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Abstract: α-linolenic acid (ALA), which is a member of the n-3 polyunsaturated fatty acid (n-3
PUFA) family, has often been ignored due to a lack of information. ALA has gradually attracted
increased attention due to its nutritional and medicinal advantages. Studies have shown that ALA
exerts beneficial effects on a variety of diseases, including cancer. In this review, we summarize
the antitumor effects of ALA in the context of cell biology, including the inhibition of proliferation,
the induction of apoptosis, the inhibition of metastasis and angiogenesis, and antioxidant effects.
In addition, studies have shown that ALA can be used as a drug carrier or exert positive clinical
effects when combined with drugs. Therefore, the use of ALA in clinical treatments is very promising
and valuable.
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1. Introduction

α-linolenic acid (ALA) belongs to the family of n-3 polyunsaturated fatty acids (n-3
PUFAs) and contains a carbon–carbon double bond on the third carbon atom at the methyl
end of the carbon chain. This family of essential fatty acids [1] also includes eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA). ALA is the synthetic precursor of
these factors [2,3]. Studies have shown that ALA, DHA, and EPA can be converted into each
other via metabolic pathways, as shown in Figure 1, but this conversion is inefficient [4,5].
In the past, attention to ALA was focused mainly on it as a precursor to DHA and EPA,
while little was known about ALA itself [6,7]. The most common way to increase the
levels of n-3 PUFAs in the body is through dietary intake. ALA can be acquired through
the direct consumption of ALA-rich plants, such as flaxseed, perilla seed, chia seed, and
rapeseed [8,9], as well as from various ALA preparations available on the market, such
as ALA oil, soft capsules, and microcapsules [10]. As components of the phospholipid
membrane [11], n-3 PUFAs play diverse roles, including cardiovascular disease preven-
tion [12], anti-inflammatory effects [13], and anticancer effects [14]. However, the effects of
ALA, DHA, and EPA on the human body are not consistent. Hemant Poudyal et al. [15]
reported that ALA induced different physiological responses compared to DHA or EPA to
alleviate the symptoms of metabolic syndrome. Jeong-Eun Choi et al. [16] showed that EPA
and DHA exerted antidepressant effects on rats, while ALA did not exert antidepressant
effects. Laura E Voorrips [17] showed that ALA was the only n-3 PUFA that was effective
at reducing the risk of breast cancer (BC). Based on global medical and nutritional stud-
ies [9,18–29], ALA can regulate blood lipids, reduce blood viscosity, lower blood pressure,
support weight loss, suppress allergic reactions, inhibit inflammation, affect diabetes and
bone health, and inhibit cancer occurrence and metastasis. Therefore, it is necessary to
distinguish ALA from other n-3 PUFAs.
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tasis. Therefore, it is necessary to distinguish ALA from other n-3 PUFAs. 

 
Figure 1. Overview of α-linolenic acid (ALA). Molecular structure of ALA and the in vivo metabolic 
pathway by which n-3 polyunsaturated fatty acids (n-3 PUFAs) are generated from ALA. The colors 
in the figure are intended to emphasize the members of n-3 PUFAs. The vertical arrow represents 
the metabolism of ALA to other n-3 PUFAs in vivo; Arrows in other directions represent different 
dietary sources of n-3 PUFAs. 

According to the International Agency for Research on Cancer GLOBOCAN 2020 
cancer incidence and mortality estimates, in 2020, there were 19.3 million new cancer cases 
and nearly 10 million deaths worldwide [30], except for melanoma cell cancer. As a pop-
ulous country, China’s new cancer cases in 2020 accounted for 24% of the world’s new 
cancer cases [31]. Cancer has surpassed cardiovascular disease as the leading cause of 
death in China. A prominent feature of tumors is that their growth and proliferation are 
uncontrolled, and invasion and metastasis are the main problems facing current cancer 
treatment. Although the etiology of cancer is not yet fully understood, it can be roughly 
divided into two categories, endogenous and exogenous, and nutrients are the factors 
most closely related to daily life [32]. Nutrient intake can regulate the tumor microenvi-
ronment, thereby affecting cancer cell proliferation, apoptosis, and invasion. Current can-
cer treatment strategies, including surgery, radiotherapy, and chemotherapy, reduce the 
quality of life of patients, and diet has gradually become one of the most common treat-
ment methods due to its high acceptance by patients and low toxicity and side effects 
[13,14]. Most of the initial dietary studies focused on limiting the proliferation of tumor 
cells by reducing the supply of major nutrients to tumors [33–35]. With further research, 
supplementation with specific nutrients, including histidine and mannose, has also be-
come a strategy for the clinical treatment of cancer [36,37]. 

The n-3 PUFA family has attracted considerable attention for its anticancer effects 
and use as a dietary supplement. In this review, we examine the current literature, focus-
ing on the role of ALA in anticancer effects and paying special attention to the mechanism 

Figure 1. Overview of α-linolenic acid (ALA). Molecular structure of ALA and the in vivo metabolic
pathway by which n-3 polyunsaturated fatty acids (n-3 PUFAs) are generated from ALA. The colors
in the figure are intended to emphasize the members of n-3 PUFAs. The vertical arrow represents the
metabolism of ALA to other n-3 PUFAs in vivo; Arrows in other directions represent different dietary
sources of n-3 PUFAs.

According to the International Agency for Research on Cancer GLOBOCAN 2020
cancer incidence and mortality estimates, in 2020, there were 19.3 million new cancer
cases and nearly 10 million deaths worldwide [30], except for melanoma cell cancer. As
a populous country, China’s new cancer cases in 2020 accounted for 24% of the world’s
new cancer cases [31]. Cancer has surpassed cardiovascular disease as the leading cause of
death in China. A prominent feature of tumors is that their growth and proliferation are
uncontrolled, and invasion and metastasis are the main problems facing current cancer
treatment. Although the etiology of cancer is not yet fully understood, it can be roughly
divided into two categories, endogenous and exogenous, and nutrients are the factors most
closely related to daily life [32]. Nutrient intake can regulate the tumor microenvironment,
thereby affecting cancer cell proliferation, apoptosis, and invasion. Current cancer treatment
strategies, including surgery, radiotherapy, and chemotherapy, reduce the quality of life
of patients, and diet has gradually become one of the most common treatment methods
due to its high acceptance by patients and low toxicity and side effects [13,14]. Most of
the initial dietary studies focused on limiting the proliferation of tumor cells by reducing
the supply of major nutrients to tumors [33–35]. With further research, supplementation
with specific nutrients, including histidine and mannose, has also become a strategy for the
clinical treatment of cancer [36,37].

The n-3 PUFA family has attracted considerable attention for its anticancer effects and
use as a dietary supplement. In this review, we examine the current literature, focusing on
the role of ALA in anticancer effects and paying special attention to the mechanism of ALA
in vivo and its effect on cancer-related characteristics. Additionally, we present instances of
the use of ALA in combination with anticancer drugs. The goal of this review is to provide
reference and inspiration for the further development and utilization of ALA.
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2. Methods

We used PubMed, Google Scholar, the Wiley Online Library and the China National
Knowledge Infrastructure to search for keywords such as ALA, antitumor effect, inhibition
of metastasis, inhibition of proliferation, and combinations thereof to obtain relevant
information. The effects of ALA on various tumors have also been studied. Information
was collected until the submission of the review.

3. Anticancer Effects of ALA

Cancer has been a constant threat to human life since its identification, and even
when it is treatable, it greatly reduces quality of life. Many studies have shown that
ALA exerts significant anticancer effects on multiple cancers [38–48]. In Table 1, we list a
subset of ALA-sensitive cancers, including prostate cancer, BC, hepatocellular carcinoma,
colorectal cancer (CRC), and pancreatic cancer. In addition, ALA also exerts effects on
many common gastrointestinal tumors and bladder cancer [49–51]. As shown in Figure 2,
ALA exerts a variety of anticancer effects, including inhibiting proliferation, inducing
apoptosis, suppressing tumor metastasis and angiogenesis, and exerting antioxidant effects.
To provide a brief introduction to the anticancer effects of ALA, we systematically reviewed
these effects, focusing on pharmacological actions and molecular mechanisms.
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Figure 2. A brief summary of the molecular mechanism of the anticancer effects of ALA. ALA inhibits
cell proliferation by regulating the AMPK/S6 axis. ALA can promote cell apoptosis by directly
increasing intracellular lipid peroxidation (LPO) or indirectly reducing the accumulation of NO.
ALA can suppress tumor metastasis by decreasing the mRNA expression of Twist1 and promoting
the degradation of Twist1. The anti-inflammatory effects of ALA may be mediated by blocking the
TLR4/MyD88/NF-κB cascade. This figure was constructed with FigDraw (ID: TOUPR3fbb8). There
are two kinds of arrows, the flared arrows represent inhibition, and the other is facilitation.
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Table 1. The mechanism of the antitumor effects of ALA.

Cancer Effect Effector Molecules Change in Ex-Pression

PCa
(prostate cancer) [52] anti-inflammatory effect PG/LTs downregulation

BC
(breast cancer) [38,39]

anti-inflammatory
effect/inhibition of tumor

metastasis
COX2/PGE2/Twist 1 downregulation

HCC
(hepatocellular carcinoma) [40,41] inhibition of proliferation Farnesoid X receptor upregulation

CRC
(colorectal cancer) [42,43] induction of apoptosis caspase 3 downregulation

PCA
(pancreatic cancer) [44] anti-inflammatory effect IL-1β/IL-6 downregulation

3.1. Inhibition of Proliferation

Cell proliferation plays a key role in life. Normal cell proliferation is critical for
organismal growth, development, tissue repair, and metabolism. However, the abnormal
expression of cancer-related genes in cells caused by various factors can lead to uncontrolled
cell proliferation, which is an important part of cancer development.

Esophageal tumors can lead to dysphagia and strongly affect patient quality of life.
In clinical practice, small and localized tumors are often surgically removed, but there
is no way to perform surgery on larger or non-localized tumors. In addition, the resis-
tance of esophageal cancer to chemotherapy has made the need for new therapies more
urgent. Hyun-Seuk Moon’s team [53] reported that dietary ALA with or without oleic acid
(OA) could inhibit the proliferation of the esophageal cancer cell lines OE19 and OE33 by
regulating the AMPK/S6 axis to treat esophageal tumors. OA and ALA promoted the
expression of tumor suppressor genes, such as p53, p21, and p27, by activating AMPK
and/or decreasing the phosphorylation of S6. This provides a new idea for cancer treatment
involving the consumption of ALA-containing foods for therapeutic purposes. Studies
have shown that ALA alone or in combination with other drugs can inhibit cell proliferation
in a variety of ways. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear
receptor that regulates lipid homeostasis. As natural ligands of PPAR-γ, fatty acids can
inhibit the growth of cancer cells by activating PPAR-γ [54]. Lijun Yang et al. [55] reported
that ALA dose-dependently inhibited the proliferation of renal cell carcinoma (RCC) cells
by significantly increasing PPAR-γ activity and gene expression and significantly inhibit-
ing cyclooxygenase-2 (COX-2). COX-2 is an inducible enzyme involved in inflammation.
Moreover, when ALA was combined with the PPAR-γ agonist rosiglitazone and the COX-2
inhibitor N-(3-pyridyl) indomethacinamide, its inhibitory effect on the proliferation of the
human RCC cell line OS-RC-2 was further increased. ALA inhibited the transformation of
cervical cancer cells by reducing the expression of the human papillomavirus oncoproteins
E6 and E7, restoring the expression of the tumor suppressor proteins p53 and Rb, and
reducing the expression of phosphorylated ERK1/2 and p38. Thus, cell proliferation was
inhibited [56]. Consequently, it is possible and promising to use ALA in clinical practice to
treat associated tumors by preventing tumor cell proliferation.

3.2. Induction of Apoptosis

Apoptosis is regulated by genes and is a type of programmed cell death. During
embryonic development, certain cell populations undergo apoptosis to eliminate certain
cells and complete organogenesis. However, mutagenesis by external factors can cause
normal cells to become cancerous. The carcinogenesis of normal cells requires uncontrolled
cell proliferation, the dysfunction of cell apoptosis, and the dysregulation of apoptotic
regulators. In general, cancerous cells escape apoptosis by upregulating antiapoptotic
factors and downregulating proapoptotic factors [57].
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Most studies investigating the antiapoptotic effects of n-3 PUFAs have focused on
major substances such as EPA and DHA, and little research has been conducted on
ALA [58–60]. However, the functions of these substances are different. For example,
one prospective study separated DHA, EPA, and ALA and found that ALA was the only
n-3 PUFA that significantly reduced BC risk [17]. Interestingly, this phenomenon of local
generalization is not uncommon. Similarly, Lilian U. Thompson et al. [61] reported that
most studies of BC also ignored the effects of subtype and estrogen 17-b oestradiol (E2)
levels, which are two key factors in BC growth and response to treatment. The authors
subsequently investigated the effects of different doses of ALA on the growth of multiple
BC cell lines and measured changes in total cellular phospholipid fatty acids to exclude
the effects of DHA and EPA. The results showed that ALA-mediated apoptosis induction
may be specific to the BC subtype. Under the same conditions, there was more apoptosis
in basal cells than in luminal cells, and apoptosis in triple negative breast cancer (TNBC)
cells was significantly higher than that in control cells. The extent of apoptosis was di-
rectly related to the level of ALA incorporated into the BC cells [61]. Caspases are a class
of cysteine proteases that can mediate apoptosis. The apoptotic effect of ALA is closely
related to its ability to increase lipid peroxidation [62]. An increase in lipid peroxides
may increase the generation of free radicals, and reactive oxygen species (ROS) can di-
rectly activate mitochondrial permeability transition, leading to the loss of mitochondrial
membrane potential. This results in cytochrome c (cyt c) release and caspase pathway
activation. ALA reduced the mRNA expression of inducible nitric oxide synthase (iNOS)
to reduce intracellular levels of NO, which can inhibit lipid peroxidation by scavenging
free radicals from lipid peroxidation. ALA also inhibited iNOS-induced NO production in
a peroxidation-dependent manner, further activating caspase 3 to induce apoptosis [62].
In addition, studies have shown that ALA can promote apoptosis in a variety of ways,
such as by upregulating the expression of the proapoptotic gene Bax, downregulating the
expression of the antiapoptotic gene Bcl-2, stabilizing hypoxia-inducible factor-1α (HIF-1α)
and downregulating fatty acid synthase (FASN) to promote mitochondrial apoptosis [63,64].
This opens up multiple possibilities for the clinical use of ALA.

3.3. Anti-Inflammatory Response

The inflammatory response is a double-edged sword. When the normal balance of the
body is disrupted, immune activity is increased and typically manifests as inflammation.
However, the existence of inflammation itself and the changes in the microenvironment
caused by inflammation cause certain pathological symptoms. Cancer patients are prone to
secondary inflammatory diseases, and cancer may also develop in response to inflamma-
tion [65,66]. For example, patients with inflammatory bowel diseases such as ulcerative
colitis and Crohn’s disease have an increased risk of CRC and a higher mortality rate than
patients with sporadic CRC [67]. The main reason may be the recurrent chronic inflam-
matory response, which continuously damages the intestinal mucosa. The mucosa is in
a state of long-term repair accompanied by intestinal microbial heterotopia and atypical
hyperplasia, which can eventually lead to cancer [68]. ALA has been shown to exert
powerful anti-inflammatory effects [69], and different epidemiological studies have shown
that ALA is inversely correlated with plasma levels of inflammatory factors, including
C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1β (IL-1β), interferon γ (IFN-γ),
tumor necrosis factor-α (TNF-α), and E-selectin [25,26]. The potential anti-inflammatory
mechanisms of ALA are diverse and include reducing the level of arachidonic acid (AA) in
the blood and downregulating COX-2 [70].

A common clinical phenomenon in alcoholic hepatitis patients is the leakage of bacte-
rial endotoxins through the damaged intestinal barrier into the portal vein. The endotoxins
then bind to lipopolysaccharide-binding protein (LBP), triggering the TLR4/MyD88/NF-κB
inflammatory cascade in the liver. ALA can inhibit the lipopolysaccharide (LPS)-induced
inflammatory response by blocking this cascade [71]. N-6 polyunsaturated fatty acids, such
as linolenic acid (LA), can be metabolized to AA, which is the precursor of many potent
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proinflammatory mediators, including prostaglandins (PGs) and leukotrienes (LTs) [72].
ALA intake can reduce blood levels of AA because ALA competes with LA for the enzyme
delta-6-desaturase. Moreover, ALA is the preferred substrate of this enzyme. Increasing
ALA intake can limit the conversion of LA to AA, thereby reducing the biosynthesis of
proinflammatory eicosanoid acid and further exerting anticancer effects [52,73]. COX-2
enzymes are involved in the synthesis of proinflammatory prostaglandins, and one possi-
ble mechanism by which ALA inhibits cancer is that it inhibits inflammation through the
downregulation of COX-2 [74]. NF-κB plays an important role in the inflammatory and
immune responses. COX-2 is a downstream target of NF-κB activation. ALA suppresses
tumors by reducing the expression of NF-κB and its target genes in tumor cells [56].

3.4. Inhibition of Tumor Metastasis

Tumors can spread in vivo to local normal tissues, to nearby lymph nodes, tissues,
and organs, or to distant tissues through fluid transport, which is a feature that has made
them a leading cause of cancer-related death [75]. Cancer metastasis can be divided into
the following steps: tumor growth in situ, angiogenesis, epithelial–mesenchymal transition
(EMT), invasion, intravasation, survival in the blood circulation, extravasation, dormancy,
and metastatic tumor growth [76].

In vivo and in vitro experiments have shown that ALA inhibits metastasis in various
cancers to varying degrees. Marianela Vara-Messler et al. [77] fed BALB/c mice a chia
seed oil diet rich in ALA and corn oil rich in LA as a control and found that ALA could
significantly reduce the incidence of BC and the number of metastatic lesions in mice.
Mechanistically, ALA can alter signaling in BC cells by altering the cell membrane structure,
which increases fatty acid unsaturation and exerts anticancer effects. In vitro experiments
were performed to explore the mechanisms by which ALA inhibits cancer metastasis,
including the EMT and tumor angiogenesis. Twist1 is required to initiate EMT and promote
tumor metastasis and is regulated by signal transducer and activator of transcription 3α
(STAT3α) and mitogen-activated protein kinases (MAPKs). Shih-Chung Wang et al. [39]
studied the effect of ALA on Twist1 and Twist1-mediated TNBC cell migration and reported
that ALA could reduce the mRNA expression of Twist1, reduce the accumulation of STAT3α
in the nucleus, and reduce the protein and phosphorylation levels of Twist1. ALA promoted
Twist1 degradation, thereby eliminating EMT and inhibiting Twist1-mediated migration
in TNBC cells. One of the hallmark features of EMT is the loss of epithelial integrity due
to the degradation of adherens junctions, which maintain epithelial cell contacts. A major
driver of this degradation is proteolytic digestion by matrix metalloproteinases (MMPs). In
tumors, MMP2 and MMP9 are involved in connective tissue degradation, tumor-induced
angiogenesis, and cell migration. Another mechanism by which ALA inhibits tumor
metastasis is by reducing vascular endothelial growth factor (VEGF), MMP-2 and MMP-9
protein expression [56]. As an important vasodilator, NO can stimulate VEGF production
and participate in every step of VEGF-mediated tumor angiogenesis. NO can be generated
by the enzyme iNOS in vivo. ALA not only reduces NO levels by reducing the mRNA
expression of iNOS but also increases lipid peroxidation. The accumulation of peroxides
increases the generation of free radicals; thus, the inactivation and reduction of NO decrease
tumor angiogenesis and inhibit tumor metastasis [56,62].

3.5. Antioxidant Effect

Oxidative stress (OS) refers to the breakdown of the balance between ROS production
and elimination in the body and is mainly characterized by the excessive production of
highly reactive molecules such as ROS and reactive nitrogen species (RNS). OS is closely re-
lated to the occurrence and development of tumors [78,79]. Rashmi Deshpande et al. [62]’s
study revealed that ALA could inhibit cancer by stimulating ROS production to induce
apoptosis. However, this study was performed in a relatively simple in vitro experimen-
tal environment, and there are more complex and diverse mechanisms in vivo that can
counteract this effect. Leslie Couedelo et al. [80] showed that ALA intake induced vitamin
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E depletion. Since vitamin E is a potent antioxidant, it can be used to capture the free
radicals produced without producing OS. In addition, Jin Hyang Song and Teruo Miyazawa
reported that excessive incorporation of n-3 PUFAs into cell membranes can have adverse
effects by enhancing membrane sensitivity to lipid peroxidation (LPO) and inducing OS,
but these studies were based on a high-fat diet [81]. In conclusion, when ALA is added to
the diet, its effect on the body as a whole should be considered, and the amount of intake
should also be considered.

Flaxseed oil (FO) is rich in ALA and is often used as a dietary supplement to treat
cancer and improve health. Jyoti Sharma et al. [82] examined mice with skin cancer induced
by 7, 12-dimethylbenzo-[a] thane (DMBA) combined with croton oil and showed that FO
scavenged free radicals by increasing the levels of enzymatic and nonenzymatic antiox-
idants, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase
(GPx), and glutathione (GSH), in the skin and liver. SOD, CAT, and GPx are important
antioxidant enzymes that work in concert to prevent excessive levels of intracellular ROS.
The main role of SOD is to accelerate the dismutation of superoxide anions to hydrogen
peroxide, after which CAT and GPx convert the resulting hydrogen peroxide into harm-
less substances [83]. The free radical scavenging effect of GSH is mediated by the active
sulfhydryl-SH groups in its structure, which are easily dehydrogenated through oxidation.
In addition, GSH can bind to GPx and requires different secondary enzymes and cofactors,
including nicotinamide–adenine dinucleotide phosphate (NADPH), to exert its effects [82].
NADPH oxidase, which is the major source of ROS in the vasculature, is composed of a
catalytic subunit and a regulatory cytosolic subunit. Hao Han [84] examined atherosclerosis
and showed that FO could inhibit NADPH oxidase by reducing the mRNA and protein
expression of the NADPH oxidase catalytic subunit, thereby regulating cytoplasmic subunit
expression, reducing malondialdehyde levels and increasing GSH levels to exert antioxi-
dant effects. ALA-rich FO is consumed mainly as a cooking oil, and there is undoubtedly a
close association between this nutrient and the gut microbiota. Xiaoyan Sun et al. [85] used
an FO diet to study the antioxidant capacity of colon epithelial cells in aged rats, and the
results showed that the antioxidant levels of aged rats increased significantly after FO ad-
ministration. Mechanistically, the intake of FO may have changed some intestinal bacteria.
OS can play a role in the entire process of tumor development, and ALA intake can slow
the toxic effects on the body when administered at different stages of tumor development.

3.6. Other Mechanisms

Unlike that of other unsaturated fatty acids, the protective effect of ALA on patients
with nasopharyngeal carcinoma (NPC) was examined by Zhijie Fang et al. [86]. Based on
differential expression analysis of ALA metabolism genes, the STRING database, Cytoscape
software, and other tools were used to examine the mechanism by which ALA metabolism
affects the prognosis of NPC patients. Immune infiltration analysis revealed that the risk
score positively correlated with M2 and M0 macrophages and negatively correlated with
neutrophils, plasma cells, follicular helper T cells, and resting dendritic cells. Low-risk
patients were more sensitive to immunotherapy. In addition, pathway enrichment analysis
revealed that the risk score was positively correlated with DNA repair and the G2/M
checkpoint. Subhadeep Roy et al. [63] showed that ALA not only caused cell cycle arrest at
the G2/M phase but also mediated tumor suppression by restoring cell structure, balancing
metabolic abnormalities in rapidly growing cells, and inhibiting the hypoxic environment.
Smita Eknath Desale et al. [87] showed that N9 microglia increased the phagocytosis of
extracellular Tau and lysosomal-mediated Tau degradation after being exposed to ALA,
suggesting that ALA can eliminate cancer cells by regulating lysosomal-mediated degra-
dation. KCa3.1 channel activities are associated with abnormal cell proliferation, chronic
inflammation, and autoimmune diseases. Aida Olivan-Viguera et al. [88] reported that
ALA inhibited KCa3.1 channel and fibroblast mitosis. In other words, ALA may mediate
tumor suppression by inhibiting mitosis and the KCa3.1 channel.
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4. Drug and ALA Combinations for Anticancer Effects

Combination therapy is a common treatment strategy when a drug does not work well
alone or when the toxic side effects of some drugs need to be neutralized. Combinations of
drugs can enhance the antitumor effects of these agents and even reverse some known drug
resistances [89]. The current research showed that combining ALA with several antitumor
drugs enhanced the treatment efficacy and reduced the side effects of certain drugs [90–93].

At present, there are many clinical examples of the use of ALA combined with anti-
tumor drugs for the benefit of patients. Trastuzumab (TRAS) is a first-line drug for the
treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing BC. But its
efficacy as a single agent is only 12–26%, resistance develops within a year, and cardiotoxic-
ity occurs in 5% of patients [90]. However, a low dose of FO combined with TRAS was more
effective than TRAS alone at reducing the proliferation of tumor cells, thereby increasing
the extent of tumor reduction. In other words, when combined with FO, a reduced dose
of TRAS exerted the same effect as the original dose and had the advantages of fewer
side effects and a longer duration of TRAS treatment [90]. Lilian U. Thompson et al. [91]
reported that in the context of low circulating estrogen levels, FO combined with tamoxifen
(TAM) effectively inhibited the growth of breast tumors by reducing cell proliferation
and the expression of genes and proteins involved in signaling pathways mediated by
estrogen receptor and growth factors. Cisplatin, which is a pioneering anticancer drug,
has played a critical role in the history of cancer treatment. However, because of its lack
of specificity when binding to DNA, the effect of cisplatin on cancer cells represents a
typical “Pyrrhic victory”. The combination of ALA and cisplatin can increase antioxidant
levels by increasing lipid peroxidation, thereby regulating the immune response, reduc-
ing the expression of the oncoprotein E6/E7, and increasing the expression of the tumor
suppressor genes p53 and Rb, and a lower dose of cisplatin is needed to exert greater
anticancer effects [92]. In addition, cisplatin can cause renal injury and increase oxidative
stress in renal tissue, and ALA combined with cisplatin can protect the kidneys by reducing
the activity of proinflammatory proteins, reducing the levels of iNOS and COX-2, and
increasing the levels of GPx, SOD, and CAT [93]. Doxorubicin (Dox) is a broad-spectrum
antibiotic that can exert antitumor effects by increasing the levels of ROS in cells. Oleg
Shadyro et al. [94] reported that Dox combined with FO can not only reduce the intensity
and volume of Pliss lymphosarcoma and Lewis lung adenocarcinoma but also inhibit Lewis
lung adenocarcinoma metastasis. In addition, because PUFAs are components of the cell
membrane, ALA may be used as a functional material for small molecule modification
via coupling with antitumor drugs [95]. Tamara Zwain et al. [96] used ALA as a surface
functionalization agent in combination with traditional docetaxel-coupled nanostructured
lipid carriers (DTX-NLCs) and found that compared with bare DTX-NLCs, ALA could help
DTX cross the blood–brain barrier and reach the target site. The combination of ALA and
anticancer drugs can not only improve the efficacy of the drugs but also combat a variety
of side effects, bringing new hope and ideas for the clinical treatment of cancer.

5. Conclusions and Perspectives

ALA is an n-3 PUFA with anti-inflammatory, antioxidant, and antitumor biological
effects. Cancer is a serious threat to human health, and the current treatment methods
for cancer still fail to meet the needs of patients. This review summarizes the molecular
mechanism underlying the anticancer effects of ALA and its benefits when it is combined
with anticancer drugs to provide a basis for the clinical development and use of ALA.

Diet therapy can exert anticancer effects by regulating the patient’s diet. It can prevent
and control diseases by restricting diet and supplementing specific nutrients. Despite
the continuous development of medical technology and the optimization of treatment
methods, it is still not possible to completely control cancer. The prevention and treatment
of cancer are the top priorities. ALA can be ingested through the diet and exerts good
anticancer effects.
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The addition of ALA to the daily diet can prevent cardiovascular disease and ame-
liorate inflammation and cancer. The anticancer effect of ALA is complex. First, ALA can
inhibit the uncontrolled proliferation of cancer cells by regulating the AMPK/S6 axis, acti-
vating PPAR-γ, restoring the expression of the tumor suppressor proteins p53 and Rb, and
regulating the cell cycle. Second, ALA can promote apoptosis by regulating mitochondrial
membrane potential, activating caspases, upregulating proapoptotic factors, and down-
regulating antiapoptotic factors. Studies have shown a negative correlation between ALA
and many inflammatory factors, including IL-6, IL-1β, PGs, LTs, and COX-2. In addition,
cancer metastasis is an important cause of death in cancer patients. ALA can reduce cancer
cell metastasis by altering the cell membrane structure to change cell signal transduction,
inhibit tumor angiogenesis, and inhibit EMT. An appropriate dose of ALA can also reduce
OS by regulating SOD, CAT, GPx, GSH, and NADPH oxidase to exert anticancer effects.
Interestingly, ALA exerts its anticancer effects through dietary intake, which can alter or
restore gut microbiota composition.

The delivery of drugs to tumor cells is a challenge that needs to be overcome. As a
member of the n-3 PUFA family, ALA has the unique advantage of being integrated into
the phospholipid membrane, which makes ALA a subject of interest for cancer treatment.
The problems of drug resistance and the optimal treatment dose have troubled doctors and
patients. ALA can be used as packaging to facilitate easier delivery of anticancer drugs to
targets, which means that these drugs can function better at a lower dose and prolong the
duration of drug use for patients to improve their survival. ALA can serve as a carrier to
encapsulate anticancer drugs, and ALA alone can achieve tumor suppression.

Although the therapeutic effects of ALA have been studied to some extent, there is a
knowledge gap regarding pharmacokinetics and pharmacodynamics in human subjects.
Future studies should include comprehensive clinical trials to explore the entire process
of ALA absorption and metabolism in vivo, determine the optimal dose, and evaluate the
long-term effects of ALA. Furthermore, the role of ALA in some cancers is still controversial.
There are many reasons for this gap, one of which is that the amount of ALA in most tissues,
such as human blood, is very low and not easy to detect. This prompted us to further
explore more optimized fatty acid detection methods. Although some studies have explored
the effect of ALA in combination with drugs, additional in-depth studies are needed to
understand the synergistic mechanism and whether ALA itself exerts anticancer effects
by using an ALA delivery system based on nanotechnology. Future research can focus
on the interaction of ALA with existing cancer treatments, including radiotherapy and
chemotherapy; the possible underlying mechanism; the dose for long-term use; the possible
effects and side effects; and the sustainability of its therapeutic benefits. In addition, the
potential use of ALA to treat other diseases and the underlying mechanisms are important
for improving the use of ALA. The high sensitivity of ALA to high temperatures, oxygen
and metal ions, as well as the odor generated during transport and storage, limits its use in
daily life. This will be an important area for future research to improve the use of ALA. By
addressing these questions, future studies can greatly enhance our understanding of the
therapeutic potential of ALA and optimize its clinical applications.

In conclusion, ALA has great potential and value in the treatment of cancer, and
existing research has made some progress; however, its specific clinical applications still
need to be further explored.
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