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Abstract

The modeling of uncertain information is an open problem in ontology research and is a the-

oretical obstacle to creating a truly semantic web. Currently, ontologies often do not model

uncertainty, so stochastic subject matter must either be normalized or rejected entirely.

Because uncertainty is omnipresent in the real world, knowledge engineers are often faced

with the dilemma of performing prohibitively labor-intensive research or running the risk of

rejecting correct information and accepting incorrect information. It would be preferable if

ontologies could explicitly model real-world uncertainty and incorporate it into reasoning.

We present an ontology framework which is based on a seamless synthesis of description

logic and probabilistic semantics. This synthesis is powered by a link between ontology

assertions and random variables that allows for automated construction of a probability dis-

tribution suitable for inferencing. Furthermore, our approach defines how to represent sto-

chastic, uncertain, or incomplete subject matter. Additionally, this paper describes how to

fuse multiple conflicting ontologies into a single knowledge base that can be reasoned with

using the methods of both description logic and probabilistic inferencing. This is accom-

plished by using probabilistic semantics to resolve conflicts between assertions, eliminating

the need to delete potentially valid knowledge and perform consistency checks. In our

framework, emergent inferences can be made from a fused ontology that were not present

in any of the individual ontologies, producing novel insights in a given domain.

1 Introduction

Ontologies, the foundation of the semantic web, are widely used in machine knowledge repre-

sentation. They are used to define classes and the relationships between their members within a

domain. Reasoning algorithms reveal implicit knowledge in the model according to the rules of

description logic (DL) [1] which is a decidable subset of predicate calculus. Unfortunately, DL

does not conveniently represent uncertainty, the existence of multiple conflicting possible states

of a domain. There are several approaches to introducing strong uncertainty semantics into DL.

Two prominent approaches which have enjoyed some success are fuzzy logic and possibility
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theory. These have been applied in frameworks such as Fuzzy OWL [2] and possibilistic descrip-

tion logic [3]. However, in both theories, some interactions between variables are lost during

inferencing. The lost information may be unnecessary for modeling the notions of fuzzy set

membership and possibility, but are unable to capture a more complex notion of uncertainty

which supports chains of “if-then” interactions between variables. One uncertainty theory

which has strong semantics and fully captures these variable interactions is probability theory.

Unfortunately, to the best of our knowledge, all the representation frameworks for ontologies

which are rooted in probability theory exhibit lossy reasoning or have counterintuitive restric-

tions on their flexibility. The probabilistic DLs based on Nilsson’s probabilistic logic [4] experi-

ence decay in relative precision during reasoning due to their expression of probabilities as

intervals. Approaches using Bayesian Networks (BNs) [5], such as BayesOWL [6], MEBN/

PR-OWL [7], and P-CLASSIC [8], contain a representation granularity mismatch: Bayesian

Networks require complete specification of the domain’s probability distribution with no

incompleteness, but ontologies have a finer granularity which allows for incompleteness. Some

domains with incompletely defined relationships can only be represented in Bayesian Network

based frameworks by over defining them. We address all these issues in more detail in Section 2.

There exists another probabilistic knowledge representation framework that can be unified

with description logic. Bayesian Knowledge Bases [9, 10], or BKBs, are designed to handle

incompleteness, and they do not experience reasoning decay like other uncertainty logics.

BKBs represent domain knowledge as sets of “if-then” conditional probability rules between

propositional variable instantiations. They use those conditional probabilities to compute mar-

ginal probabilities of the domain’s instantiations, or states. BKBs represent knowledge with the

same granularity as ontologies, but they are not an immediate substitute for them because they

only reason about propositional knowledge, not predicated knowledge like ontologies do. A

synthesis of BKBs and DL which preserves the capabilities of both is desirable. This paper pres-

ents an approach for representing uncertainty in ontologies with probability semantics as well

as the ability to naturally fuse multiple dissonant probabilistic ontologies which otherwise

could not be formally reconciled.

This paper presents two broad contributions. First, we extend a preliminary formulation of

the knowledge representation and reasoning framework called Bayesian Knowledge-driven

Ontologies (BKOs) [11]. BKOs unite the predicate reasoning capabilities of DL with the proba-

bilistic reasoning capabilities of BKBs. They represent knowledge as predicate logic assertions

like DL, but also represent conditional probability rules between those assertions like BKBs.

We will show that a BKO can reason about both types of knowledge without disempowering

either, based on four points:

• Uncertainty is defined as the presence of multiple possible states of the world where we have

insufficient knowledge to determine which state is true, but such that we can define a proba-

bility distribution over the possible states.

• For any set of mutually disjoint classes in an ontology, any individual can be a member of at

most one of those classes. Therefore, potential class assignments between the individual and

the classes can be represented as assignments of a discrete random variable.

• Generalizing the rule of universal instantiation to its probabilistic analog allows uncertainty

to be propagated from terminological axioms to the assertional axioms they imply.

• A BKO where all implicit knowledge has been made explicit maps to an equivalent BKB.

Second, this paper demonstrates that BKO theory allows for reasoning over multiple fused

ontologies, including dissonant ones, without modifying them. This is an improvement over
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current methods of resolving conflicts in merged ontologies, which resort to modifying them

up to the point of rejecting knowledge completely (see [12] for an example). Recent work [13]

has pushed this envelope, introducing computational methods for minimizing the number of

assertions deleted. We make the distinction between “merged” and “fused” ontologies. While

both refer to combining multiple ontologies into one larger one, we describe “merged” ontolo-

gies as ones that require some manual or automated altering of information and “fused” ontol-

ogies as ones that do not require any alterations. Methods for ontology merging compromise a

source’s potentially valid perspective and miss opportunities for fusion-derived insights. Our

methods of fusing ontologies without altering them means BKO theory can take advantage of

every potential insight it is provided with. Provided they are lexically aligned, independent

machine reasoning can be performed on dissonant ontologies from diverse sources. Even the

requirement for lexical alignment is soft—where the source ontologies are not lexically aligned,

including one or more alignment ontologies as inputs to the fusion algorithm is sufficient to

ensure a valid result. This could be done with manually curated bridge ontologies or by apply-

ing recent work on automated ontology alignment [14, 15]. In Section 7 we fuse two biological

ontologies involving the sciatic nerve, the largest nerve in the body that has gained much atten-

tion in biomedical research. This example highlights some of the strengths of BKO fusion, spe-

cifically the ability to reason despite contradictions and how emergent information can be

generated only through fusion.

Our paper is organized as follows: We begin in Section 2 with a brief survey of representa-

tive prior approaches to augmenting DL with uncertainty semantics. Next, Sections 3 and 4

provide background on DL and BKB theory. Sections 4 and 5 define BKOs’ method of knowl-

edge representation and reasoning. Section 6 defines the method of aligning and merging

ontologies from different, potentially conflicting, sources. Section 7 walks through a detailed

example of BKO reasoning over two fused biomedical ontologies. Finally, in Section 8, we pro-

vide our concluding remarks and a look at future directions and potential applications.

2 Related work

We now examine the two major classes of uncertainty semantics and their application into

ontologies.

2.1 Fuzzy logic and possibility theory

Straccia [16] introduces fuzzy logic to semantic networks, while recent work can be found in

Jain et al [17]. Fuzzy logic is an uncertainty theory designed to represent the notion of ambigu-

ity using partial set membership. Fuzzy logic’s axioms are identical to probability theory,

except that fuzzy logic lacks the axiom that the union of all events sums to one. The absence of

that axiom means that fuzzy logic’s reasoning is a coarser treatment of information interaction,

using min and max functions in place of the arithmetic functions that probability theory

would use. Consider the following example: (Notation: for an individual or class a, a class C,

and p 2 [0, 1], a 2 C : p states that a has membership in C with degree p.) Given the assertions

a 2 C : 0.7, a 2 D : 0.4, C 2 E : 0.2, and D 2 E : 0.6, what is the membership of a in E? In simple

fuzzy set theory, this is max(min(0.7, 0.2), min(0.4, 0.6)) = 0.4. Note that changes in the degree

of different assertions may not affect the final result. A change in the degree of membership of

D 2 E would only alter the result if it dropped below 0.4, and a change in the degree of mem-

bership of a in C would not alter the result at all. This can be counterintuitive when we con-

sider modeling any notion of causality, since we typically think that a change in a root variable

should affect the result. Fuzzy logic is therefore more suited to its intended purpose of compar-

ing entity descriptions than it is to capturing variable interactions.
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Possibility theory is introduced to ontologies in [3]. Possibility theory models the notion of

uncertainty of events, but like fuzzy logic it does not fully capture causal interactions. Possibil-

ity theory models the uncertainty of a single event with two numbers from the range [0, 1]: the

event’s possibility, which is the degree to which the event could be expected to happen, and the

event’s necessity, which is the degree to which the event must happen. These numbers are

related in that the necessity of an event is equal to one minus the possibility of the event’s com-

plement. Despite possibility theory’s sophisticated uncertainty representation capability, its

reasoning mechanism still does not intuitively capture causality. Consider the following exam-

ple and note the parallels to the example we used for fuzzy logic: (Notation: for events A and C,

and p, q 2 [0, 1] where p> q, C|A : (p, q) states that the possibility of C given A is p and the

necessity of C given A is q.) Given the assertions C|A:(0.7, 0.5), D|A : (0.4, 0.3), E|C : (0.2, 0.1),

and E|D : (0.6, 0.55), what is the possibility and necessity of E given A? The answer is simply

that the possibility is max(min(0.7, 0.2), min(0.4, 0.6)) = 0.4 and the necessity is max(min(0.5,

0.1), min(0.3, 0.55)) = 0.3. As we discussed for fuzzy logic, this is a coarse treatment of

causality.

2.2 Probability theory

We assume that the reader is familiar with the formulation and reasoning mechanics of proba-

bility theory, such as the notions of sample spaces, probability distributions, and conditional

probabilities. Compare BKO theory to four groups of frameworks with similar reasoning

goals: those founded in Nilsson’s probabilistic logic [4], Bayesian Networks [5], probabilistic

Horn abduction [18], and lifted probabilistic inference [19].

Regarding Nilsson’s probabilistic logic-based frameworks, such as Lukasiewicz [20] (and

more recently [21]), Halpern [22], and descendant works such as SHIQp [23], Prob-ALC [24],

and Prob-EL [25], we see the difficulty they encounter in the following example: Recall that

assertions in probabilistic DL are made probabilistic not by assigning them a probability, but

by declaring an interval in which that probability is said to be found. This interval-based defi-

nition causes erosion of relative precision with every calculation. Suppose we have two proba-

bilistic axioms, “Tweety is-a Bird” with probability between 0.70 and 0.80 (relative precision

0.13), and “Birds can Fly” with probability between 0.90 and 0.99 (relative precision 0.10). We

wish to find the marginal probability that “Tweety can Fly”. Since the probabilities are only

known as intervals, we must multiply their bounds to get the extreme cases of the marginal

probability. The lowest possible probability is 0.9 × 0.7 = 0.63 and the highest possible proba-

bility is 0.8 × 0.99 = 0.79, so the marginal probability on “Tweety can Fly” is within the interval

[0.63, 0.79]. Notice that this interval has a relative precision of 0.23, wider than either of the rel-

ative precisions on the original axioms. The representation of probabilities as intervals is an

artifact of probabilistic DL’s foundation in Nilsson’s probabilistic logic [4], which is subject to

the same decay in precision.

Regarding BN-based approaches, such as PR-OWL [26], BEL [27], Prob-Ont [28], Baye-

sOWL [6], ByNowLife [29], and P-CLASSIC [8], consider the notion of incompleteness in a

domain. Incompleteness is when the domain’s probability distribution could match one of a

number of possible probability mass functions. Recall that BNs assume completeness by

assuming that all variables whose joint distributions are not completely known are indepen-

dent. Ontologies do not share this completeness assumption, so there are incomplete domains

which can be represented with conventional ontologies but cannot be expressed with BN-

based frameworks unless unsupported and potentially inaccurate constraints are included.

Furthermore, we find notions which can be represented in semantic networks that are coun-

terintuitive when we try to express them in BNs even with complete information. For example,
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if we wanted to describe the probability distribution between the variable “airplane model”

and a discretized “gas mileage” variable, it would not make sense to define probabilities for the

gas mileage of an engineless glider model. Even the notion of context-specific independence

[30] does not avoid this problem because it would still require the “gas mileage” variable to

have some distribution given a “glider model” value, but any distribution, even independence,

is counterintuitive. Disregarding uncertainty, a semantic network would have no trouble

expressing this domain’s concepts, because it could simply omit the glider’s gas mileage prop-

erty from any consideration. Some approaches, such as PR-OWL, resolve this by defining a

third truth value of “absurd”, but permitting incompleteness averts the need to contend with

trinary logic.

Probabilistic Horn abduction [18] is a powerful and expressive knowledge modeling and

reasoning framework with many conceptual and mathematical similarities to BKO theory, but

it is prevented from discovering unanticipated explanations of the world by its demand that all

hypotheses be independent and explicitly defined. In BKO theory those are unnecessary con-

straints, and relaxing them permits combination of knowledge through fusion as we shall

detail in Section 6.

Lifted probabilistic inference [19] warrants special mention because it employs a similar

assertion structure to that of BKOs, namely the assertion of conditional rules containing sim-

ple first-order terms taking individuals as arguments. However, the meanings of these terms

and relationships are implicit and subject to interpretation, rather than explicit and richly

expressed as in DL. So they do not allow for the autonomous reasoning capability of DL-driven

knowledge models. Additionally, lifted probabilistic inference uses BNs to express uncertainty,

and so runs afoul of their completeness requirement. Finally, lifted probabilistic inference does

not require that the conditions of contradictory rules be mutually exclusive. Knowledge of

which rule overrides another is kept implicit, and reasoning requires additional specifications

to resolve. BKOs resolve these occurrences explicitly within the knowledge base through

fusion.

Three additional approaches also merit mention for their use of structures similar to the

conditional probability rules employed by BKBs. Do-calculus [31] arrived at a system which

closely resembles conditional probability rules, though its formulation relies on very different

intuitions than that of BKO theory. Do-calculus does not address the problem of modeling ter-

minological knowledge, but it does formalize the fusion of conditional probability rules gath-

ered under different regimes of population makeup and sampling bias. This is a matter which

BKO theory delegates to the user, rolled up within the task of choosing source reliabilities. Our

future work will seek to elaborate on our method of fusion to incorporate do-calculus’s

insights and potentially subsume it. More recently, BLOG [32] also arrived at a knowledge

representation system of conditional probability rules between logical assertions similar to that

used by BKOs. However, BLOG does not aim to address the fusion of multiple probabilistic

ontologies. We believe that BKOs subsume BLOG and that our fusion approach is directly

applicable to multiple BLOGs which we intend to also explore in future work. Similarly, work

by Jung and Lutz [33] is based on a definition of a probability distribution over possible states

of the world akin to ours, but only defines assertional probabilistic rules, not terminological

ones, and does not address fusion.

3 Background

Here we present necessary background information for the remainder of the paper. We first

discuss DL with a focus on the ideas of consistency, assertional knowledge, and terminological

knowledge. This is followed by a brief introduction to BKBs that includes their essential
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definitions and theorems. Finally we discuss BKB fusion, which as we will see has close ties to

BKO fusion.

3.1 Description logic

We will briefly introduce a simple DL with definitions and notation based on set theory. These

definitions are conceptually equivalent to formal DL as presented by Baader et al. [1], but are

more closely related to set theory to simplify our derivations in the following sections. We

ignore the possibility of mapping ontologies to multiple interpretations, and instead just con-

sider classes and individuals as sets under a single interpretation. Multiple interpretations

could be emulated using explicit namespace prefixes on concepts, individuals, etc.

The fundamental concept of description logic is the class, or concept, which is a set. An indi-

vidual is an element of a class. A role is a binary operator acting from one individual (the

owner) to another individual (the filler). Classes, individuals, and roles generally have real

world interpretations, such as categories, objects, and relationships between objects.

While the words “class” and “concept” are for the most part interchangeable in DL, “class”

generally refers to a more set-theoretic notion of classes/concepts as groups of individuals,

while “concept” is used in the context of the descriptive nature of classes/concepts, i.e., that

they characterize the nature of the individuals in them. We will mostly use “class” to emphasize

the set-theoretic foundation of our theory.

Atomic classes are irreducible. They may be used in expressions called constructors to define

new classes, called constructed classes. The expressiveness of constructors is specific to the DL

being used. Simple construction operators are: complement, union, intersection, role existen-

tial quantification, and role value restriction. Additional operators are defined in more expres-

sive DLs. In general, the more expressive a DL is, the longer its reasoning takes and the greater

the risk of it being able to express undecidable problems. Ensuring decidability while achieving

maximum expressivity is a hard problem in DL research.

Description logic makes the open world assumption: that the absence of a particular state-

ment within a description of a domain does not imply that statement’s falsehood. This implies

that every description is incomplete because we can always add new individuals, classes, and

rules to it. Here lies an important and subtle distinction: the open world assumption does not

imply that every domain is necessarily infinite, but does imply that every domain is possibly infi-

nite, i.e. cannot be proven finite. For practical purposes we will assume than any description of

a domain is finite, but we admit the possibility that the domain which it describes is infinite.

Notation. Denote the universal class, the class that contains all individuals, as> (down tack

character, not the letter). Because> contains all individuals, it also contains all nonempty clas-

ses.? is the empty class, or the class that contains no individuals.

Notation. The complement of class C is written as ¬C, where ¬C => − C

3.2 Asserting knowledge

In DL, knowledge is expressed through assertional axioms and terminological axioms. Asser-

tional axioms are propositional: they characterize a single individual’s membership in classes.

Terminological axioms are predicated: they define general rules applying to all individuals in a

class. The set of assertional and terminological axioms in an ontology are often referred to as

the A-box and the T-box, respectively.

Definition 3.2.1. An assertional axiom can be either a class assertion or a role assertion:

• A class assertion declares that a 2 C for a class expression C and an individual a. DL com-

monly uses the notation C(a).
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• A role assertion that bRc for a role expression R and individuals b and c. bRc states that c is a

filler of the role R for an owner b. DL commonly uses the notations R(b, c) or (b, c):R.

Definition 3.2.2. A terminological axiom is a statement asserting a relation between two

classes.

Some standard forms of terminological axioms in DL are subsumption, equivalence, and

disjointness axioms. For classes C and D,

• A subsumption axiom is of the form C� D

• An equivalence axiom is of the form C = D

• A disjointness axiom is of the form C \ D =?

In some ontology languages, such as the variants of OWL, knowledge can be presented and

used in the form of property characteristics [34], which define specific inference rules for

instantiations of properties such as functionality, transitivity, and symmetry. This expressive

capability is often useful, but somewhat ad-hoc. In this paper we only consider formal, decid-

able DLs, and therefore only use property characteristics that can be directly expressed in

them.

The notion of consistency between assertions is an important one in DL. While typically

used for error-checking after reasoning, we will rely on it heavily in defining probabilistic

relationships.

Definition 3.2.3. (Consistency)

• Assertions ai1
2 Cj1

and ai2
2 Cj2

are consistent if (1) ai1
6¼ ai2

or (2) Cj1
\ Cj2

6¼ ?

• Assertions ai1
2 Cj1

and ai2
2 Cj2

are inconsistent if ai1
¼ ai2

and Cj1
\ Cj2

¼ ?

• A set of assertions A ¼ fai1
2 Cj1

; ai2
2 Cj2

; :::; ain
2 Cjn

g is consistent if for all k, l 2 {1, 2,

. . ., n}, aik
2 Cjk

and ail
2 Cjl

are consistent. Individually consistent sets A1 and A2 are consis-

tent with each other if A1 [ A2 is consistent.

3.3 Reasoning

Terminological axioms are expressed as predicated statements, can be used to form new asser-

tional axioms. These statements describe relationships between classes, so once we know that

an individual is a member of a class, we can infer its relationship to other classes based on the

ontology’s terminological axioms. The new assertional axioms can then be used in new argu-

ments, revealing more axioms. Long chains of reasoning can form in this way. These argu-

ments hinge on the rule of universal instantiation, which states that if something is true in

general for all individuals in a class, it is true for each specific individual in that class. For our

purposes we express the rule of universal instantiation as: if C� D and a 2 C, infer a 2 D. If C
\ D =? and a 2 C, infer a =2 D.

3.4 Bayesian knowledge bases

Bayesian Knowledge Bases [9, 10] are a generalization of Bayesian Networks. As opposed to

BNs, BKBs specify dependence at the instantiation level instead of the random variable level.

BKBs allow for cycles between variables, and do not require the complete probability distribu-

tion to be specified. BKBs model probabilistic knowledge in an intuitive “if-then” rule struc-

ture which quantifies dependencies between states of random variables. Reasoning with BKBs

is performed as belief updating, belief revision, or partial relief revision. Belief updating
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computes the posterior probability of a target variable state, belief revision computes the poste-

rior probabilities of domain instantiations, and partial belief revision computes the posterior

probabilities of sets of target variable states. BKBs excel at modeling causal and correlative

information because they provide backtraceable explanations of simulation outcomes [35].

They see use on problems such as war gaming [36], predicting outcomes of strategic actions

[37], insider threat detection [38], and Bayesian structure learning [39]. Most importantly,

unlike BNs, multiple BKB fragments can be combined into a single valid BKB using the BKB

fusion algorithm [40]. The idea behind this algorithm is to take the union of all input frag-

ments by incorporating source nodes, which indicate the source and reliability of the frag-

ments. BKB fusion preserves all knowledge and allows for source and contribution analysis to

determine the impact of source knowledge on reasoning results.

There are two equivalent formulations of BKB theory. One, presented in Santos et al. (2003)

[10], defines a BKB as a set of conditional probability rules (CPRs) and the other, presented in

Santos et al. (1999) [9], defines a BKB as a directed graph. In this section, we present a con-

densed version of the CPR-based formulation. The notation is slightly modified but expresses

equivalent concepts.

Definition 3.4.1. Let {A1, . . ., An} be a collection of finite discrete random variables (rvs)

where r(Ai) denotes the set of possible values for Ai. A conditional probability rule is a state-

ment of the form

PðAin
¼ ain

jAi1
¼ ai1

^ Ai2
¼ ai2

^ ::: ^ Ain� 1
¼ ain� 1

Þ ¼ p

for some positive integer n where aij
2 rðAij

Þ such that ij 6¼ ik for all j 6¼ k and p 2 [0, 1] is a

weight.

A CPR R’s antecedent, denoted ant(R), is the conjunction of rv assignments to the right of

the vertical bar. R’s consequent, denoted con(R), is the rv assignment to the left of the vertical

bar. R states that given the antecedent, the consequent is true with probability p. Each rv

assignment in the antecedent is called an immediate ancestor of the consequent, and the con-

sequent is called an immediate descendant of the rv assignments in the antecedent. Note that

an empty antecedent reflects a prior probability.

Definition 3.4.2. Given two CPRs:

R1 : PðAin
¼ ain

jAi1
¼ ai1

^ Ai2
¼ ai2

^ ::: ^ Ain� 1
¼ ain� 1

Þ ¼ p1

R2 : PðAjm
¼ a0jm jAj1

¼ a0j1 ^ Aj2
¼ a0j2 ^ ::: ^ Ajm� 1

¼ a0jm� 1
Þ ¼ p2

we say that R1 and R2 are mutually exclusive if there exists some 1� k< n and 1� l<m such

that ik = jl and aik
6¼ a0jl . Otherwise, we say they are compatible.

Intuitively, the antecedents of mutually exclusive CPRs cannot be simultaneously satisfiable

because they are conditioned on different values of the same rv(s).

Definition 3.4.3. R1 and R2 are consequent bound of (1) for all k< n and l<m, aik
¼ a0jl

whenever ik = jl and (2) in = jm but ain
6¼ a0jm

Intuitively, consequent bound CPRs only conflict in their consequent. Their antecedents

are compatible, but their consequents assign different values to the same rv. We use mutual

exclusivity and consequent boundedness to define a BKB below:

Definition 3.4.4. A Bayesian Knowledge Base B is a finite set of CPRs such that.

• for any distinct R1 and R2 in B, either (1) R1 is mutually exclusive with R2 or (2) con(R1) 6¼

con(R2); and
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• for any subset S of mutually consequent bound CPRs of B, ∑R2S P(R)� 1

The following definitions establish the concept of inferences, which are the basis of a BKB’s

expression of probability distributions.

Definition 3.4.5. For a CPR

R : PðAin
¼ ain

jAi1
¼ ai1

^ Ai2
¼ ai2

^ ::: ^ Ain� 1
¼ ain� 1

Þ ¼ p

A subset S of BKB B is said to be a deductive set if for each R 2 S the following two conditions

hold:

• For each k = 1, . . ., n−1 there exists a CPR Rk 2 S such that conðRkÞ ¼ fAik
¼ aik

g

• There does not exist some R0 2 S where R0 6¼ R and con(R0) = con(R).

The first condition establishes that each rv in R’s antecedent must be supported by the con-

sequents of other CPRs. The second condition requires that each rv assignment be supported

by a unique set of ancestors.

Definition 3.4.6. A deductive set I is said to be an inference over B if I consists of mutually

compatible CPRs and no rv assignment is an ancestor of itself in I. The set of rv assignments

induced by I is denoted V(I). The probability of I is defined as P(I) = ∏R2I P(R)

Definition 3.4.7. Two inferences are compatible if all their CPRs are mutually compatible.

The following theorems establish that inferences can define a partial joint probability distri-

bution. Proofs can be found in [10]

Theorem 3.4.1. For each set of rv assignments V, there exists at most one inference I over B
such that V = V(I).

Theorem 3.4.2. For any set of mutually incompatible inferences Y in B, ∑I2Y P(I)� 1.

Theorem 3.4.3. Let I0 be some inference. For any set of mutually incompatible inferences Y
(I0) such that for all I 2 Y(I0), I0� I, ∑I2Y(I0) P(I)� P(I0)

We used the conditional probability rule formulation of BKBs throughout this paper. How-

ever, the directed graph model allows for intuitive visual representations of BKBs. These

graphs are comprised of two types of node: instantiation nodes, I-nodes, and support nodes, S-

nodes. I-nodes represent random variable instantiations and S-nodes represent the conditional

dependencies between them. A weighting function assigns a probability to the CPR repre-

sented by each S-node. For example, a graphical representation of the CPR:

PðA ¼ 2jB ¼ 5 ^ C ¼ 12Þ ¼ 0:91

is shown in Fig 1. In this example, the black node is an S-node and white nodes I-nodes.

Many CPRs are combined to form a larger BKB. An example BKB is shown in Fig 2.

3.5 Bayesian knowledge fusion

One might want to combine the knowledge represented in BKBs from two or more distinct

sources. A BKB fusion algorithm [40] is used to do so. We will summarize BKB fusion in the

remainder of this subsection. Consider the two knowledge fragments:

F1 ¼ fPðB ¼ bÞ ¼ 0:2; PðA ¼ ajB ¼ bÞ ¼ 0:8g

F2 ¼ fPðC ¼ cÞ ¼ 0:4; PðA ¼ ajC ¼ cÞ ¼ 0:35g
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These fragments could be naively combined by taking the union of F1 and F2 to form F3:

F3 ¼ fPðB ¼ bÞ ¼ 0:2; PðC ¼ cÞ ¼ 0:4; PðA ¼ ajB ¼ bÞ ¼ 0:8; PðA ¼ ajC ¼ cÞ ¼ 0:35g

The CPRs P(A = a|B = b) and P(A = a|C = c) have equal consequents, but their antecedents

are not mutually exclusive. So this union would violate the mutual exclusivity requirement of

BKBs, and the result F3 is not a valid BKB. This naïve fusion is displayed graphically in Fig 3.

Fig 1. Example CPR. A graphical representation of a CPR.

https://doi.org/10.1371/journal.pone.0296864.g001

Fig 2. Example BKB. A graphical representation of a BKB.

https://doi.org/10.1371/journal.pone.0296864.g002
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To address this issue, source information is included in the fused BKB as additional CPRs.

This source information represents the reliability of each source BKB. The source reliability is

often determined by those building the BKB, although it is possible for source reliability to be

updated as new evidence is considered. In this example, we will give F1 and F2 equal reliability

scores of 0.5 each. The fused F3 with source information is as follows:

F3 ¼ fPðSB ¼ 1Þ ¼ 0:5; PðSC ¼ 2Þ ¼ 0:5; PðSA ¼ 1Þ ¼ 0:5; PðSA ¼ 2Þ

¼ 0:5; PðB ¼ bjSB ¼ 1Þ ¼ 0:2; PðC ¼ cjSC ¼ 2Þ ¼ 0:4; PðA ¼ AjB ¼ b

^SA ¼ 1Þ ¼ 0:8; PðA ¼ ajC ¼ c ^ SA ¼ 2Þ ¼ 0:35g

By incorporating source information, the fused F3 is a valid BKB. By including source node

SA in the antecedent of P(A = a|B = b ^ SA = 1) = 0.8 and P(A = a|C = c ^ SA = 2) = 0.35, the

two CPRs from different sources are guaranteed to be mutually exclusive. This is graphically

represented in Fig 4.

The algorithm to fuse a set of BKB fragments is found in [40]. From [40], we adopt the fol-

lowing theorem:

Theorem 3.5.1. The output K0 = (G0, w0) of Bayesian Knowledge Fusion is a valid BKB

Perhaps the most useful feature of the fusion algorithm is its ability to discover new infer-

ences which are present in the fused BKB, but not in the input BKBs. Consider the example in

Fig 5. We have rvs for symptoms A, B, and C that can either be present in a patient or not. We

have another rv representing the disease a patient might have. Assume a patient has symptom

A. From the given fragments we can only conclude that the patient had disease d1. Note that

we cannot conclude that the patient has disease d2 because it is not included in fragment 1.

Fragment 2 does include d2 but does not include symptom A. However, when the fragments

are fused, we find that disease d2 is most probable. In such ways, fusion can facilitate the dis-

covery of new insights previously unknown to its sources.

4 Bayesian knowledge-driven ontologies: Principles and structure

An instantiation of a domain is an assignment of each known individual to known classes. An

individual may be assigned to one or more than one class, and a class may be assigned any

number of individuals. A BKO models a probability distribution over all of a domain’s possible

instantiations and uses if-then rules to restrict and reason about that distribution’s probability

Fig 3. Naive fusion. The naive fusion of (a) F1 and (b) F2. Since it is possible B = b and C = c simultaneously, (c) naive

fusion violates mutual exclusivity.

https://doi.org/10.1371/journal.pone.0296864.g003
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mass function (pmf). This gives a user a formal way to reason in detail about relative likeli-

hoods of the domain’s possible states. BKO theory supports incompleteness, so it does not

require a complete definition of the pmf. Therefore, a valid BKO may be compatible with

more than one pmf. This allows the user to draw valid conclusions from knowledge that would

be insufficient for other probabilistic reasoning methods. Furthermore, thanks to its ground-

ing in BKB theory, reasoning can be performed whether the BKO is consistent or not. Check-

ing for probabilistic consistency has historically been a challenge among uncertain semantic

network formalisms, but is not a requirement for BKOs.

To formulate this theory, we first define the nature of this probability distribution in terms

of its sample space and random variables. We then define the means of expressing knowledge

Fig 4. BKB fusion. The fusion of F1 and F2. The result is a valid BKB.

https://doi.org/10.1371/journal.pone.0296864.g004

Fig 5. New inference. The fusion of two BKB fragments (a) and (b). The most probable inference in (c) the fused BKB

is not present in either (a) or (b).

https://doi.org/10.1371/journal.pone.0296864.g005
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in BKO theory, which is done by declaring probabilistic if-then relationships between variables.

Finally, we define the structure of a BKO as a knowledge base, and its mapping to its close

cousin the BKB, leading into Section 5 on the reasoning that can be performed with a BKO.

4.1 Model of a domain

Recall our first point from the introduction: uncertainty is the presence of multiple possible

states of the world, such that we have insufficient knowledge to determine which state is true

but can still define a probability distribution over its possible states. This is commonly referred

to as “distribution semantics”. The following definitions describe our implementation of distri-

bution semantics for BKO theory.

Definition 4.1.1. For a domain Q, a finite set of individuals I, and a finite set of classes C, a

lexicon L(Q) = I × C.

Notation. Use the notation I(Q) and C(Q) as functions to access I and C independently.

Definition 4.1.2. A set of assertions A ¼ fai1
2 Cj1

; ai2
2 Cj2

; :::; ain
2 Cjn

g with L(A) =

L(Q) is an instantiation of Q only if:

• A is consistent

• A contains no terminological knowledge

• For every al 2 I and Ck 2 C, either al 2 Ck or al 2 ¬Ck

Notation. For a domain Q comprised of individuals {a1, a2, . . . am} and classes {C1, C2, . . .

Cn} denote O(Q) as the set of all possible instantiations of Q, where

OðQÞ ¼
Qm

i¼1

Qn
j¼1
fai 2 Cj; ai 2 :Cjg

Note that in practice, one will never generate a full instantiation of a domain, but it is a fun-

damental concept of the theory.

Definition 4.1.3. Let f : O(Q)! [0, 1] be a probability distribution for domain Q. This is

known as the domain’s state distribution.

4.2 Asserting knowledge

In BKO theory, knowledge is asserted by declaring if-then conditional probability rules

between variables. There are two types of rules used, probabilistic assertional axioms and prob-

abilistic terminological axioms. Probabilistic assertional axioms are propositional, they charac-

terize a single individual’s conditional probability of membership in a class. Probabilistic

terminological axioms are predicated, or first-order. They implicitly define conditional proba-

bilities of class membership for unspecified individuals. In Section 5 we define how these

implicit probabilities can used to create probabilistic assertional axioms.

Definition 4.2.1. A set of classes {C1, . . ., Cn} is said to partition a class D if [n
i¼1

Ci ¼ D and

for any Ci, Cj 2 {C1, . . ., Cn}, Ci \ Cj =?.

Proposition 4.2.1. Let C = {C1, . . ., Cn} be a set of classes that partition D and a be an indi-

vidual. Then there exists a random variable V such that r(V) = {a 2 C1, . . ., a 2 Cn}.

Proposition 4.2.1 is crucial for the remaining sections. Later we discuss how to instantiate

terminological knowledge. The insight that a random variable is induced for an individual that

is a member of a set of disjoint classes allows us to do so.

Definition 4.2.2. A probabilistic assertional axiom (PAA) is a conditional probability rule of

the form:

R : PðVin
¼ fain

2 Cjn
gjVi1

¼ fai1
2 Cj1

g ^ ::: ^ Vin� 1
¼ fain� 1

2 Cjn� 1
gÞ ¼ p
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Such that faik
2 Cjk

g 2 rðVik
Þ, fai1

2 Cj1
; :::; ain

2 Cjn
g is consistent and there exists exactly

one individual aik
in any assertion R 2 rðVik

Þ.

A PAA R’s antecedent, denoted antðRÞ, is the conjunction of random variables to the right

of the vertical bar. R’s consequent, denoted conðRÞ, is the random variable assignment to the

left of the vertical bar. In this case antðRÞ ¼ Vi1
¼ fai1

2 Cj1
g ^ ::: ^ Vin� 1

¼ fain� 1
2 Cjn� 1

g

and conðRÞ ¼ Vin
¼ fain

2 Cjn
g. The notation used to represent PAAs, R, was chosen to

reflect that PAAs are CPRs, which are denoted R in BKBs.

The other rule used in BKO theory is the probabilistic terminological axiom. However, its

definition relies on variable individuals and variable concept constructors, so we must define

those first.

Definition 4.2.3. A variable individual is a variable x̂ which represents an unspecified a 2
I(Q) We will use the term specific individual to distinguish a normal individual from a variable

individual.

Definition 4.2.4. A variable concept is a concept Ĉ whose members include one or more

variable individuals. We will use the term specific concept to distinguish a concept from a vari-

able concept.

Definition 4.2.5. Let X̂ ¼ fx̂1 ; x̂2 ; :::; x̂ng be a set of variable individuals and L(Q) be a lexi-

con describing domain Q. A variable concept constructor is a function f ðLðQÞ; X̂Þ, the output

of which is a variable concept.

Definition 4.2.6. A variable assertion is an assertion of the form ŷ 2 Ĉ where ŷ is a variable

individual and Ĉ is either variable concept or specific concept.

Notation. Letters with a hat (̂) represent variable individuals or concepts, while letters with-

out a hat (̂) represent specific individuals, classes, roles, etc.

For example, the variable concept Ĉ ¼ R1ðŷ; x̂Þ \ R2ðŷ; x̂Þ represents some variable indi-

vidual ŷ being related to some yet-unspecified individual x̂ by both properties R1 and R2. Note

that variable concepts are permitted to contain some specific individuals too. Ĉ ¼ R1ðŷ; x̂Þ \
R2ðŷ; x̂Þ \ R3ðŷ; bÞ represents being related to yet-unspecified individual x̂ by R1 and R2, and

to specific individual b by R3.

Definition 4.2.7. For a set of variable individuals fx̂1; :::; x̂ng and a set of variable concepts

fĈ1; :::; Ĉng a probabilistic terminological axiom (PTA) is a statement of the form

T : Pðx̂in
2 Ĉjn

jx̂i1
2 Ĉj1

^ ::: ^ x̂in� 1
2 Ĉjn� 1

Þ ¼ p

such that for some k 6¼ n, either (1) ik = in, (2) Ĉjk
contains x̂in

in its formula, or both.

As with PAAs, a PTA’s antecedent and consequent are the terms to the right and left of the

vertical bar. Note that not all members of a PTA’s antecedent must be variable assertions.

There must be at least one due to the requirement that the individual in its consequent must

be defined in the antecedent.

PTAs are a first-order generalization of the strictly propositional PAA. They facilitate form-

ing complex universal quantification statements, which lets BKO theory express advanced DL

notions like property attributes. In fact, BKO theory can be used to express complex custom

property attributes not available in DL. A more intuitive explanation is best communicated

through some examples. Start with the simplest form of a PTA:

T : Pðx̂ 2 C2jx̂ 2 C1Þ ¼ p

This expresses that any member of C1 has a probability p of also being a member of C2.

PTAs are also a mechanism for expressing complex probabilistic rules extending some of the

PLOS ONE Bayesian fusion of semantic knowledge under uncertainty and incompleteness

PLOS ONE | https://doi.org/10.1371/journal.pone.0296864 March 27, 2024 14 / 36

https://doi.org/10.1371/journal.pone.0296864


features of more advanced forms of DL. In the following example, let R be a specific relational

property.

T : Pðx̂ 2 Rðx̂; ŷÞjŷ 2 Rðŷ; x̂ÞÞ ¼ p

This PTA can be read as “The probability that any x is related to any y by R given any y is

related to any x by R”. Should p = 1, T1 would declare R to be a symmetric property. Similarly,

the PTA

T : Pðx̂ 2 Rðx̂; ẑÞjx̂ 2 Rðx̂; ŷÞ ^ Rðŷ; ẑÞÞ ¼ p

would declare T to be a transitive property, should p = 1. Note that p does not necessarily need

to be equal to one. Consider the following PTA:

T : Pðx̂ 2 Rðx̂; x̂Þjx̂ 2 CÞ ¼ p

With p = 1, T becomes a reflexive property. But if we set p = 0.7, T states that for any individual

x̂ in class C, there is a 0.7 chance that it is related to itself by property R. It should be apparent

that we can go beyond the offerings of DL to create much more sophisticated terminological

expressions.

A PTA must eventually be instantiated, a process that assigns each one of a PTA’s variable

individuals to a specific individual, resulting in a PAA.

Definition 4.2.8. Let X = {x1, x2, . . ., xw} be a set of specific individuals and X̂ ¼
fx̂1; x̂2; :::; x̂wg be a set of variable individuals whose range is X. An instantiation function g :

X̂ ! X is a one-to-one mapping of each variable individual to a specific individual.

Note that the instantiation function defined here is the probabilistic counterpart of the

interpretation function in classic DL.

Notation. For some expression E and an instantiation function g, E instantiated by g may

be written as either g(E) or E|g. So the concept constructor Ĉ ¼ f ðLðQÞ; fx̂1; :::; x̂wgÞ evaluated

by g could be written Ĉjg ¼ f ðLðQÞ; fx̂1; :::; x̂wgÞjg ¼ gð f ðLðQÞ; fx̂1; :::; x̂wgÞÞ

Proposition 4.2.2. Ĉjg ¼ gðf ðLðQÞ; fx̂1; :::; x̂wgÞÞ ¼ f ðLðQÞ; fgðx̂1Þ; :::; gðx̂wÞgÞÞ

Definition 4.2.9. The instantiation of a PTA

T : Pðx̂in
2 Ĉjn

jx̂i1
2 Ĉj1

^ ::: ^ x̂in� 1
2 Ĉjn� 1

Þ ¼ p

by instantiation function gðfx̂1; :::; x̂ngÞ ¼ fa1; :::; ang is tha PAA

Tjg : PðVin
¼ fain

2 Cjn
gjVi1

¼ fai1
2 Cj1

g ^ ::: ^ Vin� 1
¼ fain� 1

2 Cjn� 1
gÞ ¼ p

T|g may be read “T evaluated by g.” For a simple PAA like T : Pðx̂ 2 C2jx̂ 2 C1Þ ¼ p and

instantiation function gðx̂Þ ¼ a, T|g can be read “T evaluated with x̂ equal to a”. Note that the

probability value assigned to the instantiated PTA is the same as it was before being instanti-

ated. This is what is meant when we say that PTAs describe a pmf. Unlike PAAs, PTAs on

their own are not conditional probability rules. PTAs themselves do not have an effect on the

pmf but any PAA that is an instantiation of them does.

PTAs and PAAs are flexible enough to represent classical axioms. For example a classical

assertional axiom Z is equivalent to the unconditional PAA P(Z) = 1. A subsumption axiom

C� D is equivalent to the PTA Pðx̂ 2 Djx̂ 2 CÞ ¼ 1, and a disjointness axiom C \ D =? is

equivalent the PTAs Pðx̂ 2 Djx̂ 2 CÞ ¼ 0 and Pðx̂ 2 Cjx̂ 2 DÞ ¼ 0.
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4.3 Logical and probabilistic consistency

We will now develop the constraints necessary to guarantee that a BKO induces a valid proba-

bility mass function. These definitions will parallel those of BKB theory. First we define mutual

exclusivity and consequent boundedness in PAAs and PTAs. These definitions will be analo-

gous to their respective concepts from BKB theory, Definitions 3.4.2 and 3.4.3. Let

R1 : PðVin
¼ fain

2 Cjn
gjVi1

¼ fai1
2 Cj1

g ^ ::: ^ Vin� 1
¼ fain� 1

2 Cjn� 1
gÞ

R2 : PðVkm
¼ fa0km

2 C0lmgjVk1
¼ fa0k1

2 C0l1g ^ ::: ^ Vkm� 1
¼ fa0km� 1

2 C0lm� 1
gÞ

be two PAAs.

Definition 4.3.1. Let V1 and V2 be random variables whose sample space is a set of asser-

tions. The instantiations V1 = {a1 2 C1} and V2 = {a2 2 C2} are consistent if {a1 2 C1} and {a2 2

C2} are consistent. Otherwise, they are inconsistent. Sets of instantiated rvs are consistent if all

their members are consistent.

Definition 4.3.2. Let V1 ¼ fV11
; :::;V1n

g and V2 ¼ fV21
; :::;V2m

g be sets of random vari-

ables whose sample space is a set of assertions. V1 and V2 are consistent if for all V1i
2 V1 and

V2j
2 V2, V1i

and V2j
are consistent.

We had already defined what it means for assertions and sets of assertions to be consistent.

Since PAAs are CPRs and not sets of assertions, This definition is necessary before we can

define mutual exclusivity and consequent boundedness for PTAs and PAAs.

Definition 4.3.3. The disaggregation of a conjunction of assertions A1 ^ A2 ^ . . . ^ An is a

set of the individual assertions of the conjunction, {A1, A2, . . .An}, denoted disag(A1 ^ A2 ^ . . .

^ An) = {A1, A2, . . .An}.

Definition 4.3.4. (Mutually Exclusive)

• PAAs R1 and R2 are mutually exclusive if disagðantðR1ÞÞ is inconsistent with

disagðantðR2ÞÞ.

• PTAs T1 and T2 are mutually exclusive if T1jg1
and T2jg2

are mutually exclusive for any instan-

tiation functions g1 and g2. Recall that the instantiation of a PTA is a PAA.

• A PAA R and PTA T are mutually exclusive if there exists some instantiation function g
such that R and T|g are mutually exclusive.

Definition 4.3.5. (Consequent Bound)

• PAAs R1 and R2 are consequent bound if disagðantðR1ÞÞ is consistent with disagðantðR2ÞÞ

but conðR1Þ and conðR2Þ are inconsistent.

• PTAs T1 and T2 are consequent bound if T1jg1
and T2jg2

are consequent bound for any instan-

tiation functions g1, g2.

• A PAA R and PTA T are consequent bound if there exists some instantiation function g such

that R and T|g are consequent bound.

Notation. The negation of an assertion a 2 C is the assertion a 2 ¬C
Definition 4.3.6. A Bayesian Knoweldge-driven Ontology, B, is a finite set of PAAs and

PTAs such that:

• For any distinct PAAs R1;R2 2 B, either (1) R1 and R2 are mutually exclusive or (2)

conðR1Þ is consistent with the negation of conðR2Þ and conðR2Þ is consistent with the nega-

tion of conðR1Þ.
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• For any distinct PTAs T1, T2 2 B and instantiation functions g1 and g2, either (1) T1jg1
and

T2jg2
are mutually exclusive or (2) conðT1jg1

Þ is consistent with the negation of conðT2jg2
Þ and

conðT2jg2
Þ is consistent with the negation of conðT1jg1

Þ.

• For any PAA R and PTA T in B such that conðRÞ ¼ a 2 C and conðTÞ ¼ x̂ 2 D̂, and

instantiation function g, either (1) R and T|g are mutually exclusive, (2) conðRÞ is consistent

with the negation of con(T|g) and con(T|g) is consistent with the negation of conðRÞ, or (3)

Tjg ¼ R

• For any subset S� B where the PAAs R � S and PTAs T� S are mutually consequent

bound, ∑Q2S P(Q)� 1

Proposition 4.3.1. Any subset of a BKO is also a BKO

Definition 4.3.6 has some seemingly odd conditions of a consequent’s consistency with

another consequent’s negation. These conditions exist to prevent conflicts between CPRs

which are not mutually exclusive but would generate mutex violations in rules mandated by

DL. For example, if conðR1Þ said “a is in C”, but conðR2Þ said “a is D”, where D� C, the laws

of any governing DL would require the a PAA R3 to be inferred saying “if a is in a subset of C,

then a is in C”. Without the conditions set in Definition 4.3.6, R3 could violate mutex with R1.

The consequent consistency conditions will catch R1 and R2 before that inference is com-

puted. Checking whether a set of PAAs and PTAs obeys Definition 4.3.6 requires performing

O(|B|2), where |B| is the number of PAAs and PTAs in the set.

5 BKO reasoning

Recall the purpose of BKO reasoning from the introduction: to determine the posterior proba-

bility of some event from the collection of prior and conditional probabilities that constitute

our knowledge base. This section defines that process and provides an algorithm outline.

5.1 Logical reasoning under uncertainty

Before reasoning, a BKO contains both explicit restrictions on its pmf, in the form of PAAs,

and implicit descriptions of its pmf, in the form of the PTAs. The probabilistic rule of universal

instantiation is used to convert PTAs to PAAs that restrict the BKO’s pmf.

Definition 5.1.1. An assertional axiom A is said to be provable given a set of assertional

and/or terminological axioms S iff (1) A and S are expressible in a governing DL and (2) that

governing DL supports a sound algorithm by which A given S may be proven.

Definition 5.1.2. For some provable rule R in the context of some BKO B, to infer R is to

set B B [R
Definition 5.1.3. For a BKO B, a PTA T 2 B, and an instantiation function g, infer T|g. We

call this the probabilistic rule of universal instantiation.

Theorem 5.1.1. For a BKO B, a PTA T 2 B, and an instantiation function g, B [ T|g is a

BKO.

Proof. Let B be a BKO, T 2 B be a PTA, and g be an instantiation function. We will show

that the finite set of PAAs and PTAs, B [ T|g satisfies the four conditions set in the definition

of a BKO.

i Since T 2 B, condition (iii) holds for T and all PAAs RB 2 B. So, for PAA T|g and any RB 2

B such that Tjg 6¼ RB, either (1) T|g and RB are mutually exclusive or (2) con(T|g) is consis-

tent the negation of conðRBÞ and conðRBÞ is consistent with the negation of con(T|g). Since
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B is a BKO, condition (i) holds for all other PAAs RB1
;RB2

2 B. So condition (i) holds for

B [ T|g.

ii Since T|g is a PAA, no PTAs were added to B. Since B is a BKO, all PTAs in B satisfy condi-

tion (ii).

iii Since T 2 B, condition (ii) holds for T and all PTAs TB 2 B. So, for PAA T|g and any PTA TB

2 B, either (1) T|g and TBjgB are mutually exclusive or (2) con(T|g) is consistent with the

negation of conðTBjgBÞ and conðTBjgBÞ is consistent with the negation of con(T|g), or (3)

TBjgB ¼ Tjg . Since B is a BKO, condition (iii) holds for any other PAA RB, and PTA TB in B.

So then condition (iii) holds for B [ T|g.

iv Let� B [ T|g be a subset of PAAs and PTAs. Case 1: If T|g =2 S then S� B. And since B is a

BKO, ∑Q2S P(Q)� 1. Case 2: If T|g 2 S then S − {T|g}� B, and
P

Q2S� fTjgg
P(Q)� 1. But

since T|g is consequent bound with all Q 2 S − {T|g}, T is also consequent bound with all Q
2 S − {T|g}. So there exists a set S − {T|g} [ T� B of mutually consequent bound PAAs and

PTAs. and since B is a BKO,
P

Q2S� fTjgg[T
P(Q)� 1. And since PTA T and PAA T|g have the

same probability,
P

Q2S� fTjgg[T
PðQÞ ¼

P
Q2S PðQÞ � 1

So B [ T|g is a finite set of PAAs and PTAs that satisfy the conditions set in Definition 4.3.6.

So B [ T|g is a BKO.

The goal of a BKO is to express all knowledge as a set of PAAs. One way to guarantee this is

by instantiating each PTAs using every possible instantiation function, but this would be com-

putationally impractical. Instead, in advance we identify the combinations of PTAs and instan-

tiation functions that can be used in reasoning.

Definition 5.1.4. A PAA R in BKO B is supported if, for all rv assignments Vi 2 antðRÞ,
Vi ¼ conðRjÞ for some PAA Rj 2 B. Otherwise, R is unsupported. R is supported by a set of

PAAs {S1, . . ., Sn}� B if fconðS1Þ; :::; conðSnÞg ¼ disagðantðRÞÞ.
Definition 5.1.5. A PAA R is said to be grounded if (1) antðRÞ ¼ ; or (2) there exists a set

of PAA’s S = {S1, S2, . . .Sn} such that S supports R.

Intuitively, grounded PAAs are known pieces of the BKO’s pmf, while ungrounded PAAs

are unknown, since they have unknown antecedents. The marginal and posterior probabilities

of an ungrounded PAA cannot be computed, so any descendant of that PAA also cannot be

computed.

Proposition 5.1.1. Let B be a BKO and R 2 B be an ungrounded PAA. Then (1) any mar-

ginal or posterior probabilities computed using the pmf induced by B are identical to those

computed using the pmf induced by B � R, and (2) any marginal or posterior probabilities

which are incalculable using the pmf induced by B are also incalculable using the pmf induced

by B � R.

Since ungrounded PAAs do not contribute to a BKO’s pmf, we develop the following notion.

Definition 5.1.6. A BKO B is fully-instantiated when, for any PTA T 2 B and instantiation

function g, either T|g 2 B or T|g would not be grounded if added to B.

Note that we do not instantiate on infinite numbers of individuals or on unknown individ-

uals. We only work with defined individuals but admit that more are possible per the open-

world assumption. A fully instantiated BKO maximizes the number of its supported PAAs.

Since the PTAs that could be instantiated to form supported PAAs have been, they are consid-

ered redundant in a fully instantiated BKO. However, should new information be added to the

BKO, the PTAs would no longer be considered redundant until the BKO was fully instantiated

again with the new information.
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5.2 Mapping a BKO to an equivalent BKB

Recall that PAAs are conditional probability rules, so a set of PAAs constitute a BKB if they sat-

isfy Definition 3.4.4. We will show that a BKO’s A-box is a valid BKB. Furthermore, if a BKO

is fully instantiated, no additional information can be inferred from its T-box. Combining

these two insights allows us to conclude that a valid BKO can be converted to an equivalent,

valid, BKB. We will then be able to use previously developed methods for BKB reasoning. Let

R1 : PðVin
¼ fain

2 Cjn
gjVi1

¼ fai1
2 Cj1

g ^ ::: ^ Vin� 1
¼ fain� 1

2 Cjn� 1
gÞ ¼ p1

R2 : PðVkm
¼ fa0km

2 C0lmgjVk1
¼ fa0k1

2 C0l1g ^ ::: ^ Vkm� 1
¼ fa0km� 1

2 C0lm� 1
gÞ ¼ p2

be two PAAs.

Lemma 5.2.1. If R1 and R2 are mutually exclusive PAAs, then they are mutually exclusive

CPRs.

Proof. Let R1 and R2 be two mutually exclusive PAAs. Then disagðantðR1ÞÞ and

disagðantðR2ÞÞ are inconsistent, so there exists some p, 1� p< n, and some q, 1� q<m,

such that ip = kq and aip
¼ a0kq

but Cjp
\ C0lq ¼ ? Then Cjp

6¼ C0lq , so Vhp
¼ Vuq

but their assign-

ments are not equal. So R1 and R2 are CPRs that contain the same random variable in their

antecedent, but they have different assignments. So R1 and R2 are mutually exclusive CPRs.

Lemma 5.2.2. If R1 and R2 are consequent-bound PAAs then they are consequent-bound

CPRs.

Proof. Let R1 and R2 be two consequent bound PAAs. To show that they are consequent

bound CPRs we must show that (1) for all p< n and all q<m, faip
2 Cjp

g ¼ fa0kq
2 C0lqg

whenever ip = kq, and (2) in = km but fain
2 Cjn

g 6¼ fa0km
2 C0lmg.

(1) Since R1 and R2 are consequent bound PAAs, disagðantðR1ÞÞ and disagðantðR2ÞÞ are

consistent. So for all p< n and q<m whenever ip = kq, Cjp
\ C0lq 6¼ ?. But since Vip

¼ Vkq
, any

classes involved in their assertions are either the equal or disjoint. And since Cjp
\ C0lq 6¼ ?,

Cjp
¼ C0lq . So whenever ip = kq, faip

2 Cjp
g ¼ fa0kq

2 C0lqg.

(2) Since R1 and R2 are consequent bound PAAs, conðR1Þ and conðR2Þ are inconsistent.

So in = km and ain
¼ a0km

but Cjn
\ C0lm ¼ ?. So in = kn but fain

2 Cjn
g 6¼ fa0km

2 C0lmg.
So R1 and R2 are consequent bound CPRs.

Notation. For a BKO B, Abox(B) represents B’s A-box. Similarly, Tbox(B) represents B’s T-

box.

Theorem 5.2.1. Let B be a BKO. Abox(B) is a BKB.

Proof. Let B be a BKO and let Abox(B) be the set of all PAAs in B. We will show that (1) for

any distinct PAAs R1;R2 2 AboxðBÞ either R1 is mutually exclusive with R2 or

conðR1Þ 6¼ conðR2Þ; and (2) for any subset S of mutually consequent bound CPRs of B, ∑Q2S P
(Q)� 1.

(1) Let R1 and R2 be distinct elements of Abox(B). Since R1;R2 2 B, either they are mutu-

ally exclusive or conðR1Þ is consistent with the negation conðR2Þ and conðR2Þ is consistent

with the negation of conðR1Þ. If the PAAs R1 and R2 are mutually exclusive PAAs, then by

Lemma 5.2.1 they are mutually exclusive by CPRs. And if conðR1Þ and the negation of

conðR2Þ are consistent (and vice versa), either a1 6¼ a2 or C1 \ ¬C2 6¼ ? and ¬C1 \ C2 6¼ ?. So

either a1 6¼ a2 or C1 6¼ C2. So conðR1Þ 6¼ conðR2Þ.

(2) Since B is a BKO, for any subset S of mutually consequent bound PAAs of B, ∑Q2S P(Q)

� 1. And by Lemma 5.2.2, if R1 and R2 are consequent bound PAAs, they are consequent

bound CPRs. So S remains unchanged and ∑Q2S P(Q)� 1.
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Note that an equivalent version of Theorem 5.2.1 appears in [11] as Lemma 7.1.

Proposition 5.2.1. (1) For a fully instantiated BKO B, any marginal or posterior probabili-

ties which could be calculated using the pmf induced by B are identical to those calculated

using the pmf induced by Abox(B). (2) Additionally, any marginal or posterior probabilities

which are incalculable using the pmf induced by Abox(B) will also be incalculable using the

pmf induced by B.

Having proven that a BKO has an equivalent BKB, we will turn our attention to the ques-

tion of how to generate it.

5.3 A reasoning algorithm

The Full Instantiation Algorithm will fully instantiate a BKO. To achieve this, the algorithm

begins with a set of PAAs, denoted H. This set is empty by default, but it is not required to be

empty. First PAAs with empty antecedents are appended to H, followed by PAAs supported by

H. Then, any combination of PTA and instantiation function that will result in a PAA sup-

ported by H is also added. This process is repeated until no additional PAAs are added to H.

Definition 5.3.1. The generalization of assertion a 2 C, denoted gen(a 2 C) is x̂ 2 Ĉ where

x̂ is a variable individual and Ĉ is a variable concept, with each specific individual in C is

replaced with a variable individual.

Definition 5.3.2. Two variable assertions x̂1 2 f1ðLðQÞ; fx̂1; :::; x̂wgÞ and ŷ1 2

f2ðLðQÞ; fŷ1; :::; ŷwgÞ are equivalent if f1ðLðQÞ; fẑ1; :::; ẑwgÞ ¼ f2ðLðQÞ; fẑ1; :::; ẑwgÞ for any

fẑ1; :::; ẑwg

Definition 5.3.3. An instantiation function g is compatible with PTA T if g is a one to one

mapping from I(T) to a set of specific individuals.

The Full Instantiation Algorithm takes two arguments. The first is a BKO B. The second is

an initial reasoning anchor Hi, defaulting to the empty set. The Full Instantiation Algorithm

returns a BKO.

Proposition 5.3.1. The output of the Full Instantiation Algorithm is a BKO

Note that this proposition follows from Theorem 5.1.1, which states that the union of a

BKO B and the instantiation of any PTA in B is still a valid BKO.

5.4 Complexity of the algorithm

The Full Instantiation Algorithm’s complexity is driven by the instantiation of PTAs. Consider

the general form of the PTA:

T : Pðx̂in
2 Ĉjn

jx̂i1
2 Ĉj1

^ ::: ^ x̂in� 1
2 Ĉjn� 1

Þ ¼ p

For each variable assertion x̂ik
2 Ĉjk

in ant(T), where 1� k� n−1, let |Mk| represent the set of

variable assertions that generalize to x̂ik
2 Ĉjk

. Let ST be the set of PAAs instantiated from PTA

T. Then

jSTj �
Qn� 1

k¼1
jMkj

Full Instantiation Algorithm
1: Let H− = Null, H = Hi
2: while H 6¼ H− do
3: H = H−

4: H ¼ H [ fR 2 AboxðBÞjS � H supports Rg
5: for Ti 2 Tbox(B) do
6: G = ;
7: D ¼ fconðRÞjR 2 Hg
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8: for Tij 2 antðTiÞ do
9: for Dk 2 D do
10: if genðDkÞ ¼ Tij then
11: gij : IðantðTijÞÞ ! IðDkÞ

12: G ¼ G [ fgij
g

13: for fg ¼ [nl¼1
gljfg1; :::;gng � G,[nl¼1

gl is compatible with Ti} do
14: H = H [ Ti|g
15: return H

The product
Qn� 1

k¼1
jMkj is an upper bound on |ST|. So the worst case time complexity is O

(Mn), where M largest number of variable assertions that are generalized to a PTA. The space

complexity is also exponential, because the time complexity is driven by the number of new

assertions being instantiated and is directly related to the size of the BKO. This will be true for

both probabilistic and non-probabilistic assertions, because it depends on how many PAAs

already in the BKO can be combined to instantiate new PAAs and not what their probability

is. However, the case where jSTj ¼
Qn� 1

k¼1
jMkj occurs when there are no shared variable indi-

viduals between variable assertions in ant(T). Consider the antecedent of T:

antðTÞ ¼ x̂i1
2 Ĉj1

^ ::: ^ x̂in� 1
2 Ĉjn� 1

Assume for some variable assertions x̂ip
2 Ĉjp

; x̂il
2 Ĉjl

there exists some x̂iq
such that x̂iq

is

included in the variable concepts Ĉjp
and Ĉjl

. Then the set of assertions that generalize to

x̂ip
2 Ĉjp

, denoted M∗
p , may include fewer assertions than the original Mp. Similarly, we can

denote M∗
l as the set of assertions that generalize to x̂ il

2 Ĉjl
. So the number of PAAs instanti-

ated from the Full Instantiation Algorithm is

jSTj ¼
Qn� 1

k¼1
jM∗

k j �
Qn� 1

k¼1
jMkj

Although in this case |ST| is less than the upper bound, it still may grow exponentially with

respect to the length of T’s antecedent. We illustrate this with an example. Consider the PTA:

T : Pðx̂1 2 R1ðx̂1; x̂2Þjx̂1 2 R2ðx̂1; x̂3Þ; x̂4 2 R3ðx̂4; x̂5Þ; x̂6 2 R4ðx̂6; x̂7ÞÞ ¼ p

Note that there is no overlap between the members of ant(T), there are no variable individ-

uals that are shared between variable assertions in T’s antecedent. Now assume for a given

BKO, we have three PAAs whose generalization is x̂1 2 R2ðx̂1; x̂3Þ, four PAAs whose generali-

zation is x̂4 2 R3ðx̂4; x̂5Þ, and three PAAs whose generalization is x̂6 2 R4ðx̂6; x̂7Þ. Then we can

infer thirty-six PAAs from T. Clearly, the number of times that a PTA may be instantiated is

exponential with respect to the length of its antecedent. A similar problem can be seen regard-

ing knowledge acquisition in Bayesian Networks. One advantage that BKO theory has, in addi-

tion to handling cycles and incompleteness, is that not all combinations of PTAs are possible.

This is best communicated through an example. Consider the following PTA:

T : Pðx̂1 2 R1ðx̂1; x̂2Þjx̂1 2 R2ðx̂1; x̂3Þ; x̂4 2 R3ðx̂4; x̂2Þ; x̂3 2 R4ðx̂3; x̂2ÞÞ ¼ p

There could be many PAAs whose consequents are generalizations of x̂3 2 R4ðx̂3; x̂2Þ, but an

instantiation function will only be valid if it maps x̂3 to the same specific individual as it does

for x̂1 2 R2ðx̂1; x̂3Þ. So if we have we have three PAAs that are generalizations of

x̂1 2 R2ðx̂1; x̂3Þ, four PAAs that are generalizations of x̂4 2 R3ðx̂4; x̂2Þ, and three PAAs that are

instantiations of x̂3 2 R4ðx̂3; x̂2Þ. Then we cannot infer thirty-six PAAs as before. There will be

some combinations that would require x̂3 to be mapped to multiple specific individuals by the
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same instantiation functions, which would not be valid. This can greatly reduce the number of

PAAs that are instantiated.

There is one special case that represents many real-world applications and must be

highlighted. Many ontologies, particularly in the biomedical domain, have terminological axi-

oms that can be represented as PTAs of the form:

T : Pðx̂i2
2 Ĉj2

jx̂i1
2 Ĉj1

Þ ¼ p

In this case, the number of PAAs instantiated is equal to the number of assertions that gen-

eralize to x̂i1
2 Ĉj1

in the BKO.

5.5 Answering the probabilistic membership query

BKOs can be used to answer probabilistic membership queries (PMQs), thereby perform the

probabilistic analogs of the standard DL reasoning tasks of instance and relation checking.

This can be done for both fully instantiated BKOs as well as ones that are not yet fully instanti-

ated. We rely on a BKB reasoning technique called partial belief revision.

Let B be a BKB. Let Q be a query of the form

PðVj1
¼ vj1

^ ::: ^ Vjm
¼ Vjm

jVi1
¼ vi1

^ ::: ^ Vin
¼ vin

Þ ¼ p

with probability p, such that for all Vx = vx 2 Q, Vx = vx 2 B. We refer to con(Q) as the reason-
ing target and ant(Q) as the evidence. In order to solve this with BKB theory’s belief updating

techniques, we must define a query rv VQ such that r(VQ) = {True, False}, and a query CPR

RQ such that antðRQÞ ¼ conðQÞ and conðRQÞ ¼ fVQ ¼ Trueg. Let BQ ¼ B [RQ. Then p
is computable as the belief updating problem p = P(VQ = True |ant(Q)). Intuitively, this pro-

cess adds a CPR whose probability is equal to p and can be solved using belief updating.

BKOs can be used to solve PMQs in a similar way. Let B be a BKO, and let Q be a probabi-

listic membership query of the form

PðVj1
¼ faj1

2 Cj1
g ^ ::: ^ Vjm

¼ fajm
2 Cjm

gjVi1
¼ fai1

2 Ci1
g ^ ::: ^ Vin

¼ fain
2 Cin

gÞ

with probability p, such that every clause ax 2 Cx is a consequent of at least one PAA in B.

After B is fully instantiated, the PMQ can be solved using the same techniques just described

for BKBs. This is because, as we have shown, a BKO’s A-box is a valid BKB.

Previously, we answered the PMQ by first fully instantiating the BKO to a BKB and then

performing partial belief revision. Suppose we would like to set ungrounded belief conditions

as evidence. To do so, let B be a BKO and Q be a probabilistic membership query of the form

PðVj1
¼ faj1

2 Cj1
g ^ ::: ^ Vjm

¼ fajm
2 Cjm

gjVi1
¼ fai1

2 Ci1
g ^ ::: ^ Vin

¼ fain
2 Cin

gÞ

with p the probability to compute, such that every clause ajx
2 Cjx

is a consequent of at least

one PAA in B. Note that unlike before, the members of the antecedent of Q do not have to be a

consequent of a PAA in B. Now using Q’s antecedent, create a set S of PAAs {S1, . . ., Sn} such

that each Sk is the PAA Pðaik
2 Cik

Þ ¼ pk, where pk is an unspecified probability. Using S as an

input initial reasoning anchor, fully instantiate B using the Full Instantiation Algorithm. Then

p can be computed using BKB theory’s partial relief revision. Since the members of ant(Q) are

not necessarily all in B, the algorithm will build the fully instantiated BKO starting with the set

S. In partial belief revision, these antecedent conditions are considered evidence, so the

unspecified probabilities pk will not contribute to the result.
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6 Knowledge fusion with BKOs

Current methods for merging ontologies require knowledge to be rejected or altered to prevent

contradicting information. This section introduces BKO fusion, where reasoning can occur

regardless of whether or not contradictions are present. BKO fusion eliminates the need to

check for inconsistencies and remedy them through manual or automated means. Not only is

all knowledge from the input ontologies retained in the fused one, but new inferences, not

present in the individual ontologies, are generated. This section begins with the theoretical

framework of BKOs, followed by the BKO Fusion Algorithm, and lastly a discussion on the

role of ontology alignment.

6.1 Theoretical framework

BKOs leverage their close relationship to BKBs to apply Bayesian Knowledge Fusion to the

problems in ontology alignment that arise when there is uncertain knowledge. The concept

and formulation are both analogous to BKB fusion. Conflicting knowledge from different

sources is modeled as knowledge fragments with associated relative reliability weightings. This

approach allows for Bayesian inferencing about conflicting information. Note that, because

BKOs are a generalization of classical ontologies, these methods apply equally to BKOs and

classical ontologies.

Definition 6.1.1. A source class, Cs, is a class representing that knowledge came from a

source s.
Definition 6.1.2. A source assertion a 2 Cs is an assertion indicating membership in a

source class.

Definition 6.1.3. A source random variable Vs is a random variable such that r(Vs) is a set of

source assertions.

Definition 6.1.4. For a PAA R and source random variable Vs, R is referred to as a sourced
PAA if Vs 2 antðRÞ. A PTA T is referred to as a sourced PTA if source assertion {a 2 Cs} 2 ant
(T)

Definition 6.1.5. A BKO Fragment is a triple (B, s, w) where B is a BKO, s is a term repre-

senting the source of the knowledge contained in B, and w> 0 is a real number representing

the reliability of s in comparison to other sources.

Note that a single ontology can be represented by multiple BKO Fragments. Different

sources can have different reliabilities on different subsets of their domain of discourse, and

those subsets are represented as fragments. A source might provide multiple fragments to a

fused model, each with a different reliability weighting.

The BKO Fusion Algorithm takes two arguments. The first is a set of BKO Fragments F =

{F1 = (B1, s1, w1), . . ., Fn = (Bn, sn, wn)} such that for any fragments Fi, Fj 2 F, si 6¼ sj. The second

argument is an initial reasoning anchor Hi, defaulting to the empty set. To model the source

that a PAA or PTA from a BKO Fragment F came from, we include a source random variable

in the antecedent of each PAA and a source assertion in the antecedent of each PTA.

BKO Fusion Algorithm
1: w = 0
2: for Fi 2 F do
3: w = w + wi
4: for Fi 2 F do
5: Rsi

: PðVsi ¼ fasi 2 CsigÞ ¼
wi
w

6: Bi ¼ Bi [Rsi

7: for all PAAs Rij
2 Bi do

8: antðRij
Þ ¼ antðRij

Þ ^ fVsi ¼ asi 2 Csig

9: for all PTAs Ti 2 Bi do
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10: antðTijÞ ¼ antðTijÞ ^ asi
2 Csi

11: B ¼ [ni¼1
Bi

12: return B

The result of BKO Fusion is a valid BKO, as we will show in the following theorem. The

proof depends on a crucial assumption. The definition of a BKO depends on knowing whether

classes are disjoint or not. If that information about classes from different ontologies is not

known, we must assume that there are no classes Ci 2 C(Bi) and Cj 2 C(Bj) such that Ci \ Cj =

?. Similarly, we also must assume that no classes such that Ci \ ¬Cj =? or Cj \ ¬Ci =? unless

that information is provided. Such information would be included in an alignment ontology,

which can be included as an input to the fusion algorithm.

Theorem 6.1.1. For any two BKO fragments Fi, Fj 2 F such that si 6¼ sj, the result of BKO

Fusion will be a valid BKO.

Proof. Let Fi = (Bi, si, wi) and Fj = (Bj, sj, wj) such that si 6¼ sj and let

B ¼ Bi [ Bj [ fRsi
g [ fRsj

g. Since Bi and Bj are a set of PAAs and PTAs, and Rsi
and Rsj

are

themselves PAAs, B is a set of PAAs and PTAs. Now, we show that it sets the four conditions

set in Definition 4.3.6:

i Let Ri ¼ fRi1
; . . . ;Rin

g and Rj ¼ fRj1
; . . . ;Rjm

g be the set of PAAs in Bi and Bj, respec-

tively. Since we assume all classes Ci and Cj are disjoint, for any Rik
2 Ri and Rjl

2 Rj, we

can say that conðRik
Þ is consistent with the negation of conðRjl

Þ and conðRjl
Þ is consistent

with the negation of conðRik
Þ. Additionally, source PAAs Rsi

and Rsj
have different indi-

viduals in their consequent that are unique to each source PAA. So (1) conðRsi
Þ is consis-

tent with the negation of conðRsj
Þ and conðRsj

Þ is consistent with the negation of conðRsi
Þ,

and (2) for any Rm 2 Ri [Rj, both conðRsi
Þ and conðRsj

Þ are consistent with the negation

of conðRmÞ and conðRmÞ is consistent with the negation of both conðRsi
Þ and conðRsj

Þ. So,

for any R1;R2 2 B, either R1 is mutually exclusive with R2 or conðR1Þ is consistent with

the negation of conðR2Þ and conðR2Þ is consistent with the negation of conðR1Þ.

ii Let Ti ¼ fTi1
; . . . ;Tin

g and Tj ¼ fTj1
; . . . ;Tjm

g be the set of PTAs in Bi and Bj, respectively.

Each member of Ti has the source assertion asi
2 Csi

in its antecedent. Similarly, every

member of Tj has the source assertion asj
2 Csj

in its antecedent. Since the source assertions

are not variable assertions, for any instantiation functions g1, g2, and any Tik
2 Ti and

Tjl
2 Tj, the source random variables of Tik

jgi and Tjl
jgj will be Vs ¼ fas 2 Csi

g and

Vs ¼ fas 2 Csj
g, respectively. And since classes from different ontologies are not disjoint,

for any Tik
2 Bi and Tjl

2 Bj, conðTik
jgiÞ is consistent with the negation of conðTjl

jgjÞ and

conðTjl
jgjÞ is consistent with the negation of conðTik

jgiÞ.

iii Let Ri ¼ fRi1
; . . . ;Rin

g be the set of PAAs in Bi and Ti ¼ fTi1
; . . . ;Tim

g be the set of PTAs

in Bi. Also, let Rj ¼ fRj1
; . . . ;Rjk

g be the set of PAAs in Bj and Tj ¼ fTj1
; . . . ;Tjl

g be the

set of PTAs in Bj. The BKO Fusion Algorithm appends a source random variable Vsi
¼

fasi
2 Csi

g to each member of Ri and a source assertion asi
2 Csi

to each member of Ti.

Similarly, the BKO Fusion Algorithm appends a source random variable Vsj
¼ fasj

2 Csj
g

to each member of Rj and a source assertion asj
2 Csj

to each member of Tj. Because the

source assertions are not variable assertions, they do not change between instantiation func-

tions. And since no classes are disjoint across different BKOs, for any PTA or PAA Qi 2

Ri [ Ti and PTA or PAA Qj 2 Rj [ Tj, con(Qi) will be consistent with the negation of con
(Qj) and con(Qj) will be consistent with the negation of con(Qi). And since source assertions
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are consistent with the negation of any assertion in Bi [ Bj, for any PAA R and PTA T in

BKO B, and for any instantiation function g, either R and T|g are mutually exclusive or

conðRÞ is consistent with the negation of con(T|g) and con(T|g) is consistent with the nega-

tion of conðRÞ.

iv Let S be a set of mutually consequent bound members of B. Then S cannot contain members

from both Bi and Bj, since, as shown before, the consequents of members of Bi and Bj are

consistent. It also does not contain Rsi
or Rsj

with any members of Bi or Bj since the source

assertions in the consequent of Rsi
and Rsj

cannot be inconsistent with any consequents in

Bi or Bj. So either S� Bi, S� Bj, or S � fRsi
;Rsj
g. Bi and Bj are valid BKOs, and we nor-

malize the weights of Rsi
and Rsj

, so for all sets S of mutually consequent bound members

of B, ∑Q2S P(Q)� 1

So for any two BKO fragments Fi, Fj 2 F such that si 6¼ sj, the result of fusion by the BKO

Fusion Algorithm will be a valid BKO.

Since the BKO returned from this algorithm is valid, it can be used as input to the Full

Instantiation Algorithm. Then, all previously established BKB reasoning techniques can be

applied to it. Therefore, as described in the previous section, the fused BKO can be used to

answer probabilistic membership queries. Once the BKO is fused and fully instantiated, the

process is identical to the one described in the previous section.

6.2 Complexity of BKO fusion

Let F = {F1, . . ., Fn} be a set of BKO fragments. For some Fi 2 F, we can write

Fi ¼ Ri [ Ti

Where Ri and Ti are the set if PAAs and PTAs in Fi, respectively. For each BKO being fused,

the algorithm iterates over the set of PAAs and PTAs, which is equal to the size of each BKO

Fragment:

Pn
i¼1
jRij þ jTij ¼

Pn
i¼1
jFij

So the complexity of the algorithm is O(nm) where n is the number of BKOs being fused

and m is the number of PTAs and PAAs in the largest BKO Fragment. This is much faster than

the Full Instantiation Algorithm. Although it may be necessary to run the two consecutively,

first the BKO Fusion Algorithm then the Full Instantiation Algorithm, this is not always

required. The Full Instantiation Algorithm is only required for reasoning over it as a BKB.

Other applications of the fused ontologies can avoid that time consuming step.

It is important to note that it is not always necessary to fuse entire BKOs at one time. Often,

only subsets of certain BKOs are of interest. In this case applying BKO Fusion to BKO subsets

is preferred to save time.

6.3 BKO fusion and ontology alignment

When ontologies use different interpretations, their lexica must be related through some sort

of mapping. This generally takes the form of an ontology dedicated to the purpose, a bridge

ontology. (see [41] for recent work on this subject.) Ontology alignment has a strong need for

an uncertainty formalism, because ontology interpretations are often vague, uncertain, and

contentious. Even when the name of a class from one ontology is exactly the class name from

another ontology, equating the two may still be incorrect if the classes are distinct or overlap-

ping. A formal alignment ontology is necessary to avoid such issues. Ontology alignment
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methods exist, but are often deterministic and require that ultimately fiat decisions be made by

humans or an algorithm. BKO theory is well-suited to alleviating this difficulty. It does not

address the question of how to generate mappings, but it will model mappings containing

uncertainty. Through fusion it permits the use of multiple dissonant mappings, each of which

may themselves contain uncertainty. In such situations, formulate the ontologies to be aligned

and the proposed mapping(s) each as individual BKO fragments and apply the algorithm to all

the ontologies being fused and all the alignment ontologies. Every mapping used may contrib-

ute to the solution and offer up its insights.

This approach also simplifies the “meta-matching problem” of how to select a method for

generating and evaluating mappings (see [42] for an example of recent work on this problem).

Rather than being forced to select just one alignment strategy, many strategies may be selected

simultaneously and their resultant mappings fused. This eases design requirements for auto-

mated alignment generators—they no longer need to eliminate or overrule uncertainty in a

candidate alignment. Conflicting results become acceptable and even desirable if they accu-

rately reflect real-world uncertainty and disagreement.

7 A detailed example

With an increase in the amount of data produced in the biological sciences there has also been

an increase in the use of biological ontologies, such as Gene Ontology [43, 44], Human Pheno-

type Ontology [45], and the Infectious Disease Ontology [46]. They have applications in many

areas of biomedicine [47] such as data integration [48, 49] and identifying protein-protein

interactions [50, 51]. One problem that many biological researchers face is that although there

are many available ontologies related to their domain, no single onotlogy adequately supports

their research aims. As a result, many overlapping ontologies were developed to suit specific

domains [52]. For example, the Human Disease Ontology (DO) [53] covers many human dis-

eases. However, researchers studying epilepsy needed a more detailed ontology and created

the Epilepsy Ontology [54]. BKO fusion can be applied to take information from separate

ontologies and combine them into one. When sufficient information is available but spread

out across different sources, creating an entirely new ontology in no longer necessary. This sec-

tion presents a detailed example of the BKO fusion process, designed to highlight some of the

unique and powerful characteristics of BKOs. We will show both how BKOs can be reasoned

over despite contradictions and how new inferences can be formed as a result of fusion.

We fuse subsets of two ontologies, the Mondo Disease Ontology (MONDO) [55] and DO

[53]. They cover a similar domain and are both OBO Foundry [56] ontologies, but fusing

them is not trivial. These are not probabilistic ontologies but can be modeled as such by assign-

ing each statement a probability of one. Our example will be centered around the sciatic nerve,

the largest nerve in the body that runs from the lower back to the lower legs. The sciatic model

is a popular model for studying nerve injury, due at least in part to its accessibility during sur-

gery [57]. Although we can model any relation in either of these ontologies, we only use the “is

a” relation in this example for clarity. Note that each class has a unique identifier, but we will

instead use the common names to make the example easier to follow. If we need to specify

which ontology the class comes from, we will add the ontology name in parentheses after the

class name. For reference, Table 1 displays the common terms with their unique identifiers.

We will start with the PTAs from each ontology and the bridge ontology between them. Then

we will fuse them together, and finally we will reason over the resulting BKB.

7.1 Fusing two BKO Fragments

The following PTAs form a subset of MONDO:
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TM1
: Pðx̂ 2 Sciatic Neuropathyjx̂ 2 Lesion of Sciatic NerveÞ ¼ 1

TM2
: Pðx̂ 2 Mononeuropathyjx̂ 2 Sciatic NeuropathyÞ ¼ 1

TM3
: Pðx̂ 2 Mononeuropathyjx̂ 2 Mononeuritis SimplexÞ ¼ 1

TM4
: Pðx̂ 2 Neuritisjx̂ 2 Mononeuritis SimplexÞ ¼ 1

TM4
: Pðx̂ 2 Inflammatory Diseasejx̂ 2 MononeuritisÞ ¼ 1

The following PTAs form a subset of DO:

TD1
: Pðx̂ 2 Lesion of Sciatic Nervejx̂ 2 Sciatic NeuropathyÞ ¼ 1

TD2
: Pðx̂ 2 Mononeuritis of Lower Limbjx̂ 2 Lesion of Sciatic NerveÞ ¼ 1

TD3
: Pðx̂ 2 Mononeuritisjx̂ 2 Mononeuritis of Lower LimbÞ ¼ 1

TD4
: Pðx̂ 2 Mononeuropathyjx̂ 2 MononeuritisÞ ¼ 1

The bridge ontology linking the terms from MONDO and DO was gathered from the

EMBL-EBI Ontology xRef service (OxO) [58]. The following PTAs are from OxO:

TB1
: Pðx̂ 2 Lesion of Sciatic Nerve ðMONDOÞjx̂ 2 Lesion of Sciatic Nerve ðDOÞÞ ¼ 1

TB2
: Pðx̂ 2 Lesion of Sciatic Nerve ðDOÞjx̂ 2 Lesion of Sciatic Nerve ðMONDOÞÞ ¼ 1

TB3
: Pðx̂ 2 Sciatic Neuropathy ðMONDOÞjx̂ 2 Sciatic Neuropathy ðDOÞÞ ¼ 1

TB4
: Pðx̂ 2 Sciatic Neuropathy ðDOÞjx̂ 2 Sciatic Neuropathy ðMONDOÞÞ ¼ 1

TB5
: Pðx̂ 2 Mononeuropathy ðMONDOÞjx̂ 2 Mononeuropathy ðDOÞÞ ¼ 1

TB6
: Pðx̂ 2 Mononeuropathy ðDOÞjx̂ 2 Mononeuropathy ðMONDOÞÞ ¼ 1

TB7
: Pðx̂ 2 Mononeuritis Simplex ðMONDOÞjx̂ 2 Mononeuritis ðDOÞÞ ¼ 1

TB8
: Pðx̂ 2 Mononeuritis ðDOÞjx̂ 2 Mononeuritis Simplex ðMONDOÞÞ ¼ 1

These can be visualized in Fig 6. We follow the graph model for BKBs that was described in

Section 3.4. Recall that the black nodes, called “S-nodes”, represent conditional probabilities.

Table 1. MONDO and DO identifiers and their common names.

Identifier Common Name

MONDO:0006960 Sciatic Neuropathy

MONDO:0001543 Lesion of Sciatic Nerve

MONDO:0001397 Mononeuropathy

MONDO:0002121 Mononeuritis Simplex

MONDO:0002122 Neuritis

MONDO:0021166 Inflammatory Disease

DOID:114466 Sciatic Neuropathy

DOID:12528 Lesion of Sciatic Nerve

DOID:9473 Mononeuritis of Lower Limb

DOID:1188 Mononeuropathy

DOID:1802 Mononeuritis

https://doi.org/10.1371/journal.pone.0296864.t001
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The other nodes, called “I-nodes”, represent random variable instantiations. The conditional

probability being modeled in some S-node, q, is the probability of the I-node q points to given

the I-node(s) that point to q.

Based on the figure, it looks as though “Lesion of Sciatic Nerve” has no antecedent in

MONDO and “Sciatic Neuropathy” has no antecedent in DO. This is not the case as we are

only displaying a subset of each ontology. We can still start reasoning without including more

information from MONDO or DO by using an initial reasoning anchor. We let

fVa1
¼ a 2 Lesion of Sciatic Nerve ðMONDOÞ;Va2

¼ a 2 Sciatic Neuropathy ðDOÞg

be our initial reasoning anchor using some individual a and consider three BKO Fragments:

FM : (BM, MONDO, 1), FD : (BD, DO, 1), FB : (BB, BRIDGE, 1). Here, we chose to set each

weight to be 1. Since the algorithm normalizes the weights, their values only matter relative to

each other, we could have set each weight to 2 and gotten the same result. They do not need to

be equal either, but for this example we chose that they would be equal. Additionally, although

not displayed in this example, multiple fragments from the same ontology could be included

with different weights if desired. The fusion algorithm first adds source PAAs to the BKO and

source random variables to the antecedents of each PAA or PTA in the input fragments.

Graphically, this is shown in Fig 7. Here and in the remaining figures, we represent a com-

pressed version the edges and nodes that come from the bridge ontology in blue. This is only

for clarity, an example of what these blue nodes and edges represent is shown in Fig 8

This BKO is used as an input to the Full Instantiation Algorithm. At first sight, perhaps the

most noticeable aspect of the BKB is the presence of cycles. However, BKBs are uniquely

equipped to handle these cycles. With a closer look, one will notice a contradiction in as well.

According to MONDO, a “Lesion of Sciatic Nerve” is a “Sciatic Neuropathy”. But according to

DO, “Sciatic Neuropathy” is a “Lesion of Sciatic Nerve”. In many ontology merging

approaches either MONDO or DO would need to be prioritized in this situation, and the oth-

er’s knowledge discarded. With BKOs, all knowledge from MONDO and DO can be included

and reasoned about. But before we show that reasoning, we complete fusion by fully instantiat-

ing the BKO.

Fig 6. BKO fragments. Three BKO Fragments from (a) MONDO, (b) DO, and (c) the bridge from OxO.

https://doi.org/10.1371/journal.pone.0296864.g006
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After starting with our initial reasoning anchor, we can instantiate two PAAs:

RM1
: PðVM1

¼ fa 2 Sciatic Neuropathy ðMONDOÞgjVM0
¼ fa 2

Lesion of Sciatic Nerve ðMONDOÞg ^ Vs ¼ fas 2 MONDOgÞ ¼ 1

RD1
: PðVD1

¼ fa 2 Lesion of

Sciatic Nerve ðDOÞgjVD0
¼ fa 2 Sciatic Neuropathy ðDOÞg ^ Vs ¼ fas 2 DOgÞ ¼ 1

Graphically, this is shown in Fig 9

At this point, H includes our initial reasoning anchor, RM1
, and RD1

. The following pass

through the algorithm instantiates six more PTAs:

RM2
: PðVM2

¼ a 2 MononeuropathyjVM1
¼ a 2 Sciatic Neuropathy ^ Vs ¼ fas 2

MONDOgÞ ¼ 1

RD2
: PðVD2

¼ a 2 Mononeuritis of Lower LimbjVD1
¼ a 2 Lesion of Sciatic Nerve ^

Vs ¼ fas 2 DOgÞ ¼ 1

RB1
: PðVM0

¼ fa 2 Lesion of Sciatic Nerve ðMONDOÞgjVD1
¼ fa 2

Lesion of Sciatic Nerve ðDOÞg ^ Vs ¼ fas 2 BRIDGEgÞ ¼ 1

RB2
: PðVD1

¼ a 2 Lesion of Sciatic NervejVM0
¼ fa 2

Lesion of Sciatic Nerve ðMONDOÞ ^ Vs ¼ fas 2 BRIDGEgÞ ¼ 1

RB3
: PðVM1

¼ fa 2 Sciatic Neuropathy ðMONDOÞjVD0
¼ fa 2

Sciatic Neuropathy ðDOÞ ^ Vs ¼ fas 2 BRIDGEgÞ ¼ 1

RB4
: PðVD0

¼ fa 2 Sciatic Neuropathy ðDOÞjVM1
¼ fa 2

Sciatic Neuropathy ðMONDOÞ ^ Vs ¼ fas 2 BRIDGEgÞ ¼ 1

Or graphically as shown in Fig 10

A visualization of the BKB that the BKO Fusion algorithm returns is shown in Fig 11.

Fig 7. Combined BKO. The three BKO framgents combined to the same graph. At this stage the fusion algorithm is

not yet complete because the BKO has not been fully instantiated. The dotted nodes represent terminological

knowledge.

https://doi.org/10.1371/journal.pone.0296864.g007
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Fig 8. Expanded bridge nodes. The other figures in this section use a compressed representation of the nodes and

edges that came from the bridge ontology. The blue nodes and edges in this example show what was compressed.

https://doi.org/10.1371/journal.pone.0296864.g008

Fig 9. Instantiation first pass. From the initial reasoning anchor we can immediately instantiate two PTAs to PAAs.

https://doi.org/10.1371/journal.pone.0296864.g009
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This is both a BKO and a BKB. Should the PTAs be returned along with a set of PAAs, in

would no longer be a BKB but exclusively a BKO. But in order to make use of BKB reasoning

we need the output to be a BKB.

7.2 BKO reasoning

Recall the definition of an inference over a BKB. There are many such inferences in our exam-

ple, we will only focus on a few. However, one could consider all of them. This would result in

a list of inferences with the probability of each inference allowing for comparison between

them. When there is a contradiction within the ontology, this ranking can be used to deter-

mine which, if any, is more probable. Consider the subset of the BKB in Fig 12:

Fig 10. Instantiation second pass. A second pass through the Full Instantiation Algorithm increases the amount of

PAAs in the BKO.

https://doi.org/10.1371/journal.pone.0296864.g010

Fig 11. Fused BKO. The fused BKO that is returned by the BKO Fusion Algorithm.

https://doi.org/10.1371/journal.pone.0296864.g011
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The probability of each inference is the product of the S-nodes in it. So here, P(a) = P(b) =

0.33. This result should be expected because we assign the same weight to each source. If we

trusted one source more than another, that would be reflected in their final probability values.

Rather than taking one assertion and discarding the other, we handle contradictions by return-

ing both assertions with information on which one is more probable.

Besides handling contradictions, this example displays another strength of BKO theory.

Consider the inference in Fig 13:

Fig 12. Handling contradictions. The two BKO fragments contradict each other. This contradiction does not present

a problem when reasoning about a fused BKO. We can build two inferences, (a) from MONDO and (b) from DO from

the larger BKO fragment (c).

https://doi.org/10.1371/journal.pone.0296864.g012

Fig 13. New inference. A new inference is generated by BKO Fusion. This inference could only be generated when the

two fragments were fused together.

https://doi.org/10.1371/journal.pone.0296864.g013
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Here we start with Sciatic Neuropathy, and through a string of “is a” relations, we end at

Inflammatory Disease. What makes this inference special is that it cannot be found in either

MONDO or DO. Only by combining them can we draw the connection between sciatic neu-

ropathy and inflammatory disease. Although sciatic neuropathy is not always described as an

inflammatory disease, literature shows both that sciatic neuropathy is described as a disease or

damage to the sciatic nerve [59] and that sciatic nerve injury triggers an inflammatory

response [60]. Such insights are made possible by BKO fusion.

8 Conclusion

We presented a theory of representing and fusing probabilistic ontologies. This theory synthe-

sizes the semantic expressivity and reasoning capabilities of both ontologies and BKBs without

sacrificing the features, flexibility, or granularity of either. This theory depends on three key

insights: (1) that disjoint classes can be mapped to a discrete random variable, (2) that generaliz-

ing DL reasoning principles to their probabilistic analogs naturally facilitates formal propagation

of inheritance of probabilistic knowledge, and (3) that BKB theory and DL are matched in

expressive granularity, enabling a natural synthesis founded on insights (1) and (2). Current

methods for ontology merging require the resulting merged ontology to be consistent. Checking

for and correcting inconsistencies is a costly process and may result in the rejection of true and

useful information. BKO fusion overcomes this limitation by leveraging a BKB’s reasoning capa-

bilities. As a result, all knowledge from the input ontologies will be included in the final fused

one and reasoning can occur despite conflicting information. Additionally, the fused ontology

will contain emergent information not present in the input ontologies individually, a powerful

feature that means the fused BKO contains more knowledge than the union of its inputs.

Having completed the fundamentals of the theory, along with an outline of the reasoning

process, our next steps will focus on deepening the theory. One track involves the information

gained from fusing ontologies. Using BKO fusion, any practical number of ontologies can be

fused together. However, at some point little information will be added when many ontologies

with overlapping domains are fused. We will describe a method to quantify how much infor-

mation is being added for each additional ontology. We will also focus on ontology alignment

and its application to BKO fusion. One current limitation to our approach is its dependence

on the availability of accurate ontology mappings. Recently work has been done focusing on

automatically generated bridge ontologies, which would be well suited for our probabilistic

framework and could be used to overcome the lack of a mapping between the ontologies used

in fusion.
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