution. It would be beneficial to treat plant tissues with either less lignin or lignin with an
altered chemical reactivity [9]. Lignin content in forage crops is negatively corrected with
forage digestibility for ruminant animals, while lignin composition also affects the forage
digestibility. Increasing the digestibility of forage crop is important in husbandry [10].
Lignin is also an important determinant in bio-fuel production. The value of lignin depends
on its final purpose of utilization. Due to its high heat value, lignin is desirable for
conversion by gasification or pyrolysis to produce bio-oil plus useful gas such as H2 and
CH4 [11]. Conversely, ethanol production with enzymatic saccharification in lignocellulose
is restricted by lignin-derived compounds [12,13]. Lignin-derived monomers are valuable
precursors to produce aromatic chemicals in the biorefinery [14,15]. In the terrestrial
environments, lignin is a main component of organic substance that served as the important
carbon sink in carbon sequestration [16].

In this review, we will not discuss every aspect in the lignin research field. In-
stead, we focus on lignin’s actions on disease resistance, which have made comprehensive
progress recently.

2. Unique Features of Lignin Biosynthesis

Lignin biosynthesis is a complex biochemical pathway which is initiated in deami-
nation of L-phenylalanine or tyrosine into cinnamic acid, then a series of hydroxylation
and methylation reactions convert cinnamic acid into a variety of hydroxycinnamic acids.
These hydroxycinnamic acids act as precursors not only for lignin, but also for flavonoids.
Activation of hydroxycinnamic acids to their corresponding co-enzyme A (CoA) thioesters,
followed by successive reductions, produce monolignols which are thought to build into
the lignin polymer by polymerization (Figure 1). This conventional pathway of lignin
biosynthesis, introduced in the 1980s, has much modification after extensive research in
biochemistry, molecular biology, and genetics [17–19]. A complete enumeration of each
step in lignin biosynthesis is considerably beyond the scope of this review. Here, we just
list some important achievements in recent years.

Generally, lignin is derived from three major hydroxycinnamyl alcohols (monolig-
nols), namely p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, which convert
into p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin, respectively. In addition,
caffeyl alcohol (forming catechyl lignin, C) has been found naturally in some species [20].
5-hydroxyconiferyl alcohol forms a 5-hydroxyguaiacyl (5HG) unit that arises from the
transgenic plants by down-regulated caffeic acid O-methyltransferase (COMT) and also
occurs naturally in the cactus seed coat [21]. Ubiquitous existence of these non-canonical
monolignols still requires more investigations [19]. Tricin, a flavone compound, has shown
to be present in all grass lignin, where it is suggested to serve as an initiator for polymeriza-
tion [22,23].

New enzymes have been identified recently in the lignin pathway. Caffeoyl shikimate
esterase (CSE) has been demonstrated to convert caffeoyl shikimate (and to a lesser extent
coumaroyl shikimate) into the free acid [24]. This fills the gap for a series of reactions termed
‘shikimate shunt’ or ‘esters pathway’ that involve hydroxycinnamoyl-CoA:shikimate hy-
droxycinnamoyl transferase (HCT) and coumaroyl shikimate3′-hydroxylase (C3′H). This
strengthens the cross-talking between the phenylpropanoid pathway with shikimate and
the aromatic amino acid biosynthesis. The real biological significance remains open to be
investigated. The functions of some old enzymes have also been revised. It was known
that L-tyrosine ammonia-lyase (TAL) activity was present in monocot plants. A recent
report has shown that purple false brome (Brachypodium distachyon) possesses 8 phenylala-
nine ammonia-lyase (PAL) genes. One of them encodes a bi-functional PAL/TAL (PTAL).
This PTAL is preferentially involved in S lignin synthesis. Isotopic labeling experiments
have shown that approximately 50% of the lignin is synthesized from L-tyrosine rather
from L-phenylalanine [25]. Ferulate 5-hydroxylase (F5H) is a cytochrome-P450-dependent
monooxygenase that was originally thought to catalyze the hydroxylation at the C5 po-
sition of ferulic acid to form 5-hydroxyferulic acid, which was the precursor to S lignin.



Genes 2024, 15, 295 3 of 11

However, a serial of work from the transgenic plants, feeding tests, and in vitro biochem-
istry have demonstrated that F5H actually used coniferaldehyde and coniferyl alcohol to
form 5-hydro-coniferaldehyde and 5-hydro-coniferyl alcohol then syringyl alcohol. Over-
expressing F5H in transgenic tobacco and poplar gave rise to lignin that was composed of
almost S units [26–28]. Therefore, F5H is now also called coniferaldehyde 5-hydroxylase
(CAld-5H) [29]. Furthermore, F5H in lycophytes can catalyze S lignin synthesis directly
from p-coumaraldehyde and p-coumaryl alcohol, which is different to angiosperms [30,31].
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Figure 1. The general biosynthesis pathway of lignin. PAL: phenylalanine ammonia-lyase; TAL:
tyrosine ammonia-lyase; C4H: cinnamate 4-hydroxylase; C3H: p-coumarate 3-hydroxylase; C3′H:
coumaroyl shikimate3′-hydroxylase; 4CL: 4-coumarate: CoA ligase; HCT: hydroxycinnamoyl-CoA
shikimate/Quinate hydroxycinnamoyl transferase; F5H: ferulate 5-hydroxylase; CSE: caffeoyl shiki-
mate esterase; CCR: cinnamoyl-CoA reductase; CCoAOMT, caffeoyl-CoA O-methyltransferase;
COMT: caffeic acid O-methyltransferase; CAD: cinnamyl alcohol dehydrogenase; LAC: laccase;
POD: peroxidase; DIR: dirigent; H: hydroxyphenyl lignin; C: catechyl lignin; G: guaiacyl lignin; S:
syringyl lignin.

The monolignols are polymerized into high molecular weight lignin that catalyzed
with laccases (using O2) and peroxidases (using H2O2). Both laccases and peroxidase
have many isoforms that encoded by large gene families, for instance, Arabidopsis contains
17 laccase genes and 73 class III peroxidase genes [32,33]. The exact roles for each member
of laccases and peroxidase in monolignol polymerization are still not quite clear. Some
reports showed that laccase might be indispensable in initiating lignification of vascular
tissues [34–36]. It was proposed that laccase might be important in the initiation stage,
while peroxidase plays the roles in the bulk polymerization of lignin [37,38]. However,
recent findings showed that peroxidase was also essential for lignin polymerization in
Casparian strip in root tissues [39].

Dirigent (DIR) is a new class of proteins which were first isolated from weeping
forsythia (Forsythia suspense) [40]. It has been shown that DIR protein, in the presence
of an oxidase or one electron oxidant, can stereo-selectively couple two coniferyl alcohol
molecules into a (+)-pinoresinol. This dimer, known as lignan, was presumed to couple
more monolignols and then formed lignin polymer. However, direct evidence to support
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DIR’s roles in lignin biosynthesis is still rare, until recently. A DIR protein, namely ESB1
(enhanced suberin 1), has been shown to play an essential role for the correct formation
of lignin in Casparian strip [41]. Moreover, the sub-class of DIR, namely DIR-E, including
ESB1, has been demonstrated to be essential for both the localized lignin polymerization
required for Casparian strip biogenesis and for the attachment of this strip to the plasma
membrane to seal apoplast [42]. An enduring mystery remains that many other members
of DIR have not been involved in lignin synthesis, instead promoting lignan synthesis
and increase stress response in plants [43,44]. Some DIRs can fuse with other proteins to
form chimeric proteins. An interesting example is DIR fused with jacalin to form monocot
chimeric jacalin, a novel subfamily of lectins [45,46]. An enigma remains whether DIR is
involved in lignin polymerization outside of the Casparian strip. Therefore, two hypotheses
of random coupling and strict regulation to address how connecting monolignol radical to
produce a functional lignin molecule are still in debate [47,48].

There are some unique features of lignin which are distinct from other macromolecules
such as protein and cellulose.

(1). Heterogeneity. Lignin is synthesized from three main monolignols, namely p-
coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. This forms hydroxyphenyl (H),
guaiacyl (G) and syringyl (S) units in lignin polymers, respectively. In addition, there
are various kinds of intermonomeric linkages with up to 16 types in theory in the lignin
molecule [49]. The most frequent inter-unit linkage is the C-O-C4 (β-aryl ether) linkage, and
it is also the one most easily degraded chemically. The other common linkages are the C-C
aryl linkage, including C-C5, C-C1, C-C, and C5-C5, which are all more resistant to chemical
degradation. Lignin has diverse compositions in various plant taxons. Gymnosperms
contain mainly G lignin, dicot plants contain G and S lignin, while monocot plants have the
lignin composed of G-, S-, and, H-monomers in various ratios [50]. For example, pine trees
contain G lignin, and tobacco has an almost similar amount of G and S lignin, while wheat
lignin constitutes approximately 50% S plus 40% G and 10% H units. The composition of
lignin will also change upon different tissues and developmental stages of plants. This
makes the elucidation of the lignin’s functions more sophisticated.

(2). Having properties both for primary and secondary metabolism. On the one hand,
lignin is an indispensable and important component of plant cell walls, while on the other
hand, lignin belongs to the phenylpropanoid pathway including flavonoids and lignans,
which is the typical secondary metabolism.

(3). Contribution to plant development and defense response. Lignin has a crucial role
in plant growth and development; it exhibits ubiquitous synthesis in the middle and later
stages of plant development. Also, lignin’s synthesis is inducible upon pathogen invasion
in the specific tissues which confer resistance to associated pathogens. How to coordinate
lignin’s roles in these different aspects remains an enduring mystery. This issue will be
discussed more comprehensively in the following section.

3. Multifarious Functions of Lignin in Plant Defense Responses

There is a myriad of documents reporting lignin’s involvement in plant disease re-
sistance. To give a clear picture, we strive to sort out these vast data according to their
different mechanisms.

3.1. Lignin as the Critical Barrier Contributing to Basic Disease Resistance

Lignin is an intricate polymer that serves the physical barrier in the defense response
to pathogen infection, as lignin is un-degradable to most microorganisms [51,52]. When
pathogens invade a cell, they induce lignin deposition in the cell wall which provides a
physical barrier to resist pathogen infection by limiting the entry of pathogen toxins and cell
wall-degrading enzymes into plants and preventing the nutrient transmission from the host
to the pathogen [53,54]. It is important to know how lignin accumulation will affect disease
resistance in plants. The majority of data shows that the high lignin levels will increase
disease resistance, but contrary results were also reported that low lignin content in plants
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exhibited less disease severity [55–57]. As a highly labile heteropolymer, lignin composition
was also proposed to affect the disease severity in plant. Here, the data showed that S, G,
or H lignin might affect disease severity. More G and H units were accumulated when soft
rot pathogens infected in Chinese cabbage [58]. The S unit concentration was increased in
false flax (Camelina sativa) and wheat upon fungal penetration [53,59]. The contradictory
results mainly derive from the different plants in study, which are complicated by the many
unrestrained genetic and developmental factors possibly impacting defense responses.

In an array of transgenic tobacco plants with modified lignin content or composition by
altering single gene, we examined the relationship between lignin content, composition, and
disease resistance. The results showed that lower total lignin content aggravated the disease
severity, while increased S lignin alleviated the disease symptoms. Neither G nor H lignins
exhibited any influences on disease resistance. These data suggest that both total lignin
content and S lignin are the main factors that are involved in basic defense response [60].
This sheds light on the complexity of lignin’s connection with plant defense response.

3.2. Lignin Related Chemicals Inducing Immune Reaction

Lignin and some related compounds can play as a signal to activate plant-specific
immune response. It has reported that silencing Gh4CL30 will promote caffeic acid and
ferulic acid accumulation, which inhibit the growth of fungal hyphal and increase resistance
to Verticillium wilt in cotton [61]. Many molecules associated with the lignin pathway can
serve as phytoalexins which restrict pathogens [62]. Coumarins (including umbelliferone,
esculetin, and scopoletin) are synthesized through p-coumaryl-CoA and feruloyl-CoA.
They have been proposed to be regulators in plant microbiomes [63]. Stilbenes are phenolic
phytoalexins. Its skeleton (stilbene skeleton) synthesis is catalyzed by stilbene synthase
(STS) through the conversion of p-coumaryl-CoA. The defensive roles of stilbene against
pathogens have also been documented [64]. Recently, a large-scale and in-depth investi-
gation of the phyllosphere microbiome in rice has revealed that 4-hydroxycinnamic acid
(4-HCA), a precursor compound in lignin synthesis, is the main driver for enrichment of
beneficial Pseudomonas, and inhibition of harmful bacteria Xanthomonas. OsPAL02 is re-
sponsible for 4-HCA synthesis, and therefore maintains healthy phyllosphere homeostasis
in rice. It is proposed that regulating microbiome-shaping genes become a new strategy
as ‘M gene breeding’ in plant disease resistance breeding alone with the current strategy
known as ‘R gene breeding strategy’ [65].

Lignans are phenylpropanoid dimmers synthesized via the monolignol pathway, with
coniferyl alcohol as the direct precursor [66]. Dirigent proteins have been shown to act in
initiating lignan synthesis [44]. Both dirigent and lignan are proposed to have vital roles in
defense responses [67–69]. Particularly, some dirigent proteins boost disease resistance by
directly promoting lignan accumulation [70].

Besides these lignin compounds’ ability to act directly on pathogens, cell wall damage
will affect cell wall integrity (CWI) and then release damage-associated molecular patterns
(DAMPs) which trigger immunity reactions [71]. Lignin is proposed to play the critical part
during this process [72]. The reactive oxygen species (ROS) and stress-related hormones,
such as jasmonate (JA) and salicylic acid (SA), are involved in lignin’s action to disease
resistance [73]. A dirigent protein DIR7 has been identified which play the important
role in response to plant CWI impairment [74]. Blue copper binding (BCB) protein is
involved in electron transfer during oxidative stress response. A BCB, namely GhUMC1,
has been demonstrated to increase cotton resistance through H2O2, JA signaling, and lignin
metabolism [75]. It remains uncertain that lignin-specific molecules trigger a burst of ROS
or ROS-strength lignin deposition. It has been proposed that polymerizing monolignol
into lignin required hydrogen peroxide which is a detoxification process for ROS. Some
enzymes in the monolignol pathway are linked to this mechanism, including p-coumarate
3-hydroxylase (C3H), CSE, and cinnamoyl-CoA reductase (CCR) [19]. Alternatively, ROS is
a signal that directly plays a role in stress responses [76].
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3.3. Lignin Related Genes Serving Target in Defense Response

In plants, resistance genes (R) play a vital part in disease resistance. Most R genes
encode the NLR class of proteins [77]. Upon pathogen recognition of R genes, it triggers a
defense response that includes hypersensitive response (HR). HR leads a rapid cell death
in infection site. It has been reported that maize has two NLRs, Rp1-D, and Rp1-dp2.
Combination of Rp1-D and Rp1-dp2 will lead to activated HR without pathogen infection.
Two key enzymes in lignin biosynthesis, HCT and caffeoyl CoA O-methyltransferase
(CCoAOMT), have been demonstrated to suppress this HR by interacting with the Rp1-D21
complex. The enzymatic activities of HCT and CCoAOMT are not necessary to suppress
HR. It is proposed that HCT, CCoAOMT, and Rp1 proteins form a complex. Pathogen
effectors may target on the lignin pathway as its importance to plant defense, in turn,
NLR proteins will monitor special components during this process [78,79]. This model is
reminiscent to resistosome, which has been elucidated recently [80].

Pathogenesis is also involved in lignin by targeting its synthetic enzymes. An F-box
protein (ZmFBL41) has been identified that confers resistance to banded leaf and sheath
blight (BLSB) in maize. ZmFBL41 interacts with cinnamyl alcohol dehydrogenase (CAD),
the final enzyme in the monolignol pathway, leading to the ubiquitination and degradation
of CAD. Two amino acid substitutions in the natural allele of resistant maize lines prevent
this interaction. It is proposed that the pathogen (Rhizoctonia solani) may deliver effectors to
directly or indirectly interact with ZmFBL41 or ZmFBL41-ZmSKP1-ZmCAD complex and
increase susceptibility of the host [81]. The protein containing tetratrico-peptide repeats
(TPRs) is the largest functional family that maintains protein organization and homeostasis
through a complicated chaperone network [82]. A mutant, namely bsr-k1 (broad-spectrum
resistance Kitaake-1), has been identified in rice. Bsr-k1 confers broad-spectrum resistance
against the fungal pathogen (Magnaporthe oryzae) and bacterial pathogen (Xanthomonas
oryzae). Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds
to PAL mRNAs (OsPAL1-7) and promotes their turnover. Loss of Bsr-k1 function results in
lignin accumulation and increases resistance to rice blast and bacterial blight [83].

3.4. The Regulating Network Linking Lignin with Immune Reaction

The transcriptional regulation on plant metabolism and development is important,
which also participates in immune reaction through lignin metabolism. MYB proteins
are one of the largest transcription factor families which play an important part in plant
growth and development. Some members of MYB are master regulators in the lignin
pathway, usually form MBW ternary complex that consists of MYB, basic helix-loop-helix,
and WD40 [84,85]. A R2R3 MYB transcription factor, namely GhODO1, was isolated from
cotton. GhODO1 interacts with the promoters of lignin genes Gh4CL1 and GhCAD3,
activates their expression, and increases lignin accumulation and resistance to Verticillium
wilt (Verticillium dahlia). JA-mediated defense signaling is also proposed to be involved
in this process [86]. AtMYB15 has been reported to regulate defense-induced lignification
and contribute to resistance to Pseudomonas syringae (Pst DC3000). Furthermore, effector-
triggered immunity (ETI) responses to Pst DC3000 challenge are required for AtMYB15-
mediated lignification. This suggests that MYB15 plays a central part in pathogen-induced
lignification [87,88]. BnMYB43 from oilseed rape has been shown to regulate vascular
lignification, plant morphology and potential yield, but negatively affect resistance to
Sclerotinia sclerotiorum, therefore being a growth-defense trade-off participant [89]. Recently,
an ethylene response factor (ERF) MdEFR114 has been shown to interact with R2R3-MYB
and WRKY transcription factors. This complex will directly bind to a peroxidase promoter
and increase lignin accumulation and resistance to replant disease in apple tree [90].

Small GTP-binding proteins exist ubiquitously in eukaryotes, which regulate dif-
ferent cell functions such as organogenesis, polar growth, cell division, and defense
response [91,92]. ROP is a subfamily of small GTP-binding proteins that exclusively occur
in plants. There are 11 ROPs in Arabidopsis, 7 in rice, and 6 in wheat [93]. OsRac1, one
member of ROP in rice, has been reported to affect on CCR, the first enzyme special to
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lignin monolignol pathway, and then increase defense responses [94]. Furthermore, we
have shown that wheat TaRac1 interacted with TaCCR, up-regulated CCR, and CAD gene
expression, enhanced total lignin accumulation and S lignin proportion. This will increase
broad-spectrum disease resistance. Collective data suggest that only Group II ROPs have
the important roles during defense response in monocot crop [95]. AtRop9, the dicot
plant homologue of Group II, is the regulator on ABA and auxin signaling in embryo and
lateral root development instead of pathogen response [96]. It is proposed that some ROPs
will form a protein network called the defensome, in which ROP serve as a molecular
switch to interact with many different effector proteins [97,98]. This bears a resemblance to
resistosome complex that was reported recently [80].

3.5. The Metabolic Flux towards Lignin Affecting Defense Response

The metabolic reprogramming is a common phenomenon in regulating metabolism of
plant. Its relation with plant innate immunity and lignin pathway remain largely unknown.
A novel glycosyltransferase UGT73C7 was identified from Arabidopsis. It has shown that
UGT73C7 could glycosylate p-coumaric acid and ferulic acid, the upstream compounds in
the lignin pathway. This will up-regulate SNC1 expression, a Toll/interleukin 1 receptor-
type NLR gene, and then activate immunity in the plant. UGT73C7 is an important
regulator to redirect lignin metabolism upon pathogen challenge [99]. Recently, we have
demonstrated that wheat DFRL exerted disease resistance through shifting NADP pool
and lignin synthesis [100]. Hm1 is a first-cloned R gene from maize, which encodes an
enzyme that detoxifies the Helminthosporium carbonum (HC) toxin from the special pathogen
Cochliobolus carbonum [101]. However, the homologous Hm genes have also been found
from other monocot crops, including rice, barley, and wheat, although they are not the
host of C. carbonum. Hm homologs are similar with dihydroflavonol-4-reductase (DFR)
in sequence, an important rate-limiting enzyme in flavonoid pathway; therefore they are
named as dihydroflavonol-4-reductase like (DFRL). Our studies have shown that wheat
TaDFRL has the broad substrate preference, including dihydroflavonol (such as taxifolin),
flavonol, and flavones (such as quercetin and apigenin), and use both NAD and NADP
as co-enzyme, which is different with DFR. Up-regulated TaDFRL alters NAD(H) and
NADP(H) pools towards high NADPH levels. Subsequently, the expressions of CAD and
CCR genes are increased, which required NADPH as reducing equivalent. This leads to
the enhancement of lignin accumulation and resistance to broad-spectrum diseases [100].
This provides a novel mechanism about increasing host defense responses by elevating
metabolic flux towards lignin biosynthesis.

4. Conclusions and Perspectives

The increasing reports on lignin’s role in disease resistance have been shown in the
recent scientific literature. As we discuss in this review, many questions remain to be
solved on this issue. The heterogeneity in lignin synthesis and the different stress-induced
lignin to developmental lignin make our understanding on the relationships between lignin
and defense more sophisticated, which lead to many conflicting reports. Therefore, it is
reasonable to excavate and distinguish the different mechanisms behind these actions in
order to fully comprehend each specific case. In this review, we sum up five action models
concerning lignin with defense responses. Hopefully, this will help to deepen research in
this field.

In the future, we suggest that studies on this subject should focus more on authentic
mechanisms in each special case. Particularly, it should pay attention to different pathogens
(bacteria, fungi) and ecotypes (necrotrophic, saprophytic) which will distinguish them
among unique actions. The cross-talk with other defense signals needs to be considered
in studies such as JA, SA, and ethylene. The metabolic flux across the different pathways
should also be addressed to elucidate the mechanism behind the investigation. With more
research data available, there will be more models to be uncovered, and then we will have
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a panoramic insight on these complicated events. This will help to develop high-resistant
crops by a molecular breeding strategy.
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