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Abstract: Background: Mild Traumatic Brain Injury (mTBI) has been increasingly recognized as a
public health concern due to its prevalence and potential to induce long-term cognitive impairment.
We aimed to consolidate this observation by focusing on findings of neuropsychological assessments,
neuroimaging, risk factors, and potential strategies for intervention to prevent and treat mTBI-
associated cognitive impairments. Methods: A thorough search of PubMed, PsycINFO, and Embase
databases was performed for studies published until 2024. Studies focusing on cognitive impairment
after mTBI, with neurocognitive assessment as a primary outcome, were included. Results: We
found consistent evidence of cognitive deficits, such as memory and attention impairments, and
affected executive functions following mTBI. Neuroimaging studies corroborate these findings,
highlighting structural and functional changes in the brain. Several risk factors for developing
cognitive impairment post-mTBI were identified, including age, gender, genetics, and pre-existing
mental health conditions. The efficacy of interventions, including cognitive rehabilitation and
pharmaceutical treatment, varied across studies. Conclusions: Mild TBI can lead to significant long-
term cognitive impairments, impacting an individual’s quality of life. Further research is necessary
to validate and standardize cognitive assessment tools post-mTBI, to elucidate the underlying neural
mechanisms, and to optimize therapeutic interventions.

Keywords: mild traumatic brain injury; cognitive impairment; neurocognitive assessment; neuroimaging;
risk factors; cognitive rehabilitation; biomarkers

1. Introduction

Mild traumatic brain injury (mTBI) is a significant public health concern, affecting
millions worldwide yearly. While most individuals fully recover within a few weeks, a
substantial proportion of patients may experience persistent cognitive impairments that
can negatively impact their quality of life [1].

The Mayo classification system defines mTBI as a type of brain injury that occurs
when a person experiences a sudden blow or jolt to the head [2]. Patients receiving a
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Glasgow Coma Scale (GCS) score of 13 to 15 and experiencing loss of consciousness for less
than 30 min and post-traumatic amnesia for less than 24 h are generally diagnosed with
mTBI [2]. Mild TBI symptoms could last for days, weeks, or months and can significantly
impact an individual’s daily functioning. Cognitive impairment following mTBI can
manifest in various ways, including cognitive deficits, as well as increased emotional
distress and somatic complaints [3]. Several studies have investigated the cognitive profile
of individuals with mTBI during the acute phase and have reported significant impairment
in global cognition, executive function, and episodic memory [4,5]. Diffuse axonal injury
(DAI) is a major consequence of TBI, where the shearing forces during the injury event
cause axonal damage. The severity of DAI correlates with the force of deceleration, and it
can be identified within hours after the trauma. DAI is thought to play a significant role in
cognitive impairment early after a mTBI [6,7].

Thus, we aimed to discuss the different cognitive domains that can be affected after
mTBI, including executive function, attention, memory, and processing speed, in the acute
phase and long-term follow-up after mTBI in various populations, including adults, chil-
dren, and military personnel. These aspects could provide a comprehensive understanding
regarding the nature and the extent of cognitive impairments after mTBI in order to improve
the clinical management of patients, which includes the design of appropriate rehabilitation
and support services. Also, it could provide a valuable resource for researchers, clinicians,
and policymakers working in mTBI. Furthermore, we aimed to discuss the methods used to
assess cognitive function after mTBI, including neuropsychological testing, neuroimaging,
and electrophysiological measures, and to identify the risk factors for cognitive impairment
after mTBI, which could further facilitate the development of targeted interventions to
improve patient outcomes.

2. Materials and Methods

A comprehensive search of relevant studies on post-mTBI cognitive impairments that
were published between 1990 and 2024 was performed in electronic databases, including
PubMed, Embase, and PsycINFO, using a combination of keywords related to cognitive
impairment, mild traumatic brain injury, and neuropsychological assessment. Inclusion
criteria for the studies were (1) published in English, (2) conducted on human participants
with mTBI, (3) included neuropsychological assessment of cognitive functions, and (4) re-
ported results on cognitive impairment after mTBI. Exclusion criteria were (1) published
in other languages, (2) not available in full text, and (3) not presenting relevant data on
neuropsychological assessment of cognitive functions or cognitive impairment after mTBI.

3. Results
3.1. Timeframe and Duration of Cognitive Impairment in mTBI

The timeframe of cognitive impairment after mTBI can vary depending on the individ-
ual variability and the severity of the injury. Studies have shown that cognitive impairment
and white matter damage can develop and persist over several years after a mTBI [8]. The
evaluation of cognitive functions performed one month and 12 months post-injury have
shown cognitive impairments in individuals receiving GCS scores of 13 to 15 [9]. Depres-
sion and anxiety are linked to poor cognitive performance in cases of complicated mild to
severe TBI at 1-year post-injury [10] (Table 1). Thus, post-mTBI cognitive impairment can
be prolonged and may persist for several years, highlighting the importance of monitoring
and evaluating cognitive function in individuals who have experienced a mild TBI.

In addition to the severity of the injury, the duration of cognitive impairment after
mTBI can also vary based on age, education, socioeconomic status, and previous history
of TBI.

The most comprehensive tool to evaluate the post-TBI status in children is the SCAT
(sports concussion assessment tool), which was previously designed for adults but adapted
in various forms for infant patients [11]. This assessment tool comprises an extensive part
for cognitive performance evaluation, including aspects of memory and attention capacity.
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Table 1. Types of cognitive impairment and timeframes in mTBI.

Cognitive Impairment Type Timeframe

Global cognition Acute
Executive function Acute
Episodic memory Acute

Attention and working memory Acute to chronic
Decision making Acute to chronic
Reaction times Acute to chronic

Subjective cognitive decline Chronic

Studies have shown that children’s prognosis after mTBI is usually favorable, with
quick symptom resolution and little evidence of residual cognitive deficits [9,10,12–17].
However, [9] few thoroughly discussed the implication of the appropriate control group
when comparing cognitive impairments in children who have experienced TBIs. For
instance, two of the studies [9] reported that hyperactivity and visual closure deficit could
be associated with mTBI as a contributor factor rather than a consequence of the concussive
event. Moreover, they discussed that a similar correlation may apply when assessing
post-traumatic behavioral disturbances as a consequence of any injury rather than TBI,
specifically. Caccese et al. [13] evaluated the neurocognitive performance in young football
players and reported that repetitive concussions originating from childhood or adolescence
do not predispose to cognitive impairment later in life due to developmental process
disruption and cognitive reserve depletion.

Low overall cognitive function, records of previous TBIs, hospital admission for
intoxications, and low education and socioeconomic status are strong risk factors for
cognitive impairment after at least one mTBI [10,18]. In this way, it is important to monitor
and evaluate cognitive function in individuals who have experienced a mTBI [19–25].

3.2. Impairment in Global Cognition

Many studies have reported global cognition impairment in patients with previous
medical records of mTBI. Caccese and Iverson reported that 26.4% of patients with mTBI
exhibited reduced global cognition as measured by the Mini-mental State Examination
(MMSE) during the acute phase of the injury [26]. Similarly, McCrea et al. found that
on the day of the injury, military service members with mTBI received a lower Military
Acute Concussion Evaluation (MACE) cognitive score as compared to the non-concussed
controls [5]. Altogether, these findings suggest that mTBI could predispose to global
cognitive functioning deficits during the acute phase of the injury, which is generally
defined as 0 to 3 days post-injury.

3.3. Executive Dysfunction and Episodic Memory Impairment

Executive dysfunction can also occur in the acute phase of mTBI, with deficits in
attention, working memory, and cognitive flexibility. While evaluating active military
service members diagnosed with mTBI, McCrea et al. found impairments in all cognitive
domains on the day of the injury, including executive function [5]. It was reported that
delayed memory deficits are typical in patients with mTBI, hinting at the complex cognitive
processes that underlie these memory deficits [14]. Moreover, Wood et al. suggested that the
executive dysfunction could be further linked to anomalies in social behavior, negatively
impacting an individual’s capacity to live safely and independently in the community [15].
In the pediatric population, executive dysfunction could lead to significant issues across
home, school, and community settings, with effects seen both in the short-term and long-
term after injury [16].

In relation to executive memory functioning and other memory impairments, some
recent studies have shown a possible significant correlation between cognitive impairment
and the occurrence of headaches in post-concussion syndrome [17–19]. De Dhaem and
Robbins reported that post-TBI headaches are often associated with poorer results in
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neurobehavioral evaluation, with regard especially to memory, attention, and processing
speed [18]. However, long-term cognitive impairments were not associated with post-TBI
headaches [18].

3.4. Attention and Working Memory

During the acute phase of mTBI, significant impairments in processing speed and
attention have been reported [20]. It is worth mentioning that these cognitive deficits that
occur in the first days post-injury may further lead to long-term functional impairment,
threatening the quality of life [4].

However, one of the most frequently reported and clinically significant symptoms
in mTBI patients is working memory deficits [21]. While the working memory involves
the capacity to temporarily store and manipulate information that enables the accomplish-
ment of a cognitive task, its impairment can substantially affect a person’s quality of life.
Furthermore, the acute effects after mTBI may include post-traumatic amnesia, which
may last up to 24 h. During the post-acute phase, memory deficits are usually the cause
of increased distractibility, impaired attention, and deteriorated working memory [22].
Mild TBI-induced changes in working memory and functional activity have been reported
even when differences in behavioral performance between mTBI patients and controls
were absent, suggesting that cognitive assessment may increase sensitivity to evaluating
post-mTBI symptoms, as compared to neuropsychological evaluation alone [23].

These findings underline the significance of both working memory and attention
deficits following mTBI. Also, by being significantly detectable early after the injury, they
offer important information for healthcare providers in their ongoing assessment and
treatment of individuals with mTBI.

3.5. Subjective Cognitive Decline

Subjective cognitive decline refers to the self-reported perception of cognitive diffi-
culties in daily life despite the absence of objective cognitive impairment on standardized
neuropsychological testing. Research has attempted to investigate whether these self-
reported cognitive symptoms after mTBI are associated with cognitive test performances,
as well as whether the improvement in self-reported symptoms from 2 weeks to 3 months
after mTBI is associated with an improvement in cognitive test performances [24,25]. A
potential discrepancy between self-reported symptoms and objective test results has been
noted, as patients with mTBI and persistent cognitive impairment for more than 3 months
achieved normal scores in objective cognitive testing and vice versa [26]. Mild TBI patients
displayed a significant decrease in cognitive performance and reduced stability of cognitive
functions (as expressed by mean reaction time), as compared to controls, even when no
symptoms of cognitive impairment were reported by the patients [26].

It has also been reported that comorbidities, and more specifically, anxiety and depres-
sion, may increase the severity and duration of self-reported symptoms in patients with
normal objective tests [26].

3.6. Factors That May Influence Cognitive Impairment in mTBI

Several studies have investigated the relationship between the severity of mTBI and
the risk of cognitive impairment. The previous reports suggested that cognitive impairment
increases with injury severity, as moderate-severe TBI was associated with more severe
cognitive dysfunction, while mTBI was associated with a higher risk of developing an
anxiety disorder [27].

Older age has been identified as a risk factor for cognitive impairment after concussion
as well as for long-term effects on cognitive performance [28]. A study found that older age
was associated with worse cognitive outcomes after a mTBI, including slower processing
speed, poorer working memory, and reduced attention [29]. Another study reported that
older adults with a history of concussion had worse cognitive function than those without
one, even after controlling for other factors, such as education and medical comorbidi-
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ties [29]. Also, older adults with a history of concussion had a higher risk of mild cognitive
impairment or developing dementia than those without a history of concussion [30,31].

It is important to note that while older age is a risk factor for cognitive impairment
after concussion, not all older adults will experience cognitive deficits post-mTBI. Other
factors, such as the severity of the concussion, the presence of other medical conditions, and
individual differences in cognitive reserve, may also play a role in determining cognitive
outcomes after a concussion. Thus, older age is a risk factor for cognitive impairment after
concussion, and older adults may be more vulnerable to the long-term effects of concussion
on cognitive function.

Depression and anxiety have been identified as risk factors for cognitive impairment
after mTBI. Depression and anxiety were associated with cognitive impairment among
individuals with complicated mild to severe TBI as long as after 1-year post-injury [32],
while individuals with mTBI and comorbid depression or anxiety had worse cognitive
outcomes than those without comorbid affective disorders [33]. Depression and anxiety
may contribute to cognitive impairment after mTBI through several mechanisms. They can
lead to changes in brain structure and function, including reduced gray matter volume and
altered connectivity in brain networks involved in cognitive processing [31]. Additionally,
depression and anxiety can interfere with attention, memory, and other cognitive processes,
which may exacerbate cognitive deficits after mTBI [34].

Thomas et al. [35] reported that young athletes with co-occurring anxiety/depression
had heterogeneous results of performance on memory tasks, suggesting cognitive decline.
On the other hand, Delmonico et al. evaluated the potential risk for affective and behavioral
disorders associated with mTBIs in the infant population and found that new psychiatric
disorders may develop within 4 years post-injury in 10 to 13-year-old patients, posing
consistent barriers to recovery from TBIs [35]. Moreover, Veliz and Berryhill recently
suggested that there might be a sex-dependent difference in affective and behavioral
disorder occurrence post-TBI [36]. In this way, they reported that girls are more prone to
experience anxiety and attention deficits for new TBIs and aggression, social, thought, and
conduct disorders following new and past TBIs, while boys experienced increased levels of
anxiety and aggression, as a response to new and past TBIs [37].

3.7. Prognosis of Cognitive Impairment after mTBI

The prognosis of cognitive impairment following mTBI varies depending on the
severity and frequency of the injury. Some studies have found that cognitive impairment
can improve over time, mostly within the first year post-injury [30,38]. However, other
studies have found that cognitive impairment can persist for many years following the
brain injury, particularly in patients who have experienced repetitive concussions or have a
history of previous head injury [31].

Besides the age, gender, education level, and comorbid medical conditions, the severity
and persistence of cognitive impairment could also be influenced by the type of cognitive
impairment, the deficits in executive function and working memory being particularly
challenging to treat [39].

The prognosis for cognitive impairment following mTBI is variable and individualized,
and treatment should be tailored to each patient’s specific needs and goals. Rehabilitation
programs, cognitive training, and pharmacological interventions have all been shown to be
effective in improving cognitive function in some patients, but further research is needed
to determine the most effective treatments for this population.

3.8. Brain Areas Involved in Cognitive Decline after mTBI

Several studies have investigated the brain areas involved in cognitive decline after
mTBI and reported that the disruptions in functional connectivity networks could predict
cognitive impairment after acute mTBI [40]. While significant changes in rich-club orga-
nization and network properties were associated with early cognitive impairment after
mTBI [40], cognitive sequelae were predicted by low-frequency connectivity alterations
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in large-scale brain connectivity [41]. The default mode network, which is involved in
memory and attention, has been found to be disrupted after mTBI, potentially leading to
cognitive deficits [41], especially attention deficits, which are a prominent component of
cognitive dysfunction after mTBI [42]. White matter changes near cerebral microbleeds
have also been associated with age and sex-dependent cognitive decline after mTBI [43].

D’Souza et al. investigated the association between cognitive dysfunction and alter-
ations in resting-state functional connectivity in mTBI patients [43]. Thirty-three patients
with mTBI and 33 healthy controls matched for age, gender, and education level underwent
neuropsychological assessments and functional magnetic resonance imaging scans. The
results showed that patients with mTBI exhibited significantly worse performance on
measures of attention, executive function, and memory as compared to healthy controls.
Furthermore, the mTBI group exhibited decreased resting state functional connectivity in
several brain regions, including the left inferior frontal gyrus, left middle temporal gyrus,
right inferior parietal lobule, and right middle occipital gyrus, significantly associated with
cognitive dysfunction. The authors concluded that their findings provide evidence for the
presence of alterations in resting state functional connectivity in mTBI patients, which may
contribute to cognitive dysfunction, suggesting that these changes could be a potential
biomarker for identifying and monitoring post-mTBI cognitive dysfunction.

Kinnunen et al. conducted a study to examine the long-term effects of mTBI on
cognitive functioning and brain white matter integrity by evaluating 20 participants who
had experienced mTBI at least one year before the study and 20 age- and gender-matched
healthy controls. Both comprehensive neuropsychological evaluation and diffusion tensor
imaging (DTI) were used to assess cognitive performances and brain white matter integrity,
respectively [44]. They found that the mTBI group performed significantly worse than
the healthy controls on measures of attention, working memory, and verbal learning and
memory. In addition, DTI revealed significant differences in white matter integrity between
the two groups: lower fractional anisotropy (FA) and higher mean diffusivity (MD) in
several brain regions of mTBI patients, including the corpus callosum, internal capsule,
and superior longitudinal fasciculus. In this context, these results could suggest that
mTBI may lead to persistent cognitive deficits and changes in brain white matter integrity,
even several years after the initial injury, highlighting the importance of long-term follow-
up and monitoring of individuals who have experienced mTBI, as well as the need for
further research to better understand the mechanisms underlying these cognitive and
neural changes.

In this way, Niogi et al. conducted a study to examine the effects of mTBI on the
structural integrity of white matter pathways in the brain. The authors used DTI to measure
FA in the brains of 20 patients with mTBI and 20 healthy controls [45]. It was shown that
mTBI patients were characterized by significantly lower FA in the corpus callosum and
the cingulum, as compared to the control group. The corpus callosum is a central white
matter tract that connects the left and right hemispheres of the brain, while the cingulum is
a white matter pathway that is involved in attention, emotion, and memory. The study by
Niogi et al. provides evidence that mTBI is associated with reduced white matter integrity
in specific brain regions. The findings suggest that the corpus callosum and the cingulum
are particularly vulnerable to injury in mTBI. These regions play essential roles in cognitive
processes such as attention and memory, which may explain some of the cognitive deficits
that are commonly observed in mTBI patients (Table 2). The results of this study have
important implications for understanding the neural basis of mTBI and may help inform
the development of interventions to improve outcomes for individuals with mTBI.
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Table 2. Brain areas involved in post-mTBI cognitive impairment.

Brain Area Cognitive Impairment Type

Prefrontal cortex Executive function, attention, working memory, decision making
Hippocampus Episodic memory

Corpus callosum Global cognition
Basal ganglia Reaction times

3.9. Biomarkers of Cognitive Impairment after mTBI

The research for biomarkers of cognitive impairment after mTBI has been driven
by the need to develop objective and reliable methods for identifying patients at risk of
developing post-mTBI cognitive impairments. Several biomarkers have been investigated
in this context, including structural and functional imaging and biochemical markers in
blood and cerebrospinal fluid.

Structural imaging techniques, such as magnetic resonance imaging (MRI) and DTI,
have been used to investigate structural changes in the brain after mTBI. MRI has been
used to detect lesions and changes in brain volume, while DTI has been used to investigate
changes in white matter integrity. Several studies have reported that mTBI patients who
develop cognitive impairment showed evidence of structural changes, including decreased
volume in the hippocampus and thalamus and decreased white matter integrity in the
corpus callosum and other white matter tracts [46,47]. Functional imaging techniques, such
as positron emission tomography (PET) and functional MRI (fMRI), have also been used
to investigate changes in brain function after mTBI. These techniques have been used to
investigate changes in cerebral blood flow and metabolism, as well as changes in brain
activity during cognitive tasks. Mild TBI patients who develop cognitive impairment show
evidence of altered brain function, including decreased cerebral blood flow and metabolism
in the frontal cortex and altered activity in the prefrontal cortex during cognitive tasks [48].

Biochemical markers in blood and cerebrospinal fluid have also been investigated as
potential biomarkers of cognitive impairment after mTBI. These markers include various
proteins and enzymes, such as tau, amyloid beta, and S100B. Several studies have re-
ported that increased levels of these markers are associated with cognitive impairment after
mTBI [49–51]. Newer studies have demonstrated that some point-of-care biomarkers could
be used to determine the risk of developing prolonged recovery after a concussive event,
which include cognitive impairments. However, Clarke et al. have shown that inflamma-
tory biomarkers, such as IL-8, IL-9, IL-17a, TNFα, and monocyte chemoattractant protein 1,
could be significantly correlated with the risk of developing persistent symptoms [52]. On
the other hand, the results are quite heterogenous and controversial, as they have not sin-
gularly shown that some of the most relevant neuronal damage biomarkers—glial fibrillary
acidic protein (GFAP) or neurofilament light (NFL)—levels changes might not be associated
with prolonged symptoms or cognitive impairments due to concussive events [53–55]. For
instance, a recent study on the effects of physical exertion on early changes in blood-based
brain biomarkers reported that both GFAP and ubiquitin carboxyl-terminal hydrolase L1
(UCH-L1) levels might be influenced by physical activity and thus posing an important
stint in TBI diagnosis in the first hours after the concussive event [53]. In this context,
finding some reliable blood biomarkers for cognitive impairment in TBI still remains a
matter of future perspective, as the changes in exosomal phosphorylated tau, NFL, IL-6,
and TNFα might be more related to existent cognitive impairment rather than the history
of TBI, as Ganesh and Galetti [56] commented in regards to the findings of Peltz et al. [57].

While biomarkers show promise as tools for diagnosing and prognosis of cognitive
impairment after mTBI, more research is needed to establish their utility in clinical practice.
Future studies should aim to identify reliable and sensitive biomarkers that can accurately
diagnose and prognosticate cognitive impairment after mTBI.
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3.10. Treatment and Management

Several approaches for treating and managing cognitive decline have been suggested
in individuals with mTBI. These approaches include cognitive rehabilitation, medication,
and lifestyle changes.

Cognitive rehabilitation is a common approach for treating cognitive impairment in
individuals with mTBI. This approach involves structured activities designed to improve
cognitive function, such as memory training, attention training, and problem-solving tasks.
A meta-analysis found that cognitive rehabilitation effectively improves cognitive function
in individuals with mTBI [58]. The 42 reviewed studies published between 2003 and 2008
gave significant evidence that cognitive rehabilitation interventions were associated with
significant improvements in cognitive function, including attention, memory, and executive
function, in individuals with mTBI.

Medication, such as methylphenidate and amantadine, can improve cognitive function
in individuals with mTBI [59]. However, the use of medication for cognitive impairment
in mTBI remains controversial, and more research is needed to determine the long-term
effects of these medications.

Lifestyle changes, such as exercise and diet, have also been investigated as potential
approaches for managing cognitive decline in individuals with mTBI. Several studies
reported that routine physical exercises and a healthy diet can improve cognitive function
in patients with post-mTBI cognitive impairment [60,61].

Overall, a multimodal approach that combines cognitive rehabilitation, medication,
and lifestyle changes may be the most effective approach for treating and managing
cognitive decline in individuals with mTBI (Table 3). However, more research is needed to
determine the optimal combination of interventions and to identify which individuals may
benefit most from each approach.

Table 3. Management of cognitive decline in mTBI.

Management Strategy Effectiveness

Cognitive rehabilitation therapy Effective for executive function, attention,
working memory, and episodic memory

Pharmacological intervention Limited effectiveness

Exercise Effective for global cognition, attention, and
executive function

Mindfulness-based interventions Effective for attention and working memory
Sleep hygiene Effective for attention and working memory

Dietary interventions Limited effectiveness
Note: Effectiveness may vary depending on the severity of cognitive impairment and individual differences. It is
important to consult with a healthcare professional for personalized treatment and management.

4. Discussion

Mild TBI, also known as concussion, is a common type of brain injury that can occur
due to various causes such as falls, sports injuries, work accidents, and motor vehicle
accidents. While it is considered a mild form of TBI, it can still lead to various cognitive
and behavioral symptoms. The studies discussed in this review highlight the prevalence of
cognitive impairments following mTBI, with deficits reported in global cognition, executive
function, attention, working memory, episodic memory, decision-making, and reaction
times (Figure 1). Some studies have also identified brain areas associated with cognitive
deficits in mTBI, including the prefrontal cortex, hippocampus, and corpus callosum.
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Despite the prevalence of cognitive impairment in mTBI, effective treatments and
management strategies for cognitive decline in mTBI remain limited. Studies have sug-
gested that cognitive rehabilitation, exercise, and pharmacological interventions may help
manage cognitive deficits in mTBI, but further research is needed to establish their efficacy.
Moreover, studies have also suggested that mTBI may increase the risk of developing
dementia in later life, highlighting the importance of early detection and management of
cognitive impairments in mTBI.

The studies that were included in this analysis suggested that cognitive deficits can
occur in various domains, such as attention, executive function, memory, and decision-
making following mTBI. Furthermore, post-mTBI cognitive impairments can persist for
several months or even years after the initial injury. The persistence of these cognitive
deficits is alarming as they can significantly impact the quality of life of individuals,
hindering their ability to perform daily activities and return to work.

The previous findings also suggested that the cognitive deficits associated with mTBI
may be due to structural damage to specific brain regions, including the prefrontal cortex,
hippocampus, and thalamus. These areas are crucial for cognitive processes, such as
attention, working memory, and executive function. The damage to these regions may lead
to the observed cognitive deficits in individuals with mTBI.

It is important to note that there is still much to be understood about the pathophysiol-
ogy of cognitive deficits in mTBI. While some studies have identified specific brain regions,
others have found more diffuse and widespread patterns of brain dysfunction. Moreover,
individual differences in injury severity, age, and other comorbidities can significantly
impact cognitive outcomes.

Management of cognitive impairment in individuals with mTBI should be multidisci-
plinary, involving healthcare providers such as neuropsychologists, occupational therapists,
and rehabilitation specialists. The findings from the reviewed studies suggested that cogni-
tive rehabilitation programs, including cognitive behavioral therapy and computer-based
cognitive training, may be effective in improving cognitive outcomes in individuals with
mTBI. However, further research is needed to determine this population’s most effective
rehabilitation strategies.

The present review also highlights the potential risk for long-term sequelae, including
the development of dementia. The reviewed studies suggest that there may be an increased
risk for dementia in individuals with mTBI, particularly in those with a history of repeated
head injuries. This highlights the need for long-term follow-up and monitoring of individ-
uals with mTBI to identify and treat any cognitive impairment that may increase the risk
of dementia.

However, there are some limitations worth mentioning. Firstly, future studies could
evaluate more objectively the influence of mTBI on short and long-term cognitive per-
formance in relation to neuroimagistics and biological analysis data. This could further
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characterize the correlation between mTBI and the mentioned cognitive impairments
(memory, attention, affective, or executive functions, respectively). Also, the molecular
changes observed in the brain could be the result of impairments in particular areas and
could further better explain the origin of the noted cognitive impairment in relation to the
molecular and signaling defects. Therefore, area-centered molecular analyses could shed
more light regarding the pathomechanisms implicated in mTBI and subsequent cognitive
impairments. Longitudinal studies on the risk of developing dementia or other neurode-
generative processes could also bring more evidence regarding the correlation between
repetitive mTBI and neurodegeneration.

5. Conclusions

Cognitive impairments are a significant sequela of mTBI that can persist for an ex-
tended period of time and impact the quality of life of individuals. Previous studies
suggested that cognitive deficits may be due to structural damage to specific brain regions,
and cognitive rehabilitation programs may be effective in improving cognitive outcomes.
Long-term monitoring and follow-up are needed to identify and treat any cognitive im-
pairment that may increase the risk of dementia. Further research is needed to better
understand the pathophysiology of cognitive deficits in mTBI and determine this popula-
tion’s most effective rehabilitation strategies. Recommendations for future research include
large-scale longitudinal studies, exploring the role of biomarkers in predicting cognitive
outcomes, and developing personalized rehabilitation programs. Interdisciplinary collab-
orations can also enrich our understanding of the intricate dynamics between mTBI and
cognitive impairment.
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