Skip to main content
. 2024 Mar 9;10(3):207. doi: 10.3390/jof10030207

Table 1.

Metabolically engineered strains of yeasts and filamentous fungi used for lactic acid production, 2013–2023. Genotypes, bioprocess efficiency parameters, buffering conditions, and carbon sources.

Isomer (L, D) Host LDH Complementary Modifications Buffering
Conditions
Titer g/L Productivity (g∙L−1∙h−1) Yield (g/g) Carbon Source Ref.
L Aspergillus oryzae Bos taurus Disruption of native LDH gene 3% CaCO3
pH 6.0
30 100 g/L of starch (dextrin or maltose) [63]
L A. oryzae B. taurus 3% CaCO3 50.1 0.29 0.51 100 g/L
glucose
[64]
L A. oryzae B. taurus pdcA 56.4 0.33 0.58
L A. oryzae B. taurus mpcA 65.4 0.45 0.67
L A. oryzae B. taurus pcdA/mpcA 81.2 0.67 0.81
L A. oryzae Lactococcus lactis pcdA/mpcA without BtLDH 90.1 0.91
L Aspergillus niger Mus musculus (11 copies) Non-neutralized medium 7.7 60 g/L glucose [65]
L Candida glycerinogenes Rhizopus oryzae LDH gene from R. oryzae was expressed under pH-inducible promoter (PCggmt1) pH 5.5 3.9 100 g/L
glucose
[38]
pH 2.5 12.3
L Candida sonorensis Rhizopus oryzae pdc1Δ::RoLDH pdc2Δ CaCO3 78 0.81 100 g/L
glucose
[43]
L C. sonorensis Bacillus megaterium pdc1Δ::BmLDH pdc2Δ 84 0.85
L C. sonorensis Lactobacillus helveticus pdc1Δ::LhLDH pdc2Δ 92 0.94
L Kluyveromyces marxianus KM5 Lactobacillus acidophilus and Staphylococcus epidermidis Non-neutralized medium 16 50 g/L glucose [28]
3.5% CaCO3 24 0.48
L K. marxianus KM5 L. acidophilus and B. taurus Non-neutralized medium 14.8
3.5% CaCO3 21.2
L K. marxianus
BY25571
Lactiplantibacillus plantarum pdc1 Non-neutralized medium 10.5 0.65 100 g/L
glucose
[66]
D K. marxianus
BY25571
L. plantarum pdc1 8.9 0.66
L K. marxianus
BY25571
L. plantarum pdc1 3% CaCO3 46.3 0.80
D K. marxianus
BY25571
L. plantarum pdc1 40.0 0.78
L K. marxianus
BY25571
L. plantarum pdc1 and ∆cyb2 NaOH pH 6 130 2 0.98 230 g/L Jerusalem artichoke
D K. marxianus
BY25571
L. plantarum pdc1 and ∆dld1 122 2 0.95
L K. marxianus
YKX001
B. megaterium NaOH
pH 5.5
47.37 0.99 0.5 80 g/L glucose and 20 g/L
xylose
[9]
L K. marxianus
YKX001
Plasmodium falciparum 50 1.04 0.55
L K. marxianus
YKX001
P. falciparum and B. megaterium Expression of Jen1 from S. cerevisiae, overexpression of native PFK, and ∆dld1 103 1.44 180 g/L corncob residue
L Komagataellla phaffii GLJ B. taurus Expression of Jen1 from S. cerevisiae NH4OH
pH 5
20 0.41 0.47 40 g/L glycerol [22]
L K. phaffii GLS B. taurus Overexpression of native Jen1 ~28 0.67 0.67 40 g/L glycerol
L K. phaffii GLp B. taurus pdc1 30 0.15 0.65 80 g/L glycerol
L K. phaffii GLpard B. taurus pdc1 and ∆ardh 30 0.85 60 g/L glycerol [39]
L K. phaffii GLpm B. taurus pdc1 and ∆mpc1 10.25 0.15 0.27 40 g/L glycerol [40]
D K. phaffii Leuconostoc mesenteroides (4 copies) 3.48 0.04 0.22 Methanol
L K. phaffii L. plantarum Parental strain harbors peroxisomal a CO2-fixation pathway. ∆cyb2 2M NaOH 0.2 0.85 mg/g/h CO2 [67]
L O. polymorpha
NCYC495 leu1.1
L. helveticus PMOX-driven LDH expression, nitrogen source optimization, and adaptive evolution 3.8 0.03 0.08 Methanol [68]
D Pichia kudriavzevii
NG7
L. plantarum pdc1 and adaptive evolution (6% LA) pH 3.6 135 3.66 0.75 100 g/L
glucose
[69]
pH 4.7 154 4.16 0.72
L P. kudriavzevii
E1
Weizmannia coagulans 2–6 and B. taurus pdc1 and ∆dld Non-neutralized medium 74.57 0.93 Glucose [70]
L Saccharomyces cerevisiae SP4 Pediococcus sinensis (3 copies) pdc1, ∆cyb2, ∆gpd1, ∆nde1 26.6 0.34 80 g/L glucose [30]
L S. cerevisiae SP5 P. sinensis (4 copies) pdc1, ∆cyb2, ∆gpd1, ∆trp1, ∆nde1 35.8 0.46
L S. cerevisiae SP6 P. sinensis (4 copies) pdc1, ∆cyb2, ∆gpd1, ∆trp1, ∆nde1/nde2 36.4 0.46
L S. cerevisiae SP7 P. sinensis (5 copies) pdc1, ∆cyb2, ∆gpd1, ∆trp1, ∆nde1/nde2 37.8 0.48
Ca(OH)2
pH 3.5
117 0.58 Fed-batch
glucose
L S. cerevisiae EJ4L R. oryzae cdt-1, gh1-1, XYL1, XYL2, XYL3; ∆ald6, ∆pho13 NaOH
pH 6
83 0.42 0.66 10 g/L glucose
40 g/L xylose
80 g/L
cellobiose
[71]
35 g/L CaCO3 23.77 0.58 0.17 41 g/L lactose [72]
L S. cerevisiae SP1130 B. taurus and P. sinensis japonica pdc1, ∆cyb2, ∆gpd1, ∆adh1
Expression of mhpF and eutE from E. coli
Ca(OH)2
pH 4.7
142 3.55 0.89 Fed-batch
glucose
[60]
D S. cerevisiae
JHY5330
L. mesenteroides subsp. Mesenteroides pdc1, ∆adh1, ∆gpd1/2, ∆dld1, ∆jen1. Overexpression of HAA1 Non-neutralized medium 48.9 0.41 0.79 70 g/L
glucose
[73]
CaCO3 112 2.20 0.80 Fed-batch
glucose
D S. cerevisiae
JHY5730
L. mesenteroides adh1-5, ∆gpd1/2, ∆dld1, ∆pdc1, and adaptative evolution (4% LA). NaOH
pH 3.5
82.6 1.50 0.83 Fed-batch
glucose
[17]
L S. cerevisiae
IBB14LA1_5
P. falciparum Integration of XR, XDH and XK genes and ∆pdc1. Non-neutralized medium 2.6 0.04 0.18 xylose [74]
D S. cerevisiae
YIP-J-C-D-A1
Escherichia coli (3 copies inserted in transposon locus Ty1) pcd1/6, ∆adh1, ∆dld1, ∆cyb2, and ∆Jen1. Ca(OH)2 80 1.10 0.60 Fed-batch
glucose
[75]
D S. cerevisiae
YIP-I-J-C-D-A1
E. coli (3 copies) YIP-J-C-D-A1 plus expression of IoGAS1. Non-neutralized medium 85.3 1.20 0.71 Fed-batch
glucose
[76]
D S. cerevisiae
YIP-A15G12
YIP-I-J-C-D-A1 ∆adh5gpd2
gpd1adh3adh4
92.0 1.21 0.70
L S. cerevisiae SR8L L. acidophilus XYL1, XYL2, XYL3; ∆ald6, ∆pho13 CaCO3 13.4 0.67 20 g/L xylose [77]
11.2 0.11 Acid-treated spent coffee grounds
L S. cerevisiae BK01 L. acidophilus Adaptative evolution (8% LA) Non-neutralized medium 119 0.72 200 g/L
glucose
[78]
L S. cerevisiae PK27 Lactobacillus lactis, Rhizopus oryzae Adaptative evolution (7% LA) Non-neutralized medium 37.94 0.66 0.37 80 g/L glucose [55]
L S. cerevisiae
NO.2-100
L. casei, R. oryzae, and B. taurus pdc1,5,6 and ∆adh1. Expression of ALD from E. coli and overexpression of Jen1. Adaptative evolution (6% LA) 50 g/L CaCO3 121.5 1.69 0.81 90 g/L glucose [48]