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Abstract: Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as
key regulators of diverse developmental processes and environmental responses. Much research
has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether
SLs are produced in early developing seeds and about their roles in ovule development after fertil-
ization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras
sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content
decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without
the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL
biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we
identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using
RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to
express differently in the fertilized ovules that were aborting compared to the normally developing
ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization,
12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated
at high concentrations in normally developing ovules during syncytial endosperm development.
In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high
strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in
fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early
seed development and fruit set. We propose that the crosstalk between sugar and strigolactone
signals may be an important part of a system that accurately regulates the abortion of ovules after
fertilization. This study is useful for understanding the mechanisms underlying ovule abortion,
which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.
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1. Introduction

Strigolactones (SLs) are a group of carotenoid-derived compounds that were recently
defined as a novel class of plant hormones [1]. These signaling molecules were found to
regulate diverse developmental processes [2–6] and environmental responses [7,8], such
as inhibiting the outgrowth of axillary buds, regulating root development, accelerating
leaf senescence, and mediating plants’ adaptation to nutrient deficiency. SLs were initially
discovered because of their ability to stimulate the seed germination of root-parasitic plants
such as Striga lutea. As a germination stimulant for S. lutea, strigol was the first SL that was
isolated from the root exudate of cotton [9]. To date, more than 20 SLs have been extracted
and identified in a variety of plant species [10]. Strigolactones are produced at high levels
in the roots of various plant species under phosphate (Pi)-deficient conditions, stimulating
changes in shoot and root architecture that enable them to adapt to environmental stress
and improve their ability to acquire Pi [11,12].
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SL-related mutants have been identified in several plant species, such as in Arabidopsis
more axillary growth (max) mutants [13–16], lateral branching oxidoreductase (lbo) mutants [16],
suppressor of more axillary growth2-like 6,7,8 (smaxl 6,7,8) mutants [17], pea (Pisum sativum)
ramosus (rms) mutants [18–20], petunia (Petunia hybrida) decreased apical dominance (dad) mu-
tants [21,22], and rice (Oryza sativa) dwarf (d) or high-tillering dwarf (htd) mutants [23]. Based
on studies with mutants, eight genes required for SL biosynthesis and signaling have been
identified to date [24]. Among them, five have been shown to be involved in SL biosynthe-
sis, including D27, MAX3/D17/HTD1/RMS5/DAD3, MAX4/D10/RMS1/DAD1, MAX1,
and LBO, which encode β-carotene isomerase, carotenoid cleavage dioxygenase 7 (CCD7),
CCD8, cytochrome P450 monooxygenase, 2-oxoglutarate, and Fe(II)-dependent dioxyge-
nase (LBO), respectively. D27, CCD7, CCD8, and MAX1 have been identified as canonical
SL biosynthetic enzymes [25]. The two-oxoglutarate-dependent dioxygenase LBO is con-
sidered to be a late-acting, noncanonical SL biosynthetic enzyme in Arabidopsis [17].

Three genes encoding an α/β fold hydrolase, an F-box leucine-rich protein, and a
repressor protein known as D53 mediate the perception and signaling pathway of SLs. D14
in rice [26], AtD14 in Arabidopsis [27], RMS3 in pea [28], and DAD2 in petunia [29] encode
an α/β-fold hydrolase that cleaves SLs and covalently binds to one of the cleavage products.
This binding induces a conformational change in the receptor protein structure, leading
to the activation of D14 [26,30]. The activated D14 interacts with the leucine-rich-repeat
F-box protein encoded by D3/MAX2/PhMAX2/RMS4 (in rice/Arabidopsis/petunia/pea,
respectively) to form an Skp-Cullin-F-box (SCF) complex, SCF-D3-D14 [31]. This complex
further activates the 26S proteasome and degrades transcription repressors encoded by D53
in rice (SMXL6/7/8 in Arabidopsis) in the presence of SL to trigger various SL-regulated
plant responses [23].

Sugars not only provide a source of cellular energy and metabolic precursors for
numerous biosynthetic pathways, but also function as signaling molecules to regulate gene
expression in response to developmental and environmental cues [32,33]. A number of
plant metabolic, physiological, and developmental processes are regulated in response to
changing levels of soluble sugars [34]. Recent studies have provided evidence of inter-
actions between sugar and the strigolactone response [35]. Increased sugar availability
alleviates the inhibitory effect of strigolactone on shoot branching in pea, rose, chrysanthe-
mum, and rice [36–38]. In many species studied, the rate of unloading and utilization of
sucrose has been found to be correlated with the activity of invertases in sink organs [39].
Invertase activity is regulated by internal and environmental factors including plant hor-
mones, carbohydrates, and mineral nutrition [40].

Xanthoceras sorbifolium, a tree species of the Sapindaceae family, is an emerging valu-
able oilseed crop in Northern China [41]. The plant has attracted considerable interest
due to the high oil content (from 30% to 36% on a dry matter basis) in its seeds and its
favorable oil qualities. The oil is considered an excellent source of unsaturated fatty acids
because of its high oleic acid (ca. 28% of the total fatty acids) and linoleic acid (ca. 46%)
contents [42]. Xanthoceras oil also contains high levels of vitamin E and nervonic acid,
which have various health benefits. Despite its high-quality nutritional oil, its large-scale
commercial cultivation has been hampered by low seed productivity. More than 95% of
young fruits cannot reach maturity due to the abortion of ovules after fertilization within
them. Although cytological observations of the development of fertilized ovules have been
detailed in X. sorbifolium [41,43], much less attention has been paid to the regulatory mech-
anisms of ovule abortion in the plant. Strigolactones have been suggested to be important
regulators of signaling and responses related to nutritional deficiencies [7]. This enticed
us to examine whether SLs are produced in fertilized ovules and to assess whether SL
signaling is correlated with Pi deficiency, invertase activity, and sugar availability in ovules
after fertilization. Using multiple approaches, we attempted to determine whether SLs are
involved in the abortion of fertilized ovules in X. sorbifolium. A better understanding of
the mechanisms underlying ovule abortion will serve as a guide for genetic or chemical
approaches to promote seed yield in Xanthoceras.
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2. Results
2.1. The Presence of Strigolactones in Ovules after Fertilization and the Effect of Exogenous Pi
Application on Their Content

Most SLs have been identified and quantified in root exudates and extracts, whereas
studies for SL identification and quantification in other tissues are rare. Here, we deter-
mined the presence and level of endogenous SLs in early developing seeds and pericarps
using LC-MS/MS and compared the differences between plants with or without an exoge-
nous Pi application treatment. The results indicated that the fertilized ovules and early
developing pericarps produce minute amounts of two strigolactones: 5-deoxystrigol and
strigol (Figure 1). The contents of 5-deoxystrigol and strigol decreased by 54.39% and
61.03%, respectively, in the fertilized ovules of the plants with an exogenous Pi supply
compared with those in untreated Pi-deficient plants (Figure 2). The levels of 5-deoxystrigol
and strigol in the young pericarps seemed to change in a similar manner to the fertilized
ovules within them (Figure 2). Upon Pi application, the content of strigol was reduced
more obviously than that of 5-deoxystrigol in the young pericarps. Pi starvation-induced
(PSI) genes are commonly used as markers for the response of plants to low-Pi conditions.
PHOSPHATE2 (PHO2), encoding a ubiquitin-conjugating E2 enzyme, is considered a PSI
gene in Xanthoceras [43]. To confirm that the plants without the Pi application were under
low-Pi conditions, we examined the expression of PHO2 in fertilized ovules. The results
showed that transcript levels of PHO2 were increased in the plants without the Pi applica-
tion in comparison to the plants with the Pi application (Figure 3). These investigations
suggest that Pi availability is associated with the production of SLs in early developing
seeds and young fruits.
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Figure 1. Chemical structures of two natural strigolactones (SLs). Both strigol and 5-deoxystrigol
contain a methylbutenolide moiety (D-ring) connected to a variable tricyclic lactone (ABC-ring),
which are termed canonical SLs.

To elucidate the effect of SL levels on the development of fertilized ovules, we per-
formed comparative cytological studies on the ovules after fertilization. In the fertilized
ovules showing a decreased SL content, the embryo sac volume was more quickly enlarged
relative to that of the fertilized ovules with high SL levels (Figure 4A,B). The extent of
normal nucellar degeneration coincided with the progression of embryo sac growth in
fertilized ovules with low SL levels. In contrast, cells in the nucellus tissue were less likely
to collapse, embryo sac growth was retarded or completely ceased, and free endosperm
nuclei were lower in number and much further apart from each other in the ovules with
a high SL content compared with the ovules with reduced SL levels (Figure 4A,B). The
resting zygote collapsed in the fertilized ovules with high SL levels, whereas it remained
alive in the fertilized ovules with decreased SL contents. These morphological observations
show that the abortion process occurs in fertilized ovules with high SL levels, suggesting
roles for SLs in the regulation of ovule development after fertilization.
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Figure 4. Histological sections of the ovules after fertilization in Xanthoceras sorbifolium. (A): A portion
of a transverse resin section of the normal ovules with low SL levels, showing a rapidly expanding
embryo sac and a normally developing syncytial endosperm; (B): A portion of a transverse resin
section of the abnormal ovules with high SL contents, showing that development of the embryo sac
was arrested and syncytial endosperm degenerated. (C): A many-celled proembryo was formed at
the micropylar end of embryo sac in the normally developing ovule 18 days after pollination (DAP).
(D). The longitudinal section of the XsD14-silenced ovule 7 DAP, showing delayed degeneration. EM:
embryo, END: endosperm, ES: embryo sac, FNE: free nuclear endosperm, II: inner integument, NU:
nucellus, OI: outer integument.

2.2. Effect of Exogenous Application of GR24 and TIS108 on Fruit Set and Early Seed Development

Only a terminal racemose inflorescence in a branch can bear functionally female flow-
ers in X. sorbifolium, an andromonoecious species. Although a single terminal inflorescence
may produce as many as 30 functionally female flowers, only a very small percentage of
them (usually less than 5%) may set fruits due to various limiting factors, including nutrient
deficiency [43]. To determine whether strigolactones affect the fruit set and development
of fertilized ovules in X. sorbifolium, we treated two groups of terminal inflorescences in
each genotype with GR24, a synthetic strigolactone analog, and TIS108, a specific inhibitor
of SL biosynthesis. The exogenous application of GR24 decreased the number of mature
fruits per inflorescence, but there were some differences among the genotypes (Figure 5).
Treatment with GR24 accelerated the abortion process of aberrantly developing fruits
and the fertilized ovules within them. The inflorescences treated with TIS108 produced
more mature fruits than those in the mock treatment. Treatment with TIS108 delayed the
abortion process of the fertilized ovules in the aberrantly developing fruits. We exam-
ined the expression levels of the genes encoding Xanthoceras homologs of ACC oxidase
(1-aminocyclopropane-1-carboxylic acid oxidase, ACO) ACO2 and ACO3, key enzymes
in ethylene biosynthesis [44], in the fertilized ovules of the inflorescences with the GR24
treatment. The results indicated that the GR24 treatment increased the transcript levels
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of these two ACO genes (Figure 6), suggesting the promotion of ethylene biosynthesis.
Additionally, an RT-PCR analysis showed that the ovules treated with GR24 had higher
expression levels of genes encoding vacuolar processing enzymes (VPEs), which are execu-
tors of vacuole-triggered programmed cell death (PCD), including VPE2 and VPE4 [45].
This suggests that ethylene-mediated PCD may be the cause of the cell degeneration in the
GR24-treated ovules. All of these findings point to the possibility that SLs influence ovule
abortion following fertilization in Xanthoceras.
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Figure 6. Expression analysis of the genes encoding Xanthoceras homologs of ACC oxidase (1-
aminocyclopropane-1-carboxylic acid oxidase, ACC oxidase, ACO) ACO2 and ACO3 and encoding
vacuolar processing enzyme (VPE) VPE2 and VPE4 in the fertilized ovules of the inflorescences with
the GR24 or control treatment. The values are the means of three biological replicates with standard
error bars. Asterisks indicate significant difference at p < 0.05 (ANOVA, Tukey’s HSD test).
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2.3. Genome-Wide Identification of SL Biosynthesis Genes and Their Expression in Normally and
Abnormally Developing Ovules after Fertilization

To determine whether the morphological changes in the fertilized ovules mentioned
above are associated with the extensive reprogramming of gene expression involved in SL
biosynthesis and signaling pathways, next-generation RNA sequencing was performed on
the mRNAs obtained from normally (with low levels of SLs) and abnormally (with high
levels of SLs) developing ovules 10 DAP, which were collected from the plants with the
exogenous Pi supply and the ones without the Pi treatment (under Pi deficiency conditions),
respectively [43]. Protein sequences of CCD7 (AT2G44990) and CCD8 (AT4G32810) in
Arabidopsis were used to search against the Xanthoceras genome database (http://gigadb.
org/dataset/100606, accessed on 14 May 2019) and the transcriptomic database (this study)
using the BLAST tool. Subsequently, each subject sequence was blasted against the NCBI
(https://blast.ncbi.nlm.nih.gov/, accessed on 23 January 2021) database to confirm that it
contained the conserved domain REP65 or PLN02258 [46]. As a result, we identified a total
of 19 candidate CCD family genes, including sixteen members of the CCD subfamily and
three members of the 9-cis epoxycarotenoid dioxygenase (NCED) subfamily (Table S1). A
phylogenetic tree was constructed using the protein sequences of CCDs and NCEDs from
Xanthoceras, Arabidopsis, rice, and Forsythia suspensa. The results showed that the CCD
family proteins were divided into two clades: CCD and NCED (Figure S1).

The transcriptomic analysis indicated that 13 of the 19 CCD genes were expressed
(FPKM > 0.1) in the fertilized ovules (Table S1). Of these, nine genes showed differential
gene expression between the normal and abnormal ovules (log2 fold change ≥ 1.5 or ≤−1.5;
p ≤ 0.05), and six genes (including XsCCD8) were upregulated in the abnormal ovules.
Among the identified CCD family genes, all three NCED genes showed significantly in-
creased gene expression in the abnormally developing ovules compared with the normally
developing ovules. One of these NCED genes, termed XsNCED3-2 (EVM0019606), showed
an extremely high abundance of transcripts in both abnormal (FPKM = 645.27) and normal
ovules (FPKM = 136.97) (Table S1).

Using the Arabidopsis D27, MAX1, and LBO protein sequences as queries, we iden-
tified 4 D27, 19 MAX1, and 16 LBO homologs in the Xanthoceras genome, respectively
(Table S1). The transcriptomic analysis revealed that 4 D27, 16 MAX1, and 13 LBO Xantho-
ceras homolog genes were expressed in the fertilized ovules (FPKM > 0.1). Among them,
2 D27, 6 MAX1, and 12 LBO genes were differentially expressed between the normally
developing ovules and aborting ovules (Table S1).

To validate the quantification of the transcript levels of Xanthoceras genes obtained
from the RNA-seq approach, the relative gene expression of six selected SL biosynthesis-
related candidate genes, including D27, CCD, NCED, MAX1, and LBO, was measured by
quantitative RT-PCR (Figure 7). As shown in the presented data, there was agreement
between the results of the qPCR and RNA-seq tests for all six candidate genes examined.

2.4. Genome-Wide Identification of Genes Related to SL Perception and Signaling and Their
Expression in Fertilized Ovules

The perception and signaling pathways of SLs in rice and Arabidopsis involve three
highly conserved components: D14/AtD14, D3/MAX2, and D53/SMXL6/7/8 [47]. The
D14 gene, first characterized in rice [26], encodes a protein of the α/β hydrolase superfam-
ily with a strictly conserved Ser-His-Asp catalytic triad necessary for hydrolase activity.
We used the protein sequence of rice D14 (Os03g0203200) as a query to search for D14
homologs in the Xanthoceras genome database. As a result, five Xanthoceras D14 homologs
(EVM0010622, EVM0016131, EVM0023764, EVM0021522, and EVM0018761) were identified
(Table S2). The sequences of these proteins share the putative hydrolase catalytic triad
of Ser-Asp-His residues (Figure S2). A phylogenetic analysis of D14 proteins from rice,
Arabidopsis, petunia, and Xanthoceras indicated that the Xanthoceras protein EVM0010622.1
was in the same clade as D14, AtD14, and DAD2 (Figure 8). EVM0010622.1 was the most

http://gigadb.org/dataset/100606
http://gigadb.org/dataset/100606
https://blast.ncbi.nlm.nih.gov/
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similar to AtD14, sharing 81.4% of its protein sequence identity; therefore, we designated
EVM0010622.1 as XsD14.
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Figure 8. Phylogenetic analysis of DWARF14 (D14) homologs. Maximum likelihood and Bayesian
inference phylogenies were produced from an alignment of D14 hydrolases from Arabidopsis, rice,
petunia, and Xanthoceras. A bootstrap analysis was performed using 1000 replications.

A transcriptomic analysis indicated that four putative Xanthoceras D14 homologous
genes were expressed in the fertilized ovules, of which EVM0016131 and XsD14 showed
very high levels of transcription in the aborting ovules (FPKM = 919.2 and FPKM = 225.42,
respectively). Among these four genes, three were significantly differentially expressed
between the aborting and normally developing ovules (Table S2). The EVM0016131 and
XsD14 genes were upregulated in the aborting ovules, whereas EVM0021522 was up-
regulated in the normally developing ovules. To validate the expression profile of the
Xanthoceras D14 homologous genes, we selected two differentially expressed genes, XsD14
and EVM0016131, for our qRT-PCR analysis. As shown in Figure 9, these two genes showed
similar expression patterns to those observed in the RNA-seq data.

Four putative Xanthoceras MAX2 homologs (EVM0023678, EVM0002628, EVM0020331,
and EVM0007925) were identified with BLASTP searches against the genomic database of
Xanthoceras using the Arabidopsis MAX2 (AT2G42620) protein sequence as a query (Table
S2). The EVM0023678 protein was most similar to AtMAX2; therefore, we designated
EVM0023678 as XsMAX2, which was 63.7%, 60.7%, and 45.5% identical at the amino
acid level to the MAX2 proteins from P. hybrida, A. thaliana, and O. sativa subsp. japonica,
respectively. The transcriptome analysis showed that the EVM0002628 and EVM0020331
genes were not expressed in the fertilized ovules, whereas the XsMAX2 gene showed very
high transcript levels and was significantly upregulated in the aborting ovules compared
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with the normally developing ovules (Table S2). The results were confirmed by a qRT-PCR
analysis of the expression of two selected MAX2 homologs (Figure 9).
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Six putative Xanthoceras SMXL homologs were identified by BLASTP against the Xan-
thoceras genome database and the transcriptomic database (this study) using the AtSMXL6
(AT1G07200) protein sequence from Arabidopsis. A phylogenetic analysis of D53 in rice and
SMXL proteins in Arabidopsis, pea, and Xanthoceras indicated that the Xanthoceras protein
EVM0012767 was in the same clade as AtSMXL8; therefore, we designated EVM0012767 as
XsSMXL8 (Figure S3). This study did not determine the relationship between the other four
Xanthoceras SMXL homologs and Arabidopsis AtSMXL6 and AtSMXL7. The protein se-
quence analysis revealed that the XsSMXL8 protein contains an RGKT motif, which is highly
conserved in rice D53, Arabidopsis AtSMXL6/7/8, and pea PsSMXL8 and considered to be
essential for SL-mediated D53/SMXL protein degradation [48]. The transcriptomic analysis
indicated that all six Xanthoceras SMXL homolog genes were expressed in the early devel-
oping seeds. Among them, four showed significantly differential expression between the
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degenerating and normally developing ovules after fertilization, and all were upregulated
in the aborting ovules compared with the normal ovules. The qRT-PCR analysis of two
selected DEGs validated the differences in transcript abundance from the RNA-seq analysis
(Figure 9).

2.5. Genome-Wide Identification of Xanthoceras Invertase Genes and Crosstalk between Sugar and
Strigolactone in the Development of Fertilized Ovules

Based on their pH optima, invertases are classified into acid invertase (A-Inv) and
alkaline/neutral invertase (A/N-Inv) [49]. According to their subcellular localization, acid
invertases are further subdivided into cell-wall-bound invertase (CWIN) and vacuolar
invertase (VIN). Alkaline/neutral invertases have different subcellular localizations, includ-
ing cytosol, mitochondria, chloroplast, and nuclei. Based on the sequences of six cell wall
invertase (AtcwInv1–6), two vacuolar invertase (AtvaInv1–2), and eleven neutral/alkaline
invertase (At-A/N-InvA-K) proteins from Arabidopsis and a BLASTP search, we identi-
fied six cell wall, two vacuolar, and eight alkaline/neutral invertase homologs in the X.
sorbifolium genome (Table S3). The alignment analysis of the deduced protein sequences
of the Xanthoceras CWINs and VINs indicated that they contain a β-fructofuranosidase
motif (NDPNG/A), an RDP motif, and a cysteine catalytic domain (WECP/VD), as well
as four putative enzyme active site residues [49] (Figure S4). A valine residue in the
‘WEC-P/V-D’ box was found for two vacuolar invertases, whereas six cell wall invertases
were characterized by the presence of a proline residue (Figure S4). Twelve conserved
domains, which have been identified in rice A/N-Invs [49], could be detected in all eight
Xanthoceras alkaline/neutral invertases (Figure S5). Consistently, a phylogenetic analy-
sis showed that the invertase proteins from Xanthoceras, Arabidopsis, Litchi (Sapindaceae),
and Dimocarpus (Sapindaceae) were clustered into two subgroups: acid invertases and
alkaline/neutral invertases (Figure S6). The acid invertase clade contained cell-wall- and
vacuole-targeted subgroups.

Our transcriptome data analysis revealed that 12 putative invertase genes were actively
expressed in normally developing ovules at 10 DAP (FPKM ≥ 10; Table S3). Of these, four
genes showed significantly differential expression between the abnormally and normally
developing ovules (log2-fold change ≥1.5 or ≤−1.5; p ≤ 0.05). The cell wall invertase gene
XsCWIN2 (EVM0004408) was upregulated in the normally developing ovules, whereas
two vacuolar invertase genes, XsVIN1 (EVM0014291) and XsVIN2 (EVM0018616), and an
alkaline/neutral invertase gene, XsA/N-Inv1 (EVM0006730), were downregulated in the
normally developing ovules. The transcript abundance of these four DEGs was validated
by a qRT-PCR analysis (Figure 10).

Based on the data above, we hypothesized that strigolactone may regulate early seed
development by interacting with sugars in Xanthoceras and that the crosstalk between sugar
and strigolactone may occur via sucrose metabolic processes. To preliminarily test this
idea, we measured the endogenous content of soluble sugars in various developmental
stages of the ovules after pollination using LC-MS/MS. The results indicated that the
sucrose levels rose steadily in the normally developing ovules before 20 DAP and then
increased dramatically during the formation and early development of cotyledons between
20 and 28 DAP (Table 1). The embryo at the middle stage of development between 40 and
48 DAP contained high levels of sucrose. The fructose and glucose contents also increased
progressively before 13 DAP, while the free nuclei of the developing endosperm divided
rapidly and accumulated on the embryo sac periphery. The ratio of hexose to sucrose
reached the highest value at 13 DAP and then decreased following the formation of many-
celled proembryos at the micropylar end of the embryo sac (Figure 4C). Oligosaccharide
(raffinose) was not detected in the fertilized ovules until 28 DAP, and its content was high
in the embryo at 48 DAP. Very high levels of sucrose and relatively low levels of hexose
were found in the aborting ovules with a high strigolactone content at 12 DAP, whereas
only traces of sucrose could be detected in the aborting ovules at 20 DAP (Table 1).
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Table 1. Soluble sugar content in fertilized ovules and early embryos in Xanthoceras sorbifolium. Values
(mg g−1 dry weight) are the means ± SD of four biological replicates.

Samples Xylose Fructose Glucose Arabinose Inositol Sucrose Glucose 6-
Phosphate Raffinose

A 0.005 ±
0.001 a

32.741 ±
4.674 a

16.482 ±
4.321 a

0.010 ±
0.003 a

6.838 ±
1.351 a

23.947 ±
4.761 a

0.369 ±
0.071 a 0.000 a

B 0.009 ±
0.002 b

45.481 ±
5.341 a

20.209 ±
3.312 a

0.025 ±
0.006 b

14.806 ±
2.147 b

162.724 ±
14.751 b

0.422 ±
0.123 a 0.000 a

C 0.049±
0.016 a

63.731 ±
6.454 b

22.423 ±
2.261 a

0.061 ±
0.017 c

4.726 ±
1.314 a

4.166 ±
1.531 c

0.798 ±
0.241 b 0.000 a

D 0.020 ±
0.045 c

137.265 ±
8.671 c

59.152 ±
7.251 b

0.022 ±
0.006 b

16.197 ±
2.765 b

27.066 ±
5.141 a

0.569 ±
0.156 a 0.000 a

E 0.023 ±
0.052 c

94.150 ±
9.543 d

34.826 ±
5.432 c

0.045 ±
0.017 d

8.300 ±
1.475 a

41.448 ±
4.751 d

0.121 ±
0.047 c 0.000 a

F 0.042 ±
0.047 a

78.163 ±
7.241 d

59.411 ±
6.423 b

0.019 ±
0.008 b

6.825 ±
1.417 a

204.921 ±
23.241 e

1.685 ±
0.491 d

0.937 ±
0.251 a

G 0.014 ±
0.041 d

69.939 ±
6.653 b

66.181 ±
5.174 b

0.004 ±
0.001 a

13.357 ±
2.433 b

185.235 ±
22.741 b

0.566 ±
0.156 a

3.258 ±
0.753 b

A: normal ovules at 10 days after pollination (DAP); B: normal ovules 13 DAP; C: normal ovules 20 DAP; D:
normal ovules 28 DAP; E: normal embryo 48 DAP; F: degenerating ovules 12 DAP; G: degenerating ovules 20 DAP.
Values accompanied by different lower-case letters differ significantly (p < 0.05) between samples.

Further experimental studies revealed that the exogenous treatment of the ovaries
at 1 DAP with 100 mM sucrose reduced the transcript levels of the putative strigolactone
biosynthesis genes CCD8 and NCED3-2 in the ovules at 7 DAP compared to the control,
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indicating the likelihood that the strigolactone decreased (Figure 11). This exogenous
sucrose application either delayed the abortion process of early aberrantly developing
fruits and the fertilized ovules within them or partially restored the development of these
fruits and ovules. Additionally, we assessed the expression of the CWIN2 gene and the
invertase enzyme activity in ovules 9 DAP treated with exogenous strigolactone (GR24)
1 DAP. The results showed that both the invertase activity and CWIN2 transcript amounts
in the fertilized ovules with the GR24 treatment were lower than those in the control ovules
(Figure 12), in parallel with the low accumulation of glucose and fructose in the aborting
ovules, suggesting a potential inhibitory effect of strigolactone on invertase activity.
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Figure 11. Expression levels of CCD8 and NCED3-2 genes in the Xanthoceras fertilized ovules with
sucrose application and control treatment, respectively, relative to the housekeeping gene actin-2.
The values are the means of three biological replicates with standard error bars. Asterisks indicate
significant difference at p < 0.05 (ANOVA, Tukey’s HSD test).
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2.6. Silencing of the XsD14 Gene Promoted Early Seed Development

As mentioned previously, the XsD14 gene showed very high transcript abundance in
the fertilized ovules and was upregulated in the aborting ovules, so we further characterized
the role of this gene during early seed development. TRV-based VIGS has been successfully
applied to induce the silencing of endogenous genes in young fruits and fertilized ovules
in X. sorbifolium [43]. The present study also used this approach to silence the expression
of the XsD14 gene in young fruits and fertilized ovules by injecting an Agrobacterium
tumefaciens suspension containing the pTRV2-XsD14 vector into terminal inflorescences
3 d before anthesis. Our phenotypic observations showed that pTRV2-XsD14 infiltration
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led to higher fruit retention in the inflorescences than the pTRV2-empty vector control
treatment, but there were differences between genotypes in terms of the silencing effects
(Figure 13). The qRT-PCR analyses indicated that XsD14 mRNA levels were significantly
reduced in the fertilized ovules within the pTRV2-XsD14-infiltrated fruits, compared with
those in the control (Figure 14). The development of the fertilized ovules was arrested
7 DAP in untreated aberrantly developing fruits, whereas the silencing of the XsD14 gene
resulted in a delay in the arrest and abortion process of the fertilized ovules. The results of
a cytological investigation and sugar quantification showed that the XsD14-silenced ovules
had a larger hexose content (Figure 15) and more durable proliferation of endosperm free
nuclei (Figure 4D) than the control ovules.
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differences at p < 0.05 (ANOVA, Tukey’s HSD test).
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3. Discussion

Most studies on SL biosynthesis and signaling have focused on roots and shoots, but
little is known about whether SLs are produced in early developing seeds and about their
roles in ovule development after fertilization [1,47]. This study revealed that SLs were
also generated in early developing seeds and that the aborting ovules after fertilization
contained a high accumulation of SLs during the early stages of endosperm development
in X. sorbifolium plants under low-Pi conditions. Enhanced SL biosynthesis was associated
with higher expression levels of PHO2, a PSI gene, in the plants exposed to Pi starvation
than in the plants with the Pi application. The inorganic form of phosphorus (phosphate,
Pi) that is available to plants is a severely limiting factor for the fruit and seed production
of Xanthoceras due to its low availability in most soils [43]. The requirement of Xanthoceras
plants for phosphorus nutrients may be quite high during early seed development because
of the active proliferation and growth of the syncytial endosperm and maternal tissues,
including the nucellus and integuments, followed by the rapid expansion of the large
embryo sac after fertilization [43,50]. We assume that the fertilized ovules in X. sorbifolium
are the most sensitive to Pi deficiency. Plants have evolved elaborate mechanisms for
adapting to low-Pi conditions and for maintaining cellular Pi homeostasis [5,12,51]. Many
lines of evidence support the involvement of hormone-dependent signaling pathways,
including SL pathways, in Pi starvation responses that lead to increased Pi uptake and
reallocation within the plant [12,52]. Based on the present and previous studies, we propose
that the development of fertilized ovules during Pi deficiency might be influenced by SL
signaling and could be utilized during the process of Pi starvation responses as a way to
fine-tune the adaptations of Xanthoceras plants to environmental stress conditions.

Here, we showed that there was an obvious difference in the progression of abortion
between ovules treated with GR24 and those with the control treatment. The abortion
process of the fertilized ovules in the aberrantly developing fruits was accelerated by the
treatment with GR24; in contrast, the ovule abortion process was delayed by the treatment
with TIS108, a triazole derivative that inhibits SL biosynthesis. The accelerated abortion
process of the ovules with the GR24 treatment was associated with the degeneration of free
endosperm nuclei and rapid reduction of the embryo sac. Our previous study identified a
number of ethylene biosynthesis and signaling genes whose transcript abundances were
significantly elevated in aborting ovules after fertilization [43]. The present study indicated
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that the GR24 treatment significantly induced the expression of Xanthoceras homologs of
ACO genes, key components involved in ethylene biosynthesis, in fertilized ovules. This
was consistent with findings of Lee and Yoon (2020) [53], whose treatment of etiolated
Arabidopsis seedlings with GR24 increased the transcript levels of ACO genes, thereby
enhancing ethylene biosynthesis. Our studies imply that SLs possibly act as abortion
signals of fertilized ovules in X. sorbifolium and that potential crosstalk between SLs and
ethylene may be involved in the control of ovule abortion after fertilization.

Our transcriptome analysis identified a total of 62 putative Xanthoceras homologs of
the proposed SL biosynthesis genes in the Xanthoceras genome, including the D27, CCD,
MAX1, and LBO genes. CCD7/MAX3 and CCD8/MAX4 have been shown to be expressed
mainly in roots and lower stems in various examined species [15,46,54,55]. We found that
several CCD family genes, including CCD8 and three NCED subfamily genes, were also
expressed in the early developing seeds, of which some genes showed increased transcript
levels in the aborting ovules after fertilization. The most similar Xanthoceras homolog
to AtMAX1 was only weakly expressed in the fertilized ovules, but several other MAX1
homologues showed abundant transcripts and differential expression between the normal
and aborting ovules. The expression patterns observed for multiple SL biosynthesis genes
seem to support their activities in determining the amount of SLs (including 5-deoxystrigol
and strigol) accumulated in early developing seeds, in which their upregulated expression
might increase the SL levels in the aborting ovules after fertilization. These transcripts
likely contribute to the key traits required to enhance the abortion process of fertilized
ovules in the plant.

Substantial evidence has established that the D14 α/β-fold hydrolase functions as an
SL receptor and is required for the perception of the SL signal in petunia, rice, Arabidopsis,
pea, and tomato [47]. The D14 gene was transcribed at high levels in rosette and cauline
leaves and at lower levels in axillary buds, inflorescences, stems, and roots in Arabidopsis
plants [56]. In Brassica napus, CRISPR/Cas9-mediated knockout lines of the genes encoding
BnD14 showed the characteristic feedback upregulation of CCD7 and CCD8 transcripts [57].
The lack of BnD14 function resulted in a prolific branching phenotype and an increase in
total flower and total pod weight per plant. Our study found that the D14 gene was also
expressed in fertilized ovules in which Xanthoceras homologs of MAX2 and SLs coincide.
This is consistent with the proposed interaction between D14 and MAX2 in the presence
of SLs [29], suggesting that the SL response takes place in the fertilized ovules where
these factors coincide. We used a VIGS approach to characterize XsD14 functions during
reproductive processes in X. sorbifolium. The results demonstrated that XsD14 gene silencing
could alleviate fruit abortion and delay the abortion process of fertilized ovules, suggesting
an important role of this gene in regulating the early development of fruits and seeds.

Xanthoceras sorbifolium follows a nuclear-type endosperm development, in which the
endosperm initially develops as a syncytium, and cellularization is triggered after the
formation of globular embryos [41]. The fertilized egg cell does not start to divide until 11 d
after pollination, unlike the central cell, which quickly undergoes many mitotic cycles after
fertilization to form the syncytial endosperm. Zygote division is a crucial developmental
transition, which, in the case of failure, leads to ovule abortion [58]. It is likely that the
syncytial endosperm produces structural and signaling substances such as sugars, which
could activate the resting zygote and act as a nutritive component supporting early embryo
growth. Fruit growth and ovule development after fertilization show great plasticity
in X. sorbifolium, as they are regulated by pollen sources and nutrient availability [50].
Under low-nutrient conditions, up to 70% of the young fruits are aborted within 4 to
11 d following pollination. On average, the endosperm develops for 3 to 8 days before
ovule abortion and the zygote degenerates during this period. The early collapse of the
zygote can be used for identifying abortive ovules. By applying a sucrose treatment, the
growth of young fruits and fertilized ovules within them is partially restored from an early
abnormality. When nutrients, such as sugar and Pi, are limiting, increased SLs possibly
inhibit fruit development to avoid the nutrient-demanding growth of the aborting fruits and
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fertilized ovules within them, thereby reducing sink tissue. We assume that the SL-mediated
promotion of fruit and ovule abortion in X. sorbifolium might allow for a reallocation of
resources to healthy fruits or other parts of the plant under nutrient-deficient conditions.

We found that hexoses (glucose and fructose) accumulated at high concentrations in
fertilized ovules during the syncytial endosperm development, whereas sucrose increased
during the mid- and late-development stages. High ratios of hexose and sucrose during
early seed development might promote the proliferation of endosperm free nuclei and
syncytial endosperm development in X. sorbifolium. When the ratio of hexose to sucrose
levels decreased significantly, the growth of the fertilized ovules might be arrested and
their abortion process would be initiated. The development of the fertilized ovules might
be positively correlated with the hexose content but negatively correlated with SL levels. SL
accumulation caused changes in the ratio of hexose to sucrose during ovule degeneration,
suggesting the possibility that SLs may control the development of ovules after fertilization
through their effects on the activity of invertases. The invertase-mediated release of hexoses
is likely critical for appropriate carbon partitioning and normal seed development in
X. sorbifolium.

4. Materials and Methods
4.1. Plant Materials

Seven-year-old Xanthoceras sorbifolium trees that were used in this study were grown at
the experimental farm of the Institute of Botany, Chinese Academy of Sciences (Xiangshan,
Beijing, China). Functional female flowers were pollinated on the first day of anthesis.
Ovules were isolated from the ovaries at various developmental stages after pollination.
Isolated ovules were flash frozen in liquid nitrogen and stored at −80 ◦C until further
use. For cytological studies, some collected ovules were immediately fixed with FAA
(formaldehyde acetic acid) solution containing 50% (v/v) ethanol, 5% (v/v) acetic acid, and
3.7% (w/v) formaldehyde for at least 24 h and then stored at 4 ◦C.

4.2. Histological Analysis

Fixed ovules were dehydrated, infiltrated, and embedded in either Paraplast Plus or
Spurr resin. Paraplast Plus sections were cut to 6–10 µm using a steel knife and stained with
safranin and fast green. Resin sections were cut to be 1–1.5 µm thick with a diamond knife
and stained with 0.5% toluidine blue O in 0.1% sodium carbonate (pH 11.1) for general
observations. Stained sections were observed with a Carl Zeiss microscope (Carl Zeiss
Microscopy GmbH, Jena, Germany).

4.3. Strigolactone Analysis

Frozen ovules were homogenized to a fine powder under liquid nitrogen, and SL
extraction was performed using 1 mL acetone containing d1-epi-5DS (100 pg) at −20 ◦C
overnight. After the samples were filtered, and the filtrates were dried under nitrogen
gas and then dissolved in 10% acetone. The extracts were loaded onto Oasis HLB (Waters
Corporation, Micromass, TA, USA) and Sep-Pak Silica (Waters, Micromass, TA, USA) car-
tridges for purification and then washed with water, eluted with acetone, and dried under
nitrogen gas. The SL-containing fraction was eluted with acetone and then evaporated
until dry. The sample was re-dissolved in 50% acetonitrile (acetonitrile:water = 50:50,
v:v) and filtered through a filter for liquid chromatography–tandem mass spectrometry
(LC-MS/MS) analysis. SLs were analyzed using a high-pressure liquid chromatography
(HPLC) Q-Trap-MS/MS in MRM (multiple reaction monitoring) mode.

4.4. Soluble Sugar Analysis

Ovules at various developmental stages after pollination were sampled for soluble
sugar analysis. The samples were lyophilized with a freeze drier (SYHX, Beijing, China)
and subsequently ground to a powder in liquid nitrogen. Sugars were extracted with an
80% aqueous methanol (v/v) solution and centrifuged for 15 min at 20 ◦C. The supernatant
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was collected and evaporated in a centrifugal vacuum evaporator (CV100-DNA, Aijimu,
Beijing, China). Chloroform and distilled water were added to the samples and then
centrifuged. The supernatant was dried by a vacuum concentrator at room temperature.
The dried samples were oximated with methoxyamination reagent at 37 ◦C for 2 h. Then,
the silylation reagent, MSTFA, was added to each oximated sample. The mixture was
incubated at 60 ◦C for 30 min. Finally, the derivatized samples were transferred to glass
vials for GC-MS analyses using an Agilent 7890A GC system equipped with an Agilent
7693 autosampler and Agilent 5975C-inert MSD with Triple-Axis Detector (Agilent, Atlanta,
GA, USA). Three replicates were used for each sample at the same stages.

4.5. Invertase Enzyme Assay

Ovules were ground to powder in liquid nitrogen, followed by the addition of 150 mM
Tris-HCl (pH 8.0) extraction buffer containing 2 mM EDTA, 10 mM MgCl2, 0.2% (v/v) 2-
mercaptoethanol, 0.1 mM phenylmethyl sulfonyl fluoride, 1 mM benzamidine, and 10 mM
ascorbic acid. Homogenates were centrifuged at 15,000× g rpm for 20 min at 4 ◦C. The
sediments were homogenized with 150 mM Tris-HCl (at pH of 8.0) extraction buffer (the
same as above) and subsequently centrifuged at 15,000× g rpm for 20 min at 4 ◦C. The
supernatants were desalted twice using Sephadex G-25 (Pharmacia PD-10) and kept on
ice until use. The mixture was incubated at 37 ◦C for 120 min. The desalted extracts
and glucose were used as background control and standard, respectively. The reaction
was stopped by adding the stop solution containing 1 M sodium potassium tartrate, 1%
3,5-dinitrosalicylic acid, and 0.5 M KOH. The liberated reducing sugars were quantified by
measuring the absorbance at 540 nm.

4.6. Assays of GR24 and TIS108 Treatment

Concentrations for GR24 at 2.5 µM, an SL analog, and TIS108 at 1.5 µM, an SL biosyn-
thetic inhibitor, were empirically determined. Both compounds were initially dissolved in
acetone and volume was then adjusted with double-distilled sterile water. Young fruits
at 1 DAP were dipped in the GR24 or TIS108 solution every other day for 6 days of the
induction process. Treatments with the same concentration of acetone (diluted with wa-
ter) were used as the experimental control. Each experiment was performed using three
biological replicates.

4.7. Assays of Sucrose Treatment

Concentration for sucrose at 100 mM was empirically determined. Ovaries at 1 DAP were
dipped in the sucrose solutions every other day over 6 days of the induction process. Effects
of sucrose supply on fruit growth and ovule development were compared with mannitol, an
osmotic control. Each experiment was performed using three biological replicates.

4.8. Phosphorus (P) Applications

Phosphorus application experiments were conducted with seven-year-old trees of
4 Xanthoceras genotypes (5 trees per genotype). Either phosphorus was not applied (control)
or phosphorus fertilization dose of 150 g P2O5 per tree was used. Triple superphosphate
(46% P2O5) was used as the source of phosphorus. Applications were realized in the
form of a circle (40 cm radius) in front of roots. Plants received P applications 10 days
before anthesis.

4.9. RNA Extraction, Library Construction, and Illumina Sequencing

Based on histological observations of ovules after fertilization, normal and abnormal
ovules were determined and each was sampled for RNA-seq analysis. The total RNA from
the samples was extracted using a Plant Total RNA Isolation Kit (Huayueyang, Beijing,
China). A total of 6 RNA preparations (3 biological replicates for each sample) were used to
increase sequencing coverage. The quantity and quality of extracted RNA were evaluated
using a Qubit fluorometer (Invitrogen Inc., Carlsbad, CA, USA) and bioanalyzer 2100
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(Agilent Technologies, Santa Clara, CA, USA), respectively. Oligo-dT (Qiagen, Valencia,
CA, USA) was used to to isolate mRNA. The mRNA was fragmented using fragmentation
buffer. cDNA was then synthesized using the mRNA fragments as templates. The cDNA
fragments were purified using Qiaquick PCR Purification Kits (Qiagen, Valencia, CA,
USA). The purified cDNA fragments were end repaired, added to poly (A), and ligated to
Illumina sequencing adapters. Suitable fragments were selected for the PCR amplification
and sequenced using BGISEQ-500 at BGI (Shenzhen, China).

4.10. RNA-Seq Data Analysis

Raw RNA-seq reads were filtered using a Perl program to obtain high-quality clean
reads by removing low-quality sequences (having more than 20% bases with quality lower
than 15 in one sequence), reads with more than 5% N bases (bases unknown), and reads
containing Illumina sequencing adapters. The raw RNA-seq data have been deposited
in the publicly accessible NCBI Sequence Read Archive (SRA) database under Bioproject
PRJNA966773 (https://www.ncbi.nlm.nih.gov/sra/PRJNA966773, accessed on 3 May
2023). The filtered sequence pairs were aligned to the Xanthoceras sorbifolium reference
genome sequences, using the alignment tool HISAT2 version 2.1.0. The transcript levels
of individual transcripts in each sample were normalized as fragments per kilobase of
transcript per million mapped reads (FPKM). Differentially expressed genes (DEGs) were
identified using DEseq2.

4.11. Real-Time qRT-PCR Analysis

Real-time qRT-PCR was used to estimate the accuracy of RNA-seq data. The same
RNA samples used for RNA-seq were used for qRT-PCR. RNA was used for synthesis of
cDNA with the PrimeScript RT Master Mix Perfect Real Time Kit (Takara, San Jose, CA,
USA). Real-time qRT-PCR was performed on the StepOnePLUSTM real-time PCR System
(Applied Biosystems, Waltham, MA, USA). The actin gene (EVM0010329) was used as an
internal reference, and relative expression was calculated using the 2−△△Ct method. Each
sample was analyzed using 3 independent biological replicates. All of the primers used in
this study are listed in Table S4.

4.12. Virus-Induced Gene Silence (VIGS) Assays

A 370 bp cDNA fragment of XsD14 gene was amplified using the primers presented
in Table S4. The purified PCR products were digested with EcoRI and KpnI and ligated
to pTRV2, resulting in the plasmid TRV2-XsD14. The plasmids were sequenced to verify
correct insertion of the fragment and were then transformed into Agrobacterium tumefaciens
strain GV3101. The cultures containing pTRV1 and pTRV2/pTRV2-XsD14 vector were
mixed in a 1:1 ratio, and then 1 mL of culture was injected into the base of an inflorescence
axial. Five independent biological replicates were performed for each treatment.

4.13. Statistical Analysis

All the data were analyzed statistically using SPSS 25.0 (SPSS Inc., Chicago, IL, USA)
software. One-way analysis of variance (ANOVA) test was performed to assess the statisti-
cal differences. Data are shown as the means ± standard error of at least three biological
replicates, and the mean differences were evaluated by Tukey’s honestly significant differ-
ence test at p < 0.05.

5. Conclusions

After its ovules are fertilized, the Xanthoceras plant decides whether or not to pro-
ceed with seed development. Signals from the environment, including the Pi nutritional
state, and endogenous production, such as metabolite and hormone levels, influence these
decisions. The genes and chemicals that participate in this finely tuned network of commu-
nication must be identified and characterized. This study identified a total of 69 putative
Xanthoceras homologs of genes related to SL biosynthesis and signaling in the Xanthoceras
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genome; among them, 37 genes were found to be differently expressed in the fertilized
ovules that were aborting compared to the normally developing ovules, suggesting their
important roles in seed development and environmental responses. These genes could
be ideal candidates for further studies and Xanthoceras germplasm genetic engineering
in the future. The present study indicated that the production and signaling pathways
of SLs are likely correlated with Pi deficiency, invertase activity, and sugar availability in
ovules after fertilization. The crosstalk between sugar and strigolactone signals may be an
important part of a system that accurately regulates ovule development after fertilization
in X. sorbifolium.
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//www.mdpi.com/article/10.3390/ijms25063276/s1.
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