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Abstract: Histones are nuclear proteins essential for packaging genomic DNA and epigenetic gene
regulation. Paralogs that can substitute core histones (H2A, H2B, H3, and H4), named histone
variants, are constitutively expressed in a replication-independent manner throughout the cell cycle.
With specific chaperones, they can be incorporated to chromatin to modify nucleosome stability by
modulating interactions with nucleosomal DNA. This allows the regulation of essential fundamental
cellular processes for instance, DNA damage repair, chromosomal segregation, and transcriptional
regulation. Among all the histone families, histone H2A family has the largest number of histone
variants reported to date. Each H2A variant has multiple functions apart from their primary role
and some, even be further specialized to perform additional tasks in distinct lineages, such as testis
specific shortH2A (sH2A). In the past decades, the discoveries of genetic alterations and mutations in
genes encoding H2A variants in cancer had revealed variants’ potentiality in driving carcinogenesis.
In addition, there is growing evidence that H2A variants may act as novel prognostic indicators or
biomarkers for both early cancer detection and therapeutic treatments. Nevertheless, no studies have
ever concluded all identified variants in a single report. Here, in this review, we summarize the
respective functions for all the 19 mammalian H2A variants and their roles in cancer biology whilst
potentiality being used in clinical setting.
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1. Introduction

Genetic material in eukaryotic cells are organized into chromatin. The chromatin
is often described as a polymer with nucleosome as the fundamental repeating unit, as
described by the classic “beads on a string” model [1]. Each nucleosome consists of 147 base
pair (bp) of DNA wrapping around a protein octamer, which is assembled from equal
parts of the core histones H2A, H2B, H3, and H4 [2,3]. On both ends of the nucleosome
at the DNA entry/exit site, linker histone H1 binds to the nucleosome and play a crucial
role in the maintenance of higher-order chromatin structure. Alternations in chromatin
structure are associated with change in gene expression modulated by mechanisms such as
histone post-translational modifications [4], ATP-dependent nucleosome remodeling and
replacement of core histones by variant subspecies by specific chaperones [5].

The expression and deposition of core histones are strictly coupled with DNA replica-
tion to fill the gaps behind the progressing replication fork. In the human genome, genes
encoding for replication-dependent histones are organized into three gene clusters. The
largest cluster, HIST1, consists of 55 genes that reside in chromosome 6 (6p21-6p22). HIST2
and HIST3 which contain six genes and three genes, located at chromosome 1q21 and 1q42
respectively [6].

Histone variants are paralogs of canonical histones. The difference between a variant
histone and its canonical counterpart could range from several amino acids to large non-
histone domains. Similar to canonical histones, histone variants are also subjected to
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post-translational modifications (PTMs) such as methylation and ubiquitination [7–10]. As
a result, when canonical histones are replaced, the stability of nucleosomes where variants
reside will be altered due to its different structural properties. Variants can further be
grouped under two classes, homomorphous and heteromorphous, according to their extent
of amino acid sequence changes [7,11]. A group of genes that have no homologs and are
not shared among closely related species, known as ORPHAN genes, are quickly evolved
and only known to be related to species-specific traits, have characteristics to constitutively
expressed throughout the cell cycle and transcripts deposited before and after the S phase,
are responsible for the expression of histone variants [12].

Contrary to canonical histone-encoding genes, histone variant-encoding genes contain
introns and their mRNAs are polyadenylated [13]. Histone variant genes are expressed in a
replication-independent manner and are deposited onto the chromatin by specific histone
chaperones and remodelers [14]. Owing to the distinct structural properties of histone
variants compared with their canonical counterparts, incorporation of histone variants to
the nucleosome will alter the DNA-octamer interaction and hence the overall nucleosome
stability. Consequently, histone variants are important players in fundamental cellular
processes like DNA damage repair, chromosome condensation, transcription initiation and
termination [10,15]. Interestingly, histone variants are mainly expressed in somatic tissues,
but some have evolved and exhibit a high degree of variation across species to perform
lineage-specific tasks, these variants are predominantly expressed in male germline for
sperm packaging [16].

Among all the four classes of core histones, the histone H2A family has the largest
number of histone variants with 19 in mammalian species reported to date. In the past
decades, reports have revealed the potentiality and capability of H2A variants being the
driving cause of cancer. Recently, an increasing number of studies demonstrated the
presence and some newly identified, whilst overexpression, down regulation, and mutation
of H2A variants in a variety of cancers. Indeed, these variants participate in different stages
of cancer progression including migration, invasion, and metastasis. Additionally, the
disbalance of variants also induced changes in epigenetic plasticity and sustained oncogene
expression programme [16,17]. More importantly, growing evidence suggested that H2A
variants may act as novel prognostic indicators and/or biomarkers for both early cancer
detection and therapeutic treatments. However, future research is needed to fully explore
the role or other unprecedented H2A variants that may play in cancer, as it is thought to
be substantially more than what is now understood. Nevertheless, no studies have ever
compiled all the found H2A variants in a single published report. Here, in this review, we
take the initiative in providing an overview, summarizing the respective functions for all
the 19 mammalian H2A variants, with focus on their role in cancers and their potentiality
being used in the clinical setting as a therapeutic target.

2. Classification of H2A Variants

H2A variants are categorized as homomorphous or heteromorphous based on the
degree of dissimilarity from canonical H2A. Variants like H2A.1 and H2A.2, only differ
from the canonical H2A by a few amino acids, are categorized as homomorphous. On the
other end of the spectrum, heteromorphous variants carry extra domains on either the N-
or C–terminal which result in distinct structure from the canonical histone [7]. Examples
of heteromorphous variants are macroH2A (mH2A), H2A.Z and H2A.Bbd (Bar-body
deficient) [18].

To visualize the subtle differences in amino acid sequences in homomorphous variants,
the classic acetic acid/urea (AU) polyacrylamide gel electrophoresis (PAGE) methodology
has been improved with the inclusion of nonionic detergents, Triton X-100, forming TAU
PAGE. On the other hand, heteromorphous variants will either be separated by acetic
acid-urea or sodium dodecyl-sulfate (NaDodSO4) polyacrylamide gel electrophoresis (SDS-
PAGE) [11,18–20].



Int. J. Mol. Sci. 2024, 25, 3144 3 of 37

3. The 19 Histone H2A Variants

The H2A family, with 19 mammalian variants reported to date, is the most diverse
histone family among the other core histones (Table 1). The amino acid sequences of the
19 histone H2A variants vary greatly from one another but remain highly conserved during
evolution, indicating that they all carried out indispensable functions [17,21,22]. In contrast
to the other three classes of canonical histones, H2A proteins have both N– and C–terminal
tails. Typically, the C–terminal sequences of the H2A variants are the most diverse while
the core area is conserved (Figure 1). In addition, the L1 loop on some of the histone
H2A variants (H2A.Z.1 and H2A.Z.2) or acidic patch (H2A.Bbd) were found to be clearly
different from, and some even vanished within their isoforms [23].

Table 1. Table showing H2A canonical histone and all the 19 mammalian H2A variants described to
date in mammalian species.

Core Histone (Canonical Histone) Histone Variants

H2A

H2A.X
H2A.Z, H2A.Z.1, H2A.Z.2, H2A.Z.2.2

macroH2A: macroH2A1, macroH2A1.1,
macroH2A.1.2, macroH2A2

shortH2A (sH2A): H2A.R, H2A.Bbd/H2A.B,
H2A.L/H2A.L.1, H2A.P, H2A.Q

H2A.L.2, H2A.L.3
H2A.22/H2A.J
H2A.1, H2A.2

3.1. H2A.X—Good Helper in DNA Damage Repair

H2A.X was first identified in the 1980s. It belongs to the heteromorphous class and is
found in all eukaryotes [10,24]. It is highly conserved from yeast to human, with 143 amino
acids in length and has a molecular weight of −15 kDa [24]. H2A.X is a well-studied
variant that plays a critical role in preserving the genome integrity, through taking part in
DNA double strand break (DSB) repairing processes to repair DNA damage induced by
either chemical, ionizing radiation, or homologous recombination during meiosis [25]. One
unique feature of H2A.X is the presence of the SQ motif in the C–terminal region.

Mammalian H2A.X has two SQ motifs (human: TQ, SQ, mice: SQ, SQ) [26]. Upon
DNA damage, Serine 139 (S139), which is within the SQE motif, is phosphorylated by
DNA damage signaling protein kinases, for instance, Ataxia Telangiectasia Mutated (ATM),
ATM-Rad3-related (ATR) and DNA-dependent Protein Kinase (DNA-PK) in the Phospho-
inositide 3-kinase (PI3K) pathway, yielding Gamma-H2A.X (γ-H2A.X) [26,27]. Of note,
S139 phosphorylation is not necessary for the deposition of H2A.X at DNA repair sites [28].

When DNA double strand break (DSB) is detected, H2A.X is recruited to the DNA
damage site by the histone chaperone Facilitate Chromatin Transcription (FACT) [29]. Re-
cent studies demonstrated that H2A.X associated factor contains FACT, DNA-PK, PARP1
and other proteins that are required for DNA damage repair. Phosphorylation of H2A.X by
DNA-PK causes conformational changes in the nucleosome, FACT complex thereby primar-
ily catalyzes the exchange activities for H2A and H2A.X. Alternatively, ADP-ribosylation
of SPT16 (one of the subunits of FACT), which is driven by Poly (ADP-ribose) Polymerase
1 (PARP1), greatly hindered exchange activities [30]. Importantly, accumulation of H2A.X
at repair sites will markedly reduce upon downregulation of SPT16. This illustrated that
SPT16 is required to facilitate new H2A.X deposition at repair sites through binding to-
wards Proliferating Cell Nuclear Antigen (PCNA) to the PCNA-interacting protein (PIP)
box that it harbors [28,31].
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variants. (GeneBank accession numbers: H2A.X “KAI4074518”; H2A.Z “NP_002097”; H2A.Z.1 

Figure 1. Proteins sequences alignment comparison of all the “Homo sapiens” found histone
H2A variants. (GeneBank accession numbers: H2A.X “KAI4074518”; H2A.Z “NP_002097”;
H2A.Z.1 “KAI2535323”; H2A.Z.2 “Q71UI9”; MacroH2A.2 “AF151534”; MacroH2A1.1 “AF044286”;
MacroH2A1.2 “AF041483”; H2A.Bbd/H2A.B “AAL01652”; H2A.P “KAI3999235”; H2A.1 “P0C0S8”;
H2A.2 “NP_003507”. Proteins sequences of H2A.Z.2.2 please refer to (Bönisch et al., 2012) pub-
lished paper.
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With the deposition of new H2A.X to DSB sites, phosphorylation occurs and the
formation of γ-H2A.X can be quickly distributed along the chromosome from DSB sites,
spread either bidirectionally or asymmetrically depending on whether DSB is within
the topologically associating domains (TADs) or at the TADs border respectively [32].
The spreading creates a DNA damage repair (DDR) platform by initiating a cascade and
enlisting many DNA repair components, such as Mediator of DNA damage Checkpoint 1
protein (MDC1), Mre11-Rad50-Nbs1 (MRN) complex, p53 Binding Protein 1 (53BP1), and
Breast Cancer Type 1 Protein (BRCA1) [33,34]. Upon completion of this platform, γ-H2A.X
will be dephosphorylated by Wild type p53 Induced Phosphatase 1 (Wip1) or displaced by
histone exchange [35].

Phosphorylation of H2A.X can also occur on tyrosine 142 (Y142) driven by William
Beuren Syndrome Transcription Factor (WSTF) kinase in unstressed cells [36]. EYA1 and
EYA3-mediated dephosphorylation of Y142 occurs at DSB to facilitate precise localization
of DNA repair factors, which would otherwise result in the recruitment of apoptosis-
promoting components [36–38].

Interestingly, H2A.X is not only recruited to the chromatin during DNA damage repair
(DDR), it also replaces canonical histones in a DSB-independent manner. A recent chromatin
immunoprecipitation sequencing (ChIP-seq) on mammalian cells revealed that H2A.X,
prior to phosphorylation, already forms uniformly distributed clusters within the nuclear
volume, and are especially enriched in sub-telomere regions and active transcription start
sites (TSS) in replicating cells [39,40]. While in mouse pluripotent stem cells (PSCs), H2A.X
aggregates around extraembryonic lineage genes [40]. Future research is needed to address
this issue because the underlying mechanisms governing the distribution of clusters are
yet elucidated.

3.1.1. Non-DDR Function of H2A.X

The functions of H2A.X are not confined to DDR. H2A.X is also involved in the
regulation of mouse Embryonic Stem Cells (mESCs) proliferation independent of DDR
(Table 2). Deposition of H2A.X to rDNA (ribosomal DNA) promoters of mESCs recruits
NoRC (Nucleolar Remodeling Complex) to the chromatin to limit mESC proliferation by
silencing rRNA transcription [41]. Furthermore, H2A.X knockout (KO) mice, albeit, shows
genomic instability, impairment of DNA repair, growth retardation, immune deficiency and
even infertility in male mice [42]. The incapacity of sex body formation by condensation
of H2A.X-deficient spermatocytes from X and Y chromosome is proposed as the cause of
infertility, leading to failure of initiating Meiotic Sex Chromosome Inactivation (MSCI) [43].
In addition, H2A.X can regulate the proper expression of Zygotic Genome Activation
(ZGA) genes and Transposable Elements (TE) to allow the establishment of totipotency of
mESCs [44]. In human, γ-H2A.X was determined to regulate the fate of human Pluripotent
Stem Cells (hPSCs) and progenitor cells. If the level of γ-H2A.X is sustained, hPSCs
will have an enhanced fate towards neural development while leukemic progenitors’
hematopoiesis will be suppressed and vice versa [45].

In non-mammalian eukaryotes, H2A.X also manifests its role in regulating zygotic
cell division and development of early embryos. H2A.X-F, a H2A.X isoform found only in
aquatic species such as Danio and Xenopus, is expressed exclusively in late-stage oocyte,
eggs, and early embryos [46]. As our review only focuses on mammalian H2A variants,
more detailed information on full eukaryotic histone variants should refer to other pub-
lished research articles.

3.1.2. H2A.X Role in Cancers–Tumor Suppressor

The crucial role of H2A.X in DDR qualifies it as a tumor suppressor. Indeed, H2A.X
has a postulated role in cancer progression and metastasis (Tables 2–4). In a p53-null
background, heterozygous loss of H2A.X can ameliorate genome instability and incidence
of cancer. Furthermore, homozygous loss of H2A.X (11q23) will cause cancer to arise
earlier than its heterozygous counterpart. The suggested mechanism for this result is the
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failure of damage-induced foci formation and co-localize to pre-existing γ-H2A.X platform,
hence lowering the DSB signaling efficiency. With that, H2A.X-deficient cells are more
sensitive to DNA damaging agents and such H2A.X mutations are being observed in a
number of cancers, such as sarcomas, brain tumor, neck squamous cell carcinoma and are
predominantly prone to B and T cell lymphomas [47,48].

Table 2. Histone variants’ functions, alterations, and role in cancers. This table summarized all the
19 histone H2A variants’ primary and additional functions, alterations consequences and their role
play in different cancer types.

Variants’ Name Primary Functions Other Functions Role and Alterations in Cancers

H2A.X DNA damage repair

1. Regulate and define mESCs
proliferation

2. Immune response

3. Growth

4. Reproduction

5. Establishment of mESCs
totipotency

6. Regulate fate of hPSCs and
progenitor cells

Alterations’ consequences

P53−/− heterozygous loss: genome instability

P53−/− homozygous loss: early cancer formation,
impairment of DNA repair, growth retardation,

immune deficient and infertility

Mutations observed in sarcomas, brain tumor, neck
squamous cell carcinoma, B and T cell lymphomas

Alterations in phosphorylation site of H2A.X
(Tyr39)

Role in cancer: Tumor suppressor

Regulate cancer progression and metastasis
(breast, ovarian cancers, HCC, and CRC)

H2A.Z Regulator of gene
transcription

1. DNA replication

2. DNA damage repair

3. Cell lineage differentiation

4. Chromosome aggregation

5. Neuronal development,
cognitive function, memory

processing

Alterations’ consequences

H2A.Z+/− heterozygous loss: embryonic lethality
in high eukaryotes, cell cycle arrest

Role in cancers: Oncogenic variants

Regulate cell proliferation and metastasis (ER
positive breast cancer, CRC, liver, lung, prostate,

metastatic melanoma, PDAC and bladder)

H2A.Z.1 Transcription initiation
and elongation

Mouse early embryonic
development

Alterations’ consequences

H2A.Z.1 KO: mouse early embryonic lethality, cell
cycle arrest

Role in cancers: Oncogenic variants

Regulate tumorigenesis and metastasis (HCC and
ICC)

H2A.Z.2 Gene regulation Regulate cell proliferation and
apoptosis

Alterations’ consequences

H2A.Z.2 KO: Reduced cell proliferation but
increase apoptosis, cell cycle arrest

Role in cancers: Oncogenic variants

Regulate cell proliferation and metastasis
(aggressive melanoma, PDAC)
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Table 2. Cont.

Variants’ Name Primary Functions Other Functions Role and Alterations in Cancers

H2A.Z.2.2 Destabilizing
nucleosome Unknown

Alterations’ consequences

H2A.Z.2.2 KO: Cell cycle arrest

Role in cancers: Oncogenic variants

Regulate cell proliferation and metastasis (PDAC)

MacroH2A1
Maintainer of

heterochromatin
architecture

1. Stabilizing XCI

2. Regulate memory
processing and formation

Role in cancers: Tumor suppressor

Regulate cell proliferation, migration, and
metastasis (melanoma, breast, liver, lung, bladder,

cervical, ovarian cancers, and CRC)

MacroH2A2

Maintainer of
heterochromatin
architecture and

chromatin organization

1. Stabilizing XCI

2. Reprogramming barrier in
fully differentiated cells

Role in cancers: Tumor suppressor

Regulate cell proliferation, metastasis, and gene
expressions

MacroH2A1.1
Maintainer of

heterochromatin
architecture

1. NAD+ metabolism

2. ADP-ribose signaling

3. DNA damage repair
(NHEJ)

Role in cancers: Tumor suppressor

Regulate cancer metastasis and cell proliferation

MacroH2A1.2
Maintainer of

heterochromatin
architecture

1. Inhibit PARP-1 enzymatic
activity

2. Mediating homologous
repair (HR)

Role in cancers: Tumor suppressor

Regulate cell proliferation, inhibit cancers induced
osteoclastogenesis

H2A.R Spermatogenesis Unknown Unknown

H2A.Bbd Transcriptional
regulation

Controlling preimplantation
embryonic development

Role in cancers: Oncogenic variants

Cells with shorter S phase, increased sensitivity to
DNA damage

Regulate gene transcription regulation and cell
proliferation (HL, BLCA, UCEC, cervical

squamous cell carcinomas and endocervical
carcinoma)

H2A.P Unknown Unknown Role in cancers: Oncogenic variants
(Unknown functions)

H2A.Q Unknown Unknown Role in cancers: Oncogenic variants
(Unknown functions)

H2A.L Unknown Unknown Role in cancers: Oncogenic variants
(Unknown functions)

H2A.L.2 Spermatogenesis, male
mouse fertility Unknown

Alterations’ consequences

H2A.L.2 KO: complete mouse fertility

Role in cancers: Oncogenic variants
(Unknown functions)

H2A.L.3 Unknown Unknown Unknown



Int. J. Mol. Sci. 2024, 25, 3144 8 of 37

Table 2. Cont.

Variants’ Name Primary Functions Other Functions Role and Alterations in Cancers

H2A.22 (H2A.J)
Stimulate inflammatory
signaling cascade during

DNA damage

Tissues or organs specific
functions regardless of aging

Role in cancers: Oncogenic variants

In luminal type B breast cancer, KIRC, aggressive
melanoma, brain

Role in cancers: Tumor suppressor
In prostate, bladder cancers and all subtypes of

breast cancer excluding luminal A

Regulate gene expressions (ER positive breast
cancer and prostate cancer)

Mediate chemoradiotherapy resistance through
signaling pathways (CRC, HCC, and glioblastoma)

H2A.1
Spermatogenesis, iPSCs

generation and early
embryogenesis

Unknown

Alterations’ consequences

H2A.1 KD: perturbation in genome
reprogramming

Role in cancers: Oncogenic variants

Regulate cell proliferation (HCC, CRC)

H2A.2

Mice neurons
differentiation,

embryogenesis, and
aging

Unknown

Role in cancers

Hyper-methylated in HCC (Unknown functions)

Varying degree of PTMs

Abbreviations: mESCs: mouse embryonic stem cells; HCC: hepatocellular carcinoma; CRC: Colorectal cancer;
hPSCs: human Pluripotent Stem Cells; ER: estrogen receptor; PDAC: pancreatic ductal adenocarcinoma; KO:
knockout; ICC: intrahepatic cholangiocarcinoma; XCI: X chromosome inactivation; NHEJ: non-homologous end
joining; HR: homologous repair; HL: Hodgkin’s lymphoma; BLCA: urothelial bladder carcinomas; UCEC: Uterine
Corpus Endometrial Carcinomas; PARP-1: Poly(ADP-ribose) Polymerase 1; KIRC: Kidney Renal Cell Carcinoma;
KD: knockdown; iPSCs: Induce Pluripotent Stem Cells; PTMs: post-transcriptional modifications.

Overexpression of H2A.X is associated with several diseases, the most well-studied are
ovarian cancer (OC) and breast cancer [49,50]. High levels of H2A.X are usually associated
with upregulation of the PI3K/Akt (Protein kinase B)/Mammalian Target of Rapamycin
(mTOR) pathway. This signaling pathway is used to maintain a balance for regular cellular
behavior, while activated AKT is used to correlate with mTOR-phosphorylated positivity
and is likely to contribute to tumorigenesis by promoting cell proliferation and protein
synthesis [51]. With evidence, increased AKT pathways by overexpressing H2A.X assist
cancer cells to escape from apoptosis and continuously obtain nutrients to sustain their pro-
liferation [51]. Surprisingly, H2A.X is found selectively overexpressed in normal adjacent
tissue (NAT) rather than its origin of malignancy in OC. Extracellular matrix remodeling
and epithelial-to-mesenchymal transition (EMT) are observed in these NAT, suggesting
that H2A.X may exert a role in helping NAT to obtain well-prepared via cross-talking with
cancer microenvironment (Figure 2A) [52]. However, the underlying principles of how a
high level of H2A.X in NAT can lead to EMT stays unclear.
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Table 3. Histone variants’ tissues expression location, histone chaperones and remodelers and clin-
ical/pathological importance as biomarker/prognostic indicator. This table summarized all the
19 H2A variant’s’ tissues expression location, their corresponding histone chaperones, or remodelers
responsible for deposition or exchange in or out the chromatin, and their clinicopathological impor-
tance as a prognostic indicator or biomarker for different types of cancers at vary expression levels.

Variants’
Name Location of Tissues Chaperone and

Remodeler
Clinicopathological Importance/Prognostic

Value/Biomarker in Cancer Types

H2A.X All tissues FACT

High γ-H2A.X:

1. Biomarker for defect in DDR

2. Identified in cervical cancer, CRC, melanoma and OC

3. Access chemotherapy or radiotherapy effectiveness

4. Evaluate patient’s response to chemo-drug treatment and
radiosensitivity

5. Predict high risk or early detection of cancers

H2A.Z

All tissues (pericentric
heterochromatin in

undifferentiated cells,
TSS, centromere and

enhancer regions)

ANP32E

SRCAP

INO80

High H2A.Z level:

1. Identified in breast cancer, CRC, liver, lung, prostate, bladder
cancer, PDAC and metastatic melanoma

2. Poorer survival prediction

3. Therapeutic target for chemotherapy (cisplatin)

4. As biomarker for early PDAC and CRC detection

H2A.Z.1
All tissues (regulatory

regions and
heterochromatin)

ANP32E

SRCAP

INO80

P400

High H2A.Z.1 level:

1. Identified in breast tumor, PDAC and HCC

2. Indicator for lymph node metastasis and poorer survival
prediction

3. Indicator for predicting which treatments patients respond
the best

H2A.Z.2
All tissues (regulatory

regions and
heterochromatin)

P400

SRCAP

High H2A.Z.2 level:

1. Identified in PDAC

2. Not known for any prognostic and biomarker value

H2A.Z.2.2
All tissues (but

predominantly in
human brain)

TIP60

P400

SRCAP

High H2A.Z.2.2 level:

1. Identified in PDAC only

2. Not known for any prognostic and biomarker value

MacroH2A1
All tissues (Constitutive

and facultative
heterochromatin)

E3 ligase
Cullin3SPOP

High macroH2A1 level:

1. Indicator of worst prognosis in different breast cancer types

2. Diagnostic indicator for HCC and lung cancer recurrence

3. Indicator for poor outcome prediction in HCC
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Table 3. Cont.

Variants’
Name Location of Tissues Chaperone and

Remodeler
Clinicopathological Importance/Prognostic

Value/Biomarker in Cancer Types

MacroH2A2
All tissues (Constitutive

and facultative
heterochromatin)

Unknown

High macroH2A2 level:

1. Indicator of worst prognosis in different breast cancer types

2. Indicator of recurrence free survival in anal neoplasm

Low macroH2A2 level:

1. Indicator of high-grade and faster recurrence of anal
neoplasm

MacroH2A1.1
All tissues (Constitutive

and facultative
heterochromatin)

Unknown

High macroH2A1.1 level:

1. Biomarker for TNBC

2. Indicator of poorer survival prediction of TNBC

3. Biomarker for senescent cells in tumor

Low macroH2A1.1 level:

1. Diagnostic indicator for lung cancer recurrence

MacroH2A1.2
All tissues (Constitutive

and facultative
heterochromatin)

ATRX
High macroH2A1.2 level:

1. Biomarker for HER2 positive breast cancer

H2A.R Testis-specific Unknown Unknown

H2A.Bbd All tissues (euchromatin
and testis) NAP1

High H2A.Bbd level:

1. Biomarker for HL, BLCA, UCEC, DLBCLs, etc. (required
further research)

H2A.P
Originated on portion of

X chromosome,
testis-specific

Unknown Unknown

H2A.Q In testis of dogs and pigs
only Unknown Unknown

H2A.L
Lost in human,

conserved in mouse,
testis-specific

Unknown Unknown

H2A.L.2 Lost in human,
testis-specific Unknown Unknown

H2A.L.3 Lost in human,
testis-specific Unknown Unknown

H2A.22
(H2A.J)

In senescent cells’
chromatin, aging mice in

tissue-specific manner
and human skin

Unknown

High H2A.J level:

1. Poor prognostic marker in glioblastoma, KIRC, brain cancer
and aggressive melanoma

2. Indicator for increasing survival rate in bladder, prostate and
all subtypes of breast cancer

3. Biomarkers for senescent stem and aging skin cells

4. Indicator for cancer that exhibit chemotherapy resistance
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Table 3. Cont.

Variants’
Name Location of Tissues Chaperone and

Remodeler
Clinicopathological Importance/Prognostic

Value/Biomarker in Cancer Types

H2A.1
X chromosome,

autosomes, testis,
oocytes and zygote

NPM2

High H2A.1 level:

1. Biomarker for HCC and colon cancer detection (required
further research)

H2A.2 Unknown Unknown
High H2A.2 level:

1. Biomarker for colon cancer detection (required further
research)

Abbreviations: DDR: DNA damage repair; CRC: colorectal cancer; OC: ovarian cancer; HCC: hepatocellular
carcinoma; FACT: Facilitate Chromatin Transcription; ANP32E: Acidic Nuclear Phosphoprotein 32 Family Member
E; ANP32B: Acidic Nuclear Phosphoprotein 32B; INO80: human Inositol auxotrophy 80; SRCAP: Snf2 Related
CREBBP Activator Protein; NAP1: Nucleosome Assembly Protein 1; TSS: transcription start site; PDAC: pan-
creatic ductal adenocarcinoma; TNBC: Triple Negative Breast Cancer; HER2: Human Epidermal Growth Factor
Receptor 2; HL: Hodgkin’s lymphoma; BLCA: urothelial bladder carcinomas; UCEC: Uterine Corpus Endometrial
Carcinomas; DLBCLs: Diffuse Large B-cell Lymphomas; KIRC: Kidney Renal Cell Carcinoma.

Table 4. Significance of the altered expression of histone variants in various cancer types. This table
summarized the function of all 19 H2A variants according to the difference in their expression levels
in cancer.

Variants’
Name

Altered Expression Levels Function in Cancer Types

Low Expression Levels High Expression Levels

H2A.X

1. Upregulate key EMT-related
transcription factors, Slug and ZEB1 →

Induction of EMT and invasiveness

2. Hypoxic dependent H2A.X reduction
will boost angiogenic and

EGFR/HIF-1α/VEGF signaling pathway

1. Upregulation of PI3K/Akt/mTOR pathway → promote cell
proliferation, escape apoptosis protein synthesis and extracellular

matrix remodeling

2. Elevated Tyr39 phosphorylation of H2A.X → promote cell
proliferation, metastasis and poorer cell differentiation

H2A.Z /

1. Promote cell proliferation in ER positive breast cancer and
prostate cancer; promote lymph node metastasis

2. ER positive breast cancer: upregulate ERα and c-Myc to
enhance cell proliferation through increasing transcription of cell

cycle genes

H2A.Z.1 1. Promote EMT through TGF-β signaling
pathway

1. Suppressing cell apoptosis and negative cell cycle regulators

2. Upregulate cell cycle genes

3. Promote cell cycle progression in PDAC

H2A.Z.2 /

1. Upregulate E2F target genes’ transcription activities →
promote melanoma progression and metastasis

2. Hyper-acetylation of H2A.Z.2 → increase binding with BRD2
to promote cell proliferation

3. Promote cell cycle progression in PDAC

H2A.Z.2.2 / /

MacroH2A1 1. Promote cancer cell proliferation,
migration and metastasis in melanoma 1. Effectively inhibit EMT induction to prevent metastasis

MacroH2A2 1. Promote cancer cell proliferation,
migration and metastasis in melanoma

1. Repress self-renewal genes expressions

2. Impede metastasis in DCCs by inhibiting cell cycle and
oncogenic signaling programs
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Table 4. Cont.

Variants’
Name

Altered Expression Levels Function in Cancer Types

Low Expression Levels High Expression Levels

MacroH2A1.1 1. Promote cancer cell proliferation,
migration and metastasis in melanoma

1. Effectively inhibit EMT induction and prevent further
mesenchymal morphology of cancer cells

MacroH2A1.2 1. Promote cancer cell proliferation,
migration and metastasis in melanoma

1. Inhibit breast cancer induced osteoclastogenesis by repressing
LOX gene through raising H3K27me3 level for gene silencing

2. Inhibit prostate cancer induced osteoclastogenesis by direct
interactions with HP1α and H1.2, inactivate LTβ gene

H2A.R / /

H2A.Bbd /
1. Cells with shorter S phase and promote cell proliferation in HL

2. Upregulate rDNA expression to promote cell proliferation

H2A.P / /

H2A.Q / /

H2A.L / /

H2A.L.2 / /

H2A.L.3 / /

H2A.22 (H2A.J) /

1. Modulate estrogen and metastasis-regulated genes in
ER-positive breast and prostate cancers

2. Causing chemoradiotherapy resistance in CRC through
regulating MAPK7, HIV Nef pathway and inflammatory

pathways

3. Causing chemotherapy resistance in HCC through accelerating
PI3K/Akt and JAK/STAT; TNF-α/NF-κB, EMT and IL-6/STAT3

signaling pathway to control cell proliferation, migration and
anti-apoptosis response

4. Causing radiotherapy and drug resistance in glioblastoma
through activating TNF-α/NF-κB pathways, contacting with

IL-6/STAT3 and HDAC3

H2A.1 /

1. Enhance gene transcription in HCC to promote cell
proliferation

2. Activation of malignancy related genes

3. Hepatocytes reprogramming → further promote HCC
development

H2A.2 / 1. Expressed in preneoplastic stages

Abbreviations: EMT: epithelial-to-mesenchymal transition; PI3K: Phosphoinositide 3-kinase; Akt: Protein kinase
B; mTOR: Mammalian Target of Rapamycin; EGFR/HIF-1α/VEGF: Epidermal Growth Factor Receptor/Hypoxia-
Inducible Factor 1 alpha/Vascular Endothelial Growth Factor; ER: estrogen receptor; ERα: estrogen receptor alpha;
PDAC: pancreatic ductal adenocarcinoma; TGF-β: Transforming Growth Factor—beta; BRD2: Bromodomain-
containing protein 2; DCC: Disseminated Cancer Cells; LOX: Lysyl Oxidase; HP1α: SUMOylated Heterochro-
matin Protein 1-Alpha; LTβ: Lymphotoxin Beta; CRC: Colorectal cancer; HCC: hepatocellular carcinoma;
MAPK7: Mitogen-activated Protein Kinase 7; HIV: Human Immunodeficiency Virus; Nef: Negative Factor;
JAK/STAT: Janus Kinase/Signal Transducers and Activators of Transcription; TNF-α/NF-κB: Tumor Necrosis
Factor—Alpha/Nuclear Factor Kappa-light-chain-enhancer of activated B cells; IL-6/STAT3: Interleukin 6/Signal
Transducers and Activators of Transcription 3; HDAC3: Histone Deacetylase 3.
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factors expressions, which further enhance EMT and invasiveness of cancer cells. In HCC, H2A.X 
levels decrease under hypoxia condition, γ-H2A.X levels thereby increase and regulate multiples 
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progression. Of note, S139 phosphorylation is vital for normal genome stability. However, 

Figure 2. Schematic illustrations showing the role of overexpressed and down-regulated expressions
of H2A.X in different types of cancers. (A): H2A.X is overexpressed in breast cancer and the normal
adjacent tissues (NAT) in ovarian cancers. High levels of H2A.X used to activate downstream
PI3K/Akt/mTOR signaling pathways to gain advantage for cell growth and cell proliferation in
breast cancer. The underlying mechanisms for how the high H2A.X levels in NAT in ovarian cancer
lead to EMT and extracellular matrix remodeling remains obscure. (B): H2A.X is downregulated in
both CRC and HCC. Decreases in H2A.X in CRC can increase Slug and ZEB1 transcription factors
expressions, which further enhance EMT and invasiveness of cancer cells. In HCC, H2A.X levels
decrease under hypoxia condition, γ-H2A.X levels thereby increase and regulate multiples signaling
pathways (EGFR/HIF-1α/VEGF) to sustain angiogenesis and nutrients uptake for cell growth and
proliferation.
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EMT in colon cancer has been associated with silencing or downregulation of H2A.X.
This is consistent with the suggestion that H2A.X is a regulator of EMT. Low expression
of H2A.X upregulated the expression of several key EMT-related Transcription Factors
(TFs), Slug and ZEB1 significantly, these two TFs turn out to cooperate to induce EMT pro-
gramme and invasion [53]. Moreover, hypoxic-dependent reduction in H2A.X abundance
in hepatocellular carcinoma (HCC) will increase γ-H2A.X level, consequently promoting
angiogenic activity and Epidermal Growth Factor Receptor/Hypoxia-Inducible Factor 1
alpha/Vascular Endothelial Growth Factor (EGFR/HIF-1α/VEGF) signaling pathway to
gain nutrients (Figure 2B) [54].

Apart from the amount of H2A.X, the site of phosphorylation also influences cancer
progression. Of note, S139 phosphorylation is vital for normal genome stability. However,
newly identified phosphorylation in tyrosine 39 (Tyr39) is seen in a variety of cancers as well.
Atypically elevated Tyr39 phosphorylation level positively correlates with the proliferation
rate of cancer cells, poorer differentiation, higher histological grade, size of tumor, higher
risk of metastasis, and lower survival rate [55]. As a result, these studies remarkedly
illustrated that a proper expression and regulation of H2A.X securely safeguard our genome
stability and function as an essential component in tumor suppressive mechanisms.

3.1.3. H2A.X–A Potential Prognostic/Biomarker for Cancers

The major role of H2A.X in DNA damage repair positions it as attractive candidate
as a biomarker. In the past decades, after identifying γ-H2A.X as a universal marker for
DSB, its mRNA and protein phosphorylation levels are highly valued and to be applied
in the diagnosis of cancers and survival outcome prediction, which indicated a defect in
DDR (Table 3). γ-H2A.X is continuously being identified in multiple cancers, including
cervical cancer, colorectal cancer (CRC), melanoma and OC, hence its level is credible
enough to assess the effectiveness of cancer therapies, like chemotherapy and radiotherapy
nowadays [56]. γ-H2A.X therefore serves as an indicator to monitor the radiation and
chemo-drug treatment-induced DSB in cancer patients, so as to evaluate patients’ radiosen-
sitivity, together with how patients respond to the drug treatment and try to minimize the
side effects caused by chemotherapy [57–59].

A widely used approach in vitro is to investigate the amount of γ-H2A.X induced
in peripheral blood lymphocytes after ionizing radiation to predict the high risk or early
detection of cancers, such as CRC and bladder cancer [60,61]. Usually, high or constitutive
accelerated levels of γ-H2A.X point toward the severeness of cancer stage and tumor sizes.
Not only limited to in vitro sensing, tissue-specific genotoxicity can also be measured upon
the γ-H2A.X signals by immunofluorescence in vivo. Plappert-Helbig et al. revealed that
staining of γ-H2A.X can surpass standard comet assay in identifying lesions caused by
genotoxicants [62,63]. This may also provide a new platform for future DNA damage
quantification in cancer types.

3.2. H2A.Z–Regulator of Gene Transcription

H2A.Z is another heteromorphous class of H2A variants that was identified within the
same period as H2A.X. It is 128 amino acids in length and shares only 60% similarity with
the canonical H2A. Heterozygous deletion of H2A.Z is embryonically lethal, underlining its
importance in early embryo development [64]. H2A.Z plays a pivotal role in establishing
an intricate pattern of gene expression necessary for proper early development in mam-
mals [64,65]. H2A.Z is highly abundant and enriched in the pericentric heterochromatin of
undifferentiated cells like mESCs, but not in differentiated mouse or human cells. H2A.Z
has diverse functions ranging from transcriptional regulation to DNA replication, DNA
repair, cell lineage differentiation, chromosome aggregation and neuronal development
(Table 2) [66].

In mammals, H2A.Z localizes around transcription start site (TSS), centromere and
enhancer region. Accumulating evidence suggested that distinct PTMs of H2A.Z give rise
to a variety of functions. Acetylated H2A.Z enriched in promoter regions are known to
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participate in gene regulation [67–70]. TIP60-mediated acetylation of H2A.Z destabilizes
the nucleosome to facilitate transcription and recruitment of regulatory factors [68,71].
H2A.Z found in the centromere and H3K27me3-marked facultative heterochromatin of the
inactive X chromosome (Xi) are mono-ubiquitinated at the C–terminal (K119, K120, K121
and K125) and participate in transcriptional repression [72].

On the structural level, H2A.Z-containing nucleosome is less stable and has higher
DNA accessibility compared with canonical nucleosome [73]. It is suggested to be the
consequence of an extended acidic patch and L1 loop changes arose when it formed dimer
with H2B and interacted with the whole nucleosome complex [74–76]. Recent reports
revealed that the C–terminal tail of H2A.Z is required for mediating the DNA unwrapping
up to 40 base pairs, while N–terminal tail modulates nucleosome gapping [77]. On the other
hand, FRET analysis revealed a higher stability of H2A.Z-nucleosome, whilst formation
of chromatin fiber [67,74,76,78]. The functional role of H2A.Z remains controversial with
multiple contradictory results, as it can have both activate and suppressive functions in
transcriptional regulation. A possible reason for such a dynamic functional role in H2A.Z
mainly depends on first, its interaction with different variants partners within a nucleosome
context and second, PTMs [79,80].

Two H2A.Z isoforms are being identified and are well-conserved in chordates, they are
H2A.Z.1 (H2AFZ), and H2A.Z.2 (H2AFV), which differ from H2A.Z by 3 amino acids (14th
amino acid: Threonine in H2A.Z.1, Alanine in H2A.Z.2; 38th amino acid: Serine in H2A.Z.1,
Threonine in H2A.Z.2; 127th amino acid: Valine in H2A.Z.1, Alanine in H2A.Z.2.) (Figure 1).
Although no significant structural differences have been reported between the two iso-
forms, their L1 loop exhibit structural variation. This is suggested with an evolutionary
substitution in the 38th amino acid that specially located within the histone-fold domain
(HFD) and the flexibility of the L1 loop in preventing to clash with canonical H2A in het-
erotypic nucleosomes [23,70]. Although the two isoforms share high similarity structurally,
the functions in mammals are non-redundant. While H2A.Z.1 knockout is embryonically
lethal; H2A.Z.2 knockout reduces cell proliferation promote apoptosis [67,70,80]. H2A.Z.1
and H2A.Z.2 have recently been reported they play independent, isoforms-specific and
tissue-specific role in gene regulation and neuronal development. H2A.Z.1 even has a dual
role in interacting with RNA polymerase 2 for transcription initiation and elongation [81].

H2A.Z.2.2 is a recently identified primate-specific variant of H2A.Z.2 [82]. H2A.Z.2.2
is expressed in all human tissues but is predominately found in human brain [82]. The
features that set H2A.Z.2.2 apart from H2A.Z is a shortened C–terminal and 6 amino acids
differences (Figure 1).

The spliced variants caused an up to date least stable nucleosome complex. A sug-
gested reason for H2A.Z.2.2-nucleosome severely destabilize is due to a unique docking
domain (lack part of H3/H4 binding domain) of this spliced variant due to its much shorter
C–terminal. Of note, only when the 6 amino acids are present on the docking domain can
weaken the chromatin association [83]. Majority of H2A.Z.2.2 is freely diffused in nucleus,
only a limited amount is being incorporated into nucleosome via TIP60 and SRCAP chap-
erone in a regulatory manner. The already known function of H2A.Z.2.2 is limited to its
ability in destabilizing nucleosomes, further details are yet to be explored.

3.2.1. H2A.Z Functions Other Than Gene Regulation

Other than gene regulation, recent studies also pointed out that the detection of H2A.Z
at centromere guided the localization of SUMOylated Heterochromatin Protein 1-Alpha
(HP1α), which contributes to chromosome segregation and chromatic compaction [72,84,85].
H2A.Z also takes part in DNA repair process (Table 2). The deposition of H2A.Z is me-
diated by the Snf2 Related CREBBP Activator Protein (SRCAP) complex in mammals.
Nucleosome Assembly Protein 1 (NAP1) and FACT also recognize H2A.Z-H2B dimer
but do not show a high preference over canonical dimer. Recently, a human chaperone
Acidic Nuclear Phosphoprotein 32 Family Member E (ANP32E) is reported and found
preferentially bind to H2A.Z C–terminal docking domain to facilitate the deposition and re-
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moval of H2A.Z [86,87]. ANP32E and human Inositol auxotrophy 80 (INO80) are recruited
to the site of DSB at early stages of DDR and evict H2A.Z upon completion of DNA re-
pair [88–91]. In addition, H2A.Z has been shown in relation to cognitive function, memory
processing and neuronal development as aforementioned by inhibiting its incorporation
or depletion [92–94]. This coincides with the tissue-specific enrichment of H2A.Z in the
brain tissues. Furthermore, H2A.Z is shown to be a key regulator in coordinating EMT by
having a dual function in both activating and repressing epithelial or mesenchymal related
genes in a depletion manner [95].

H2A.Z is involved in cell cycle regulation by indirect regulation of related genes [96].
ChIP-seq in mESCs revealed H2A.Z localization at replication origin in mammals [97].
H2A.Z also plays indispensable role in ESCs and cell lineage differentiation [98]. Depletion
of H2A.Z in mESCs can lead to loss of pluripotency and premature differentiation. H2A.Z
regulates gene expression in ESCs by facilitating the binding of pluripotency factors to
lineage-specific genes promoters, and downstream recruitment of Polycomb Repressive
Complex 2 (PRC2). For cell lineage differentiation, H2A.Z has been implicated in variety of
lineages including, but not limited to, cardiomyocytes [99], melanocytes (by H2A.Z.2) [100],
myoblast [101] and hematopoietic stem cells [102].

3.2.2. H2A.Z Role in Cancers–Oncogenic Variants

H2A.Z is highly expressed in multiple cancers for instance, breast, colorectal, liver,
lung, prostate, metastatic melanoma, pancreatic ductal adenocarcinoma (PDACs) and
bladder cancer [103–110]. Overexpression of H2A.Z promotes cell proliferation in both
estrogen receptor (ER) positive breast cancer and prostate cancer [111]. Other than that,
microarray assays and immunostaining in breast tumor revealed high expression of the
H2A.Z.1 isoforms, abundance of which correlated with lymph node metastasis and poorer
survival prediction (Table 4).

The proposed action of H2A.Z in ER positive breast cancer involves upregulation of
estrogen receptor alpha (ERα) and c-Myc to promote proliferation [112,113]. In short, the
overall underlying molecular mechanism is that H2A.Z, ERα and c-Myc form a positive
feedback loop in regulating estrogen receptor signaling. p400 complex assists H2A.Z
incorporation into ERα target promoter in the presence of estrogen, followed by the recruit-
ment of FoxA1 to target enhancers to facilitate target genes’ expression. Activated ERα
will bind to H2A.Z gene promoter to increase H2A.Z variants expression. Interestingly,
proto-oncogene c-myc will simultaneously be upregulated by ERα in response to estrogen
treatment. In line with this, c-Myc is demonstrated to directly regulate and enhance H2A.Z
expression level by binding to H2A.Z promoter, turns out subsequently upregulate the
transcription of cell cycle genes such as cyclin B2, cyclinA2 and PCNA, which correlates
with increasing cell proliferation and division (Figure 3) [111,114].

H2A.Z.1 is implicated in liver tumorigenesis and metastasis. H2A.Z.1 modulates the
expression of key genes in cell cycle and EMT in HCC and intrahepatic cholangiocarcinoma
(ICC) [115,116]. H2A.Z.1 overexpression in liver cancer cells has been deciphered to
suppress cell apoptosis and the expression of negative cell cycle regulators such as p21 and
p27. On the other hand, genes involved in cell cycle progression, such as CDK2, CDK4,
CDK6 and Cyclin/CDK complex (cyclin D1) are upregulated by H2A.Z.1 overexpression,
resulting in pRb hyperphosphorylation and the subsequent loss of its tumor suppressive
activity. Furthermore, when H2A.Z.1 is depleted, its metastatic potential was observed
with a decrease in chemoattractant-stimulated migratory response and fibronectin whilst
an increase in E-cadherin, thereby promote EMT through Transforming Growth Factor–beta
(TGF-β) signaling pathway [106,117].
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Figure 3. Schematic illustration showing positive feedback loop relationship between ERα, c-Myc
and H2A.Z inside nucleus. In the presence of estrogen, ERα and c-Myc transcription factors (TFs) will
simultaneously be upregulated. These two TFs will bind to H2A.Z gene’s promoter to enhance H2A.Z
expressions. H2A.Z is incorporated into promoter of ERα target genes by the p400 complex, FoxA1
is then recruited to the enhancer of ERα target genes, resulting in upregulation of gene expression.
This turns out upregulate the cell cycle genes and increase breast cancer cells proliferation and
cell division.

H2A.Z.2 is implicated in the tumorigenesis of aggressive metastatic melanoma. It
was postulated that H2A.Z.2 promote proliferation of melanoma cells by recruitment of
Bromodomain-containing protein 2 (BRD2) and E2F1 to the promoter region of E2F target
genes, where H2A.Z is known to occupy [118]. It works by controlling E2F target genes’
transcription activities in melanoma cells. Recent studies have revealed that H2A.Z.2
interacts with BRD2, hence H2A.Z.2 levels also raised concurrently [118]. BRD2 together
with E2F1 bind to E2F target genes in a H2A.Z.2-deposition dependent manner, in turn
promote proliferation of melanoma cells. Depletion of H2A.Z.2 resulted in cell cycle arrest
in G1/S phase, accompanied by downregulation of cyclin E and cyclin A and Rb hypo-
phosphorylation. In addition, PTMs of histone H4 and H2A.Z.2 are also partly involved
in driving aggressive melanoma. Hyperacetylation of these two histones enhance the
interaction with BRD2, leading to downstream activation of E2F target genes to promote
cell proliferation [70,118].

It is important to note that all three isoforms of H2A.Z (H2A.Z.1, H2A.Z.2, H2A.Z.2.2)
are highly expressed in PDAC cell lines. Depletion of H2A.Z isoforms resulted in similar cell
cycle arrest in G2/M phase [108]. Although all three isoforms have been implicated in the
tumorigenesis of PDAC, overexpression of H2A.Z.1 and H2A.Z.2 are more potent activators
of oncogenic phenotype, which is consistent with the role of H2A.Z.1 and H2A.Z.2 in cell
cycle progression.

Besides melanoma and PDAC, acetylation of H2A.Z at TSS of active genes can lead to
oncogene activation in prostate cancer. On the contrary, deacetylation of H2A.Z at TSS will
cause tumor suppressor genes silencing [119]. Furthermore, a recent report has revealed
that acetylated H2A.Z can generate new ectopic enhancers, resulting in aberrant gene
transcriptional activation in androgen receptor (AR) dependent prostate cancer [120].
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Collectively, these findings strongly support the oncogenic properties bared by H2A.Z
and its isoforms (Table 2). Given that it takes part in multiple essential biological path-
ways, not only in gene transcriptional regulation but also in orchestrating DNA repair,
chromatin compression, memory processing and even cell lineage commitment, which if
their regulations either being disturbed or altered, tumorigenesis can be progressed.

3.2.3. H2A.Z–Potential Diagnostic Biomarker and Therapeutic Target for Cancers

H2A.Z overexpression has been reported in other cancers and are associated with poor
prognosis (Table 3). The observation that H2A.Z depletion can induce cell cycle arrest and
apoptosis positions it as a potential therapeutic target. Proof-of-concept experiments have
been carried out in ICC and melanoma cell lines. In ICC where high H2A.Z expression
predicts for poor survival, H2A.Z depletion sensitized ICC cell lines to cisplatin treatment.
Cisplastin treatment followed by H2A.Z depletion resulted in apoptosis, inhibition of cell
proliferation, and attenuated EMT [115]. Similar findings were reported in melanoma
cells, where H2A.Z.2 depletion sensitized the cells to targeted therapies and improved
drug efficacy [109]. Nevertheless, PDAC cell lines depleted of H2A.Z remain resistant to
gemcitabine, this suggests that the action of drugs varies and highly depends on the type
of cancers [108].

H2A.Z is also a potential prognostic indicator in cancer in addition to a novel thera-
peutic target. A fascinating viewpoint suggested that H2A.Z epigenetic signals together
with other markers, such as 5MC, H3K9Ac and more were being detected in serum levels
of circulating cell-fee nucleosomes (ccfn). By measuring levels of H2A.Z will indeed be
crucial for early detection of cancer like CRC and PDAC [104]. Moreover, in HCC patients,
H2A.Z.1 is further capable in regulating immune infiltration and T cell differentiation.
Therefore, the measuring of both H2A.Z.1 expression and TP53 status may provide a more
concrete prediction of HCC survival and a comparatively precise treatment to correspond-
ing patients: high H2A.Z.1 are more likely to be sensitive towards immune checkpoint
blockers (ICBs), while low H2A.Z.1 will have a better outcome with radiotherapy and
chemotherapy [121]. Altogether, this fully manifests that H2A.Z is a promising diagnostic
biomarker and a therapeutic target for cancers.

3.3. MacroH2A–Maintainer of Nuclear Organization and Heterochromatin Architecture

MacroH2A was first discovered in 1992 from rat liver nucleosomes [122]. It is an
idiosyncratic histone variant with a tripartite structure—an N–terminus region sharing 64%
amino acid sequence identity with H2A (1–122a.a.), an unstructured but lysine rich H1-like
linker region (123–160a.a.), and lastly, a globular macro domain which size is two times
that of the histone fold region (HFR) (161–371a.a.) [122–125] (Figure 1).

To date, macroH2A1 and macroH2A2, two mammalian macroH2A proteins are re-
ported and encoded respectively by H2AFY and H2AFY2 genes. Notably, two more al-
ternative spliced variants of macroH2A1 exist, they are macroH2A1.1 and macroH2A1.2.
MacroH2A1.2 solely different from macroH2A1.1 in the macrodomain binding pocket
arises from alternative splicing of a mutually exclusive exon 5, allowing macroH2A1.1, but
not macroH2A1.2 the capacity and implications for NAD+ metabolism and ADP-ribose
signaling [126]. Despite a high homology between the two spliced variants, they have
distinct function, which adds further complexity to the roles of macroH2A in different
cellular processes.

In addition to playing a crucial role in maintaining nuclear organization and hete-
rochromatin development, macroH2A also takes part in other molecular processes such as
DNA damage repair and transcriptional repression (Table 2). It acts similarly to a plant-
specific variant, H2A.W, in shielding approximately 10bp of extra-nucleosomal DNA from
being digested by exonuclease 3. This protecting action is mediated by the interaction of its
linker region with the DNA sitting close to the entry or exit site [75,127]. MacroH2A plays
vital role in the structural maintenance of heterochromatin and nucleolar and is therefore
concentrated at constitutive heterochromatin and repetitive DNA sequences. MacroH2A
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maintains heterochromatin architecture by promoting contacts between heterochromatic
repeat and Lamin B1. Depletion of macroH2A resulted in heterochromatin de-condensation
and irregularly shaped and expanded nucleolar. It is believed that the change in nucleolar
morphology is a result of a surge in transcriptional activity of ribosomal DNA [128,129].

It is suggested that macroH2A contributes to genome-wide silencing of the X chromo-
some, as macroH2A (including isoforms) was commonly found to be concentrated on the
inactive X chromosome (Xi) of female mammalian cells referred to as a macro chromatin
body (MCB). Localization of macroH2A to Xi is dependent on X inactive specific transcript
(XIST) lncRNA and two distinct macro-chromatin domains on macroH2A itself [130,131]. X
chromosome inactivation (XCI) requires the maintenance of a repressive status, which was
completed through several repressive mechanisms, including the deposition of macroH2A-
H2B dimers into nucleosomes by Acidic Nuclear Phosphoprotein 32B (ANP32B) histone
chaperone [132,133]. Several studies have revealed that heterotypic macroH2A-H2B dimer
contribute to a more stable octamer formation, this tends to impede transcriptional activity
by propagating into a higher-order chromatin structures, turn out assists in XCI [134,135].
However, macroH2A is non-essential for the initiation of XCI, as the process remains intact
in macroH2A knockout mice [136,137].

All macroH2A isoforms are likely engaged in heterochromatin maintenance, each with
its distinct role. MacroH2A1 is found predominantly at methylated CpG island within
facultative heterochromatin, such as that on the Xi [138]. MacroH2A1 localization to the
Xi is dependent on the ubiquitin E3 ligase Cullin3SPOP (Speckle-type POZ (pox virus and
zinc finger protein) protein) complex, demonstrated by the loss of Xi localization upon
Cullin3 knockdown. Prominent X chromosome reactivation was observed in macroH2A1-
depleted cells in the presence of DNA methylase and/or histone deacetylase inhibitor,
suggesting that macroH2A1 is part of the epigenetic mechanism required for stable silencing
of Xi [139–141]. For macroH2A2, evidence also revealed its presence on Xi and its potential
role in shaping the chromatin organization in both compacted and accessible chromatin in
regional contexts, through modulating as its cognate enhancer element [142,143]. On the
other hand, the spliced variants macroH2A1.1 and macroH2A1.2, are present in a diffuse
manner within the nucleus, and the formation of MCBs on the Xi is in a XIST-dependent
manner [144]. Interestingly, macroH2A1.2 has been shown to inhibit Poly(ADP-ribose)
Polymerase 1 (PARP-1 ) enzymatic activity, turn out perturbs the silencing effect of PARP-
1 on chromatin [145]. Despite multiple reports on macroH2A1.1 enrichment on Xi, its
contribution to the stabilization and maintenance of facultative heterochromatin structure
remains obscure.

3.3.1. Other Roles of MacroH2A and Its Isoform

Beside heterochromatin maintenance, macroH2A and its isoforms are engaged in DDR,
transcriptional regulation, cell fate differentiation, mitochondrial function, and energy
metabolism. MacroH2A1.1 is recruited to DSB sites by its interaction with the PARP1,
which then facilitates the recruitment of 53BP1 together with Ku heterodimer: one of the
DNA repair factors (KU70/80) for Non-Homologous End Joining (NHEJ) and assists in the
activation of Checkpoint Kinase 2 (CHEK2) [146,147]. Unlike macroH2A1.1, macroH2A1.2
that lacks a macrodomain binding pocket, is known to mediate Homologous Repair (HR)
through recruitment of BRCA1 [75,148].

MacroH2A not only has a well-known function in gene repression, it also has a dual
function in signal-induced gene activation. One of the best examples is macroH2A1,
but not macroH2A2, regulates memory processing and formation, which its occupancy in
hippocampus is dynamically modified in order to promote learning-induced transcriptional
activation, especially in upregulated genes following training [149].

MacroH2A1.1 can also sustain mitochondrial function and energy metabolism by
optimizing NAD+ level [150]. Furthermore, macroH2A2 acts as a reprogramming barrier in
fully differentiated cells, as it is enriched in early pluripotency genes marked by H3K27me3,
which prevent reactivation of these genes [151].
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Collectively, macroH2A and its isoforms displace a wide range of functions in a variety
of cellular processes and give rise to isoforms-specific functions (Table 2).

3.3.2. MacroH2A Roles in Cancer–Tumor Suppressor

Recently, there has been a surge in interest regarding the role of macroH2A and
its isoforms in cancer tumorigenesis. There are strong evidence supporting the role of
macroH2A and its isoforms as a tumor suppressor. Low expression of macroH2A has been
reported in multiple cancers, such as melanoma, breast, colorectal, liver, lung, bladder,
cervical and ovarian cancers [152–154]. When the level of macroH2A is restored, cancer cell
proliferation, migration and metastasis are alleviated, reducing the malignant phenotypes
induced by depletion of macroH2A (Table 4).

MacroH2A1.1 is implicated in EMT suppression as recent reports demonstrated dra-
matic decrease in macroH2A1.1 expression after the EMT induction in immortalized Hu-
man Mammary Epithelial Cells (HMLE). Ectopic expression of macroH2A1.1, but not
macroH2A1.2, effectively inhibited EMT induction and HMLE exhibits less mesenchymal
morphology. The underlying mechanism for the suppression of EMT is related to the
presence of Poly (ADP-Ribose) (PAR) binding domain unique to macroH2A1.1. However,
overexpressing macroH2A1 and macroH2A1.2 alone cannot reverse a fully mesenchymal
cell to undergo Mesenchymal-Epithelial Transition (MET). Whether the reversible action of
cells convert back to epithelial status is mediated through cooperating or interacting with
other MET inducing signaling factors requires future investigation [155]. The depletion
of macroH2A and its isoforms can also induce malignant melanoma progression through
enhancing cell proliferation, migration and metastasis. Melanoma tumorigenesis can be
suppressed through a direct transcriptional upregulation of a colorectal cancer oncogene,
CDK8, with macroH2A and isoforms [154].

MacroH2A1.2 have been shown to inhibit osteoclastogenesis in bone metastases of
breast cancer. This action can be inhibited by macroH2A1.2. It works by attenuating
the expression and secretion of Lysyl Oxidase (LOX) by repressing the LOX gene through
recruitment of EZH2, resulting in H3K27me3 deposition and ultimately gene silencing [156].

Furthermore, macroH2A1.2 can also inhibit prostate cancer induced osteoclastogenesis
via direct interactions with HP1α and H1.2, turn out inactivating a major stimulator of
osteoclastogenesis, Lymphotoxin Beta (LTβ) gene in prostate cancer cells. Altogether, this
shows that even macroH2A1.2 does not play a role in suppressing EMT just as macroH2A1
and macroH2A1.1 do, it has a novel role in mediating bone metastases (Figure 4) [157].

In glioblastoma, the tumor-suppressive function of macroH2A2 is mediated through
repression of genes associated with stemness and self-renewal. Depletion of macroH2A2
significantly promoted the self-renewal properties in cancer cells, while overexpression
antagonized self-renewal [143,158]. In anal neoplasm, high macroH2A2 expression is asso-
ciated with low-grade neoplasm and delayed recurrence. Interestingly, macroH2A2 loss
in Human Papillomavirus (HPV) positive anal Squamous Cell Carcinoma (SCC) drives
tumorigenesis. Of note, oncogene E7 from HPV is vital for inactivating RB to activate E2F
for cell proliferation. However, even in HPV-positive SCC samples, where macroH2A2
also functions as an inhibitor to reduce the expressions of E2F-regulate genes, E2F can be
activated. Therefore, future work has to be performed to further elucidate the relation-
ships between macroH2A2 and HPV status [159]. Last but not least, high expression of
macroH2A2 can impede metastasis in Disseminated Cancer Cells (DCCs) by inhibiting cell
cycle and oncogenic signaling programmes [160].

3.3.3. MacroH2A and Isoforms–Novel Prognostic Factor and Diagnostic Markers

MacroH2A and isoforms expression levels highly correlate with patient survival
prediction and are proposed to be a novel diagnostic marker in different types of cancers.
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Figure 4. Schematic illustration showing the tumor suppressive role of macroH2A1.2 when is
increased in breast cancer and prostate cancer in inhibiting osteoclastogenesis. MacroH2A1.2 will
attenuate the expression of lysyl oxidase (LOX) and interact with EZH2 to raise the H3K27me3
levels to sustain gene silencing in order to inhibit tumor-induced osteoclastogenesis in breast cancer.
In prostate cancer, macroH2A1.2 will directly interact with HP1α and H1.2 to suppress LTβ gene
expressions, a key stimulator of osteoclastogenesis.

It is known that macroH2A1 and isoforms’ expression levels are usually high in dif-
ferent breast cancer types with worst prognosis (Table 3). In Human Epidermal Growth
Factor Receptor 2 (HER2) positive breast cancer, macroH2A1.2 expression level is ex-
tremely high. MacroH2A1.2 has a trinucleotide insertion (-EIS-) sequences that is absent in
macroH2A1.1, is responsible for the interaction and binding between HER2 receptors and
its promoter [153]. MacroH2A1.1 contributes to the tumorigenesis of Triple Negative Breast
Cancer (TNBC) primarily through modulating the EMT process. The high abundance of
macroH2A1.1 has been linked to worse clinical outcome survival. Unlike other prognostic
markers, macroH2A1.1 is suggested to be an independent factor that does not rely much
on the proliferative status of cells [161,162].

Besides breast cancer, macroH2A1 also showed diagnostic and prognostic value in
HCC and lung cancer recurrence. MacroH2A1 is upregulated in HCC and its expression
has been associated with poor disease outcome. Gene Set Enrichment Analysis (GSEA)
has revealed that high macroH2A1 expression is associated with upregulation of fatty acid
metabolism and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, which
facilitate HCC tumor cells to better adapt to their microenvironment [163,164]. In lung
cancer, macroH2A1.1 can serve as a biomarker for senescence in tumors, which is an
anti-tumor mechanism. Patients with low macroH2A1.1 expression are more likely to
experience recurrence, a correlation specific to macroH2A1.1 [152].

In anal neoplasm, low macroH2A2 expression is associated with high-grade anal
cancer and early recurrence [159]. In contrast, patients with recurrence free survival used
to express high level of macroH2A2. These findings suggest that macroH2A2 may serve
as a biomarker for accessing the malignancy of anal cancer progression in order to have a
more concrete outcome prediction and treatments.
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To summarize, all isoforms of macroH2A generally act as a tumor suppressor, with
evidence supporting their potential as both diagnostic and prognostic marker in multi-
ple cancers.

3.4. Short H2A (sH2A)–H2A.R

Short H2A histone (sH2A) is a group of H2A variant which displayed a testis-restricted
transcription pattern and are expressed exclusively during mammalian spermatogene-
sis [21]. sH2A is one of the most rapidly evolving group of histone variants and was
originated from placental mammals. Features shared among sH2A variants include a trun-
cated docking domain in the C–terminal, almost a complete loss of acidic patch and loss of
lysine residues in the N–terminal. Due to the structure differences from canonical H2A,
nucleosomes containing sH2A wrap less DNA, which results in loosely packed chromatin.

Recently, an undescribed variant, H2A.R, has been identified and suggested to be a
common ancestor for all the known sH2A to date [165,166]. Compared with the previously
known sH2A, H2A.R variants are more similar to canonical H2A due to its conserved
docking domain in its long C–terminal [167]. To date, there is only one report verified the
expression of H2A.R in opossum’s testis (one of the mammals), but not other tissues or
organs [167]. Due to a lack of research on this ancestral H2A.R variant, little is known
about their role in spermatogenesis and cancer progression. This may be a subject for
future investigation.

3.5. Short H2A (sH2A)–H2A.Bbd

sH2A is further classified into 4 different types of variants. Among the four types of
variants, Barr body deficient (H2A.Bbd), or H2A.B, is the most researched type of sH2A.
H2A.Bbd only shares 48% similarity with canonical H2A. H2A.Bbd differs from H2A in
the following ways: (1) The C–terminal tail and the last segment of the docking domain
is missing in H2A.Bbd; (2) the N–terminal tail contains 6 consecutive arginine; (3) a more
basic L2 loop (Figure 1). H2A.Bbd-nucleosomes contains only 118 bp of DNA, less than the
147 bp in a canonical nucleosome [168]. Studies have demonstrated that H2A.Bbd is found
throughout the genome but, is usually associated with transcriptionally active genes on
autosomes and the active X chromosome. Little to no H2A.Bbd is incorporated onto the
Xi [131,169].

As a result of the missing docking domain in H2A.Bbd, the interaction between
H2A.Bbd and H3 is weaker compared with that of H3 and canonical H2A. Therefore,
H2A.Bbd incorporation into nucleosome often results in relaxed chromatin [170]. Moreover,
H2A.Bbd alters the chromatin remodeling activity mediated by SWItch/Sucrose Non-
Fermentable (SW1/SNF) complex [75,171]. It is also shown to enrich at the site of active
genes involved in mRNA processing, DNA synthesis and DNA repair [172]. Deposition
pattern of H2A.Bbd mostly overlaps with regions marked by H4 acetylation, indicating
an active gene transcription region in the genome [173,174]. In addition to that, H2A.Bbd-
H2B dimer is spontaneously exchanged within nucleosome with the assistance of a NAP1
histone chaperone [175,176]. Functionally, recent reports have shown that knockdown of
H2A.Bbd resulted in an altered chromatin structure in male mouse’s post-meiotic germ
cells, yet without affecting spermatogenesis [174,177,178]. It is believed that H2A.Bbd
might assist in the transition from histone-based chromatin to protamine-based chromatin
during the late stages of spermatogenesis.

H2A.Bbd Role in Cancers

Previous work showed that cells expressing H2A.B will have a shorter S phase and
an accelerated sensitivity towards DNA damage, which these are associated with onco-
genesis [165]. As sH2A comprised most of the commonly seen canonical H2A mutations
in their wildtype sequences, including R29Q or R29F substitutions and a removal of E121
amino acid in the truncated C–terminal [179]. Therefore, this implicated that all sH2As
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have evolved an onco-histone features and are highly conserved even been through rapid
evolution (Table 2).

H2A.B was found to be involved in a broad array of cancer types, where H2A.Bbd’s
role in Hodgkin’s lymphoma (HL) was reported. Overexpression of H2A.Bbd positively
correlates with cancer cell proliferation (Table 3). It is postulated that H2A.Bbd promote
proliferation by enhancing ribosome production. H2A.Bbd containing nucleosomes are
commonly found at the promoter of ribosomal genes, at the same time, in a close proximity
with RNA polymerase 1, providing a loosen chromatin with highly accessible DNA to
facilitate rDNA transcription. The role of H2A.Bbd in promoting ribosomal gene expression
is evident from the downregulation of ribosomal gene upon H2A.Bbd depletion.

In addition to promoting rDNA transcription to enhance cell proliferation, H2A.Bbd
also engages in the regulation of pre-mRNA splicing of ribosomal proteins, together with
PTMs and HIF-1 pathways to establish HL phenotype [180]. Based on data set from
Cancer Genome Atlas Program (TCGA), aberrant expression of H2A.Bbd has been reported
in the following cancers: urothelial bladder carcinomas (BLCA), cervical squamous cell
carcinomas, Uterine Corpus Endometrial Carcinomas (UCEC), endocervical carcinomas
and Diffuse Large B-cell Lymphomas (DLBCLs). Among all cancer types, expression of the
H2A.Bbd is the highest in DLBCLs (Table 4) [181].

The significance of H2A.Bbd overexpression in the aforementioned cancers is currently
unknown. Given its nucleosome-destabilizing effect, it is hypothesized that overexpression
of H2A.Bbd might open up the otherwise masked regulatory sequence for oncogenic
transcription factors, thereby promoting tumorigenesis.

H2A.Bbd is proposed as a disease biomarker for HL and other cancers since it is
commonly seen in a wide range of malignancies; however, its specificity and sensitivity
have not been examined and require further research.

3.6. Short H2A (sH2A)–H2A.P, H2A.Q, H2A.L

H2A.P, H2A.Q, and H2A.L are the three remaining histone variants grouped under
sH2A according to the most updated research [165,182]. H2A.Q is a newly discovered
sH2A present in eutherian mammals. H2A.Q is encoded by a single pseudogene and
has a deletion of 7 amino acids in the loop 1 and α-2 helix region. H2A.Q is the shortest
eukaryotic histone variants described to date [167]. Interestingly, H2A.Q is only transcribed
in the testis of dogs and pigs, but not in other tissues. However, neither human nor any
primates’ tissues exhibit H2A.Q expression, suggesting that H2A.Q may not be playing
any critical or has lost its role in human or primates.

H2A.P is encoded by a single gene reported so far. Not much detailed information on
H2A.P is available until now, by only knowing all sH2As including H2A.P are originated
on a portion of X chromosome since the common ancestor of eutherian mammals. Two
essential conserved arginine residues that interact with the minor groove of DNA are
deleted in H2A.P. Hence, H2A.P containing nucleosomes are expected to be less stable.
Furthermore, the last 14 constrained amino acids are a distinctive property that sets H2A.P
apart from other sH2A (Figure 1) [167]. Currently, little is known about the actual role that
H2A.P plays in mammals, therefore further research is needed to fully uncover that.

H2A.L is the fifth sH2A identified to date. H2A.L is lost in human while conserved
in mice. In mice, H2A.L is also known as H2AL1, and has two more isoforms, H2AL2
(H2A.L.2) and H2AL3 (H2A.L.3). The two isoforms differ from each other by no more than
12 amino acids [182,183]. The function of H2A.L.3 has not been documented in any studies
so far, necessitating further research to uncover the mystery of this variant.

H2A.L.2-containing nucleosome interacts with only 130bp DNA as it shares the same
features with other sH2A. Interestingly, H2A.L.2-nucleosome behaves similarly to H2A.Bbd
nucleosome, inhibiting both Remodeling the Structure of Chromatin (RSC) and SWI/SNF
nucleosome remodeling and mobilization [165,184]. H2A.L.2 favors histone retention on
pericentric heterochromatin for spermatogenesis that occur in mice, likely due to the pres-
ence of its N–terminal arginine rich motif, that is capable for RNA binding and guide its
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localization to heterochromatin [185]. After that, the incorporation of H2A.L.2 recruits
Transition Protein (TP) loading into nucleosome, and further drives TP-dependent pro-
tamine assembly for final sperm genome compaction (Figure 5) [186,187]. The importance
of H2A.L.2 has been demonstrated through knock-out experiments, where the mice became
sterile. Altogether, H2A.L.2 is important for male mouse fertility but is lost in human,
suggesting that H2A.L.2 function may be replaced by other sH2A such as H2A.B or H2A.P,
but more research is necessary to determine how credible this suggestion is.
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Figure 5. Schematic illustration showing functional interplay between histone, H2A.L.2, Transition
proteins and Protamine during spermatogenesis in mice. N–terminal of H2A.L.2 allow the binding of
RNA and it guides the histone variant to the heterochromatin’s nucleosome. Replacement of canonical
H2A occurs and H2A.L.2 subsequently recruit transition proteins (TP) loading on nucleosome, and
further drives TP-dependent protamine assembly and histone eviction to form mature spermatozoa.

3.7. H2A.22 (H2A.J)

H2A.J is a mammal-specific histone variant encoded by a H2AFJ gene located on
human chromosome 12 [166,188]. This variant is specially concentrated in the chromatin
of senescent cells, where it stimulates expression of genes in the inflammatory signaling
cascade in reaction to DNA damage (Table 2). H2A.J differs from canonical H2A at amino
acid 11 (A11V) and contains a potential SQ phosphorylation motif at its C–terminal at
around the last 7 amino acids (Figure 1) [189]. With these alterations, H2A.J nucleosome is
quite stable through enhancing DNA and histone interaction [190].

To be noted, the C–terminal tail of H2A.J is functionally critical for the expression of
inflammatory cytokines/chemokines that belong to the Senescent-Associated Secretory
Proteins (SASP) family, as inflammatory related genes are severely downregulated when
H2A.J is mutated [191]. Genes that heavily depend on H2A.J for their expression typically
have it deposited at the promoter and coding regions. Curiously, H2A.J was not commonly
found at TSS regions. It is hypothesized that there may be an internal competition between
H2A.J and H2A.Z.

As formerly described, H2A.J shows high abundance in senescent cells having prolifer-
ation arrest and associated with persistent DNA damage. It also appears to be accumulated
in aging mice in a tissue-specific manner. Reports tested with Hair Follicle Stem Cell
(HFSC) and Interfollicular Epidermal Cells (IEC) obtained from both young and old mice,
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after inducing DNA damage through irradiation, only old mice’s IEC and HFSC show
significantly higher H2A.J accumulation [192]. Remarkably, H2A.J’s expression level is
very low in proliferating cells, but in young mice, it is seen to be enriched, albeit to varying
degrees, in specific organs such as kidney, brain and liver. This suggests that H2A.J may
in some way displaying tissues or organs specific functions regardless of the state of cell
senescence. To a certain point, H2A.J’s actual role in these organs at young age requires
further investigation.

3.7.1. H2A.22/H2A.J Role in Cancer

Inflammatory cytokines produced by senescent cells such as interleukin 1, 6, 8 (IL-1,
IL-6, IL-8) are contributor of chronic inflammation. As chronic inflammation is known
to promote pro-tumorigenic processes such as angiogenesis, proliferation, invasion, and
metastasis, H2A.J might promote tumorigenesis via the upregulation of SASP [193].

H2A.J is highly expressed in a variety of carcinomas, especially in ER-positive breast
and prostate cancers [189,194]. The role of H2A.J in breast cancer is by modulating the
expression of estrogen and metastasis-associated genes, while H2AFJ tends to be hypo-
methylated and overexpressed, suggesting that it might be an oncogene for the luminal
B type breast cancer (Table 4). Yet, further functional studies are necessary to validate
the role of this new candidate oncogenes in breast tumorigenesis. Other types of cancers
that H2A.J are also involved in include Kidney Renal Cell Carcinoma (KIRC), aggressive
melanoma, bladder and brain cancer. In contrast to luminal B breast cancer where H2A.J
might act as an oncogene, high level of H2A.J is associated with better outcome in prostate
cancer, bladder cancer and all other subtypes of breast cancer, yet withdrawing luminal
A. On the other hand, high H2A.J levels in KIRC, brain cancer and aggressive melanoma
is associated with poor survival [195]. These observations suggested that role of H2A.J in
cancer is highly dependent on the cancer types.

It is interesting to uncover that H2A.J may also play a role in chemoradiotherapy
(CRT) resistance in CRC. H2A.J expression is much higher in CRT-resistant CRC compared
with CRT-sensitive CRC. It has been confirmed that H2A.J is involved in regulating two
important pathways, Mitogen-activated Protein Kinase 7/Extracellular signal Regulated
Kinase 5 (MAPK7/ERK5) and Human Immunodeficiency Virus (HIV), Negative Factor
(Nef) pathway in CRC, together with the enrichment of several inflammatory pathways to
increase CRT resistance in CRC patients (Figure 6) [196].

Furthermore, H2A.J drives radiotherapy and temozolomide (TMZ) resistance in
glioblastoma as well. H2A.J is upregulated in mesenchymal type of glioblastoma, the
most aggressive subtypes of glioblastoma. H2A.J expression in mesenchymal type of
glioblastoma is associated with Proneural-Mesenchymal Transition (PMT) and activation
of Tumor Necrosis Factor—Alpha (TNF-α)/Nuclear Factor Kappa-light-chain-enhancer of
activated B cells (NF-κB) pathways. These interacting signal networks allow contact also
between Signal Transducers and Activators of Transcription 3 (IL-6/STAT3) and Histone
Deacetylase 3 (HDAC3) (Figure 6) [197]. The role of H2A.J in promoting TMZ resistance is
affirmed by the downregulation of the aforementioned pathways upon H2A.J depletion.
Moreover, upregulation of H2A.J in combination with HDAC3 have been associated to poor
overall survival in glioblastoma [198]. A more comprehensive and thorough mechanisms
by which H2A.J regulate these pathways to modify the PMT progression in glioblastoma
should be further explored.

H2A.J has also been implicated in the development of resistance towards sorafenib in
HCC [199]. H2AFJ and other hub genes are significantly upregulated in HCC. However, it
is unclear how and if H2A.J expression correlate with disease outcome and overall survival
prediction. In addition to knowing sorafenib resistance of HCC is due to gene upregulation,
it also takes part in accelerating signaling pathways including PI3K/Akt and Janus Kinase
(JAK) /STAT pathways. The other hub genes, such as Dynein Light Chain LC8-Type 2
(DYNLL2), SH3 and multiple Ankyrin Repeat Domains Protein 2 (SHANK2), and Metastasis-
Associated Protein 3 (MTA3) all contributed to the resistance by regulating metastasis
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and cell cycle checkpoint [200–202]. It is suggested that H2A.J may act similarly as in
glioblastoma through upregulating IL-6/STAT signaling, EMT signaling and TNF-α/NF-
κB pathways to control inflammatory response, cell proliferation, migration, anti-apoptosis,
and survival response (Figure 6) [203].
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Figure 6. Schematic illustration showing all the signaling pathways that are involved in drug
resistance in cancer therapy when H2A.J is overexpressed. Increase in H2A.J regulates multiple
significant signaling pathways including ERK5, TNF-α/NF-κB, PI3K/Akt, JAK /STAT, HIV Nef,
IL-6/STAT and more (not listed all here). These pathways play different role and allow cancer cells
to survive against different drug treatments through accelerating large amount of inflammatory
responses, escaping CD8+ T cell activity and enhance their cell proliferation rate and cell growth.

Collectively, H2A.J is overexpressed in a variety of cancers, but its mode of action is
highly context-dependent, which is evident from the contradicting correlation with overall
survival/disease outcome in different types of cancer.

3.7.2. H2A.22/H2A.J–Potential Biomarker and Indicator for Therapeutic Treatment

Although H2A.J alone has proven to be an ineffective prognostic marker in glioblas-
toma [198]. It is possible that the combination of H2A.J expression levels and other estab-
lished markers such as O6-methylguanine-DNA-Methyltransferase (MGMT), could lead to
a more accurate and sensitive prediction for therapeutic treatment outcomes, particularly
for those patients who has developed resistance to chemotherapeutic agent.

H2A.J may also serve as a biomarker for senescent stem and aging skin cells. Antigen
Kiel 67 (Ki-67) is a well-known marker for proliferating cells, this surface marker will
decrease upon aging, while H2A.J expressing keratinocytes will be accelerated [204]. 53BP1
foci used to escalate in aging skin cell but it is difficult to identify discrete 53BP1 foci using
immunostaining; in contrast, H2A.J accumulation is much easier to be detected [192]. As a
result, H2A.J may become a potential biomarker for senescent cells with increased efficacy
and sensitivity.
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3.8. H2A.1 and H2A.2

H2A.1 and H2A.2 are the homomorphous group of histone variants with a slight
difference in amino acid sequence compared with canonical H2A (Figure 1). H2A.1, also
known as TH2A. Genes encoding for H2A.1 are located on chromosome 6p21-22 in human,
and chromosome 17p11 in mouse. H2A.1 is a mammalian specific histone variant expressed
in testis, oocytes and zygote. H2A.1 differs from the canonical H2A by 10 amino acids and
has a preference for forming a dimer with H2B.1.

Co-expression of H2A.1 with the four Yamanaka factors (OKSM: OCT4, SOX2, KLF4
and MYC), induce an open chromatin that enhanced the generation of iPSC. Domain
swapping experiment demonstrated that the L1 loop region of H2A.1 is essential for the
reprogramming [205]. A similar phenomenon was seen in human as well, co-expression
of H2A.1 histone chaperone, Nucleophosmin/Nucleoplasmin 2 (NPM2), with OSKM pro-
moted the generation of iPSCs from naïve stem cell [206]. Remarkably, in zygote, depletion
of maternal H2A.1 leads to a perturbation in paternal genome activation, indicating a
significant role in genome reprogramming [207].

H2A.1 is uniformly distributed and commonly enriched on X chromosome and auto-
somes. It was found that H2A.1 can exert both transcriptional upregulation and suppression
to genes on the X chromosome. In addition, H2A.1 is also found to be highly expressed in
testis and is involved in spermiogenesis and early embryonic mitosis. The 127th amino acid
of H2A.1 in mouse is found to be phosphorylated (pH2A.1) during early embryo mitosis
and spermatogenesis [208,209]. This data suggested that pH2A.1 is involved in chromatin
condensation, which occurs during the last stage of spermiogenesis. Interestingly, paternal
pH2A.1 that is rapidly removed upon fertilization will reappear in the pericentromeric
heterochromatin of the first mitotic zygote.

Compared with other H2A variants, reports on H2A.2 are limited. Despite the con-
trasting function of H2A.1 and H2A.2, they are often discussed together in literature. H2A.2
differs from H2A.1 by a few amino acids, two of them are being well-documented; 16th
amino acid (H2A.1: Threonine, H2A.2: Serine) and the 51st amino acid (H2A.1: Leucine,
H2A.2: Methionine) [210]. H2A.2 coding genes are resided on chromosome 1q21 in human
and chromosome 2q34 in mouse [211].

The role of H2A.2 has been investigated in the neuron differentiation, embryogenesis,
and aging [212]. Deposition of H2A.2 and H2A.1 is observed during postnatal development
for the maturation of rat brain cortical neurons. These two histone variants undergo a
dynamic change right after birth and during the postnatal period. At birth, H2A.1 shows a
high abundance, whereas H2A.2 represents only 27% of the total H2A. However, H2A.2
expression surged during postnatal development and gradually replaced H2A.1 to become
one of the major replication dependent variants (42% of total H2A) [213]. One study pointed
out these 2 variants are ubiquitinated in the terminally differentiated cortex neurons [214].
Nevertheless, the precise function of the two histone variants in the differentiation of the
neurons remain to be elucidated.

In addition to neuronal development, their expression levels are also being examined
during liver cell differentiation, from the embryonic to the adult stage. Notably, H2A.2
will gradually increases, while H2A.1 level decreases in adult hepatocytes [215]. This
suggested that H2A.1 functions in epigenetic reprogramming in embryonic stem cells and
undifferentiated cells, but the exact role of H2A.2 is unclear.

H2A.1, H2A.2 Role in Cancer

H2A.1 and H2A.2 have been associated with hepatocarcinogenesis. Their expression
levels vary at different stages of cancer progression. Interestingly, while H2A.2 is the
predominant variant in normal and preneoplastic tissue, H2A.1 is overexpressed in HCC.
The high abundance of H2A.1 coincides with the other studies that suggested H2A.1 opens
up the chromatin structure to facilitate gene transcription, hence cell proliferation for
hepatocarcinogenesis (Table 4).
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These two histone variants share almost 98% identity. They are synthesized and
deposited during the G1 and S phases when examining hepatoma cells [216]. However, a
single amino acid variation between the two variants leads to subtle differences in histone-
DNA interaction. This could potentially explain the functional heterogeneity between
H2A.1 and H2A.2 in regulating malignancy-associated genes [211]. The H2A.1/H2A.2
ratio is important, for instance, if H2A.1 is overexpressed, reprogramming of hepato-
cytes could take place through hyperproliferating normal liver cells to return back to
preneoplastic and neoplastic phases, which would further promote the development of
hepatocarcinogenesis. These results are consistent with earlier studies showing the role of
H2A.1 in epigenetic reprogramming.

Recent discovery of CpG island at the promoter region of H2A.1 and TSS-proximal
region of H2A.2 suggests that the expression of the two variants might be regulated by
different epigenetic factors during tumorigenesis [217]. H2A.1 and H2A.2 are also expressed
in colon cancer, and they somehow appeared to have varying degrees of acetylation
and methylation [218]. H2A.1 is hypo-methylated in embryonic cells while H2A.2 is
hyper-methylated in HCC. This observation explained the phenomenon why H2A.2 is not
overexpressed in HCC despite its high expression during preneoplastic stages. Moreover,
these data also indicate hypo-methylation of H2A.1, which may facilitate the development
and spread of tumors, as the cause of HCC [219,220].

Collectively, it should be highly appreciated that the dynamic expression patterns of
these two histone variants contribute to distinct time points of development have different
effects (Table 2). More studies are required to solve all the confusion including the unknown
mechanisms and roles of both H2A.1 and H2A.2.

4. Conclusions and Perspectives

The histone H2A family is a group of nuclear proteins containing 19 variants. The
role of these variants are mainly reported in mammalian species. Remarkably, all H2A
variants are involved in safeguarding our genome integrity. Recently, new insights have
additionally pointed out some unprecedented variants, including H2A.R and H2A.Q,
which are further being grouped together. Furthermore, new alternative spliced forms
of variants, such as H2A.Z.2.2 are just being identified and its function is only limited to
destabilizing nucleosome complexes. Therefore, the detailed functional role of all the 19
mammalian H2A variants cannot be thoroughly discussed here due to a lack of supporting
evidence, which serves a subject for later elucidation.

On the other side of the coin, many H2A variants have been implicated in cancer
development. Majority of H2A variants contribute to tumorigenesis and cancer progression.
Aberrant expression of histone variants leads to the upregulation of regulatory genes
involved in cell proliferation, migration, EMT, invasiveness and angiogenesis; whilst
downregulating tumor suppressor genes and inflammatory responses [221]. It is worth
noting that the expression of some particular variants is associated with development of
drug resistance in certain cancers. Whether other variants may also guide chemotherapy
resistance in clinical settings requires further investigation. Last but not least, it is believed
that many of the H2A variants have the potential to serve as prognostic indicators and/or
effective biomarkers for cancers. However, the specificity and sensitivity of a variant to
be used individually for cancer detection remain questionable. With that, we suggested in
combination with other well-established markers, more credible diagnostics outcomes may
be identified, hence more precise and improved predictions and therapeutics treatments
can be proposed. The validity of this suggestion necessitates further research, pointing
toward a new direction for future studies.
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