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Abstract: Determining the mechanical properties of a composite material represents an important
stage in its design and is generally a complicated operation. These values are influenced by the
topology and geometry of the resulting composite and the values of the elastic constants of the
components. Due to the importance of this subject and the increasing use of composite materials,
different calculation methods have been developed over the last fifty years. Some of the methods are
theoretical, with results that are difficult to apply in practice due to difficulties related to numerical
calculation. In the current paper, using theoretical results offered by the homogenization theory,
values of engineering elastic constants are obtained. The finite element method (FEM) is used to
determine the stress and strain field required in these calculations; this is an extremely powerful and
verified calculation tool for the case of a material with any type of structure and geometry. In order
to minimize errors, the paper proposes the method of least squares, a mathematical method that
provides the best estimate for the set of values obtained by calculating FEM. It is useful to consider
as many load cases as possible to obtain the best estimates. The elastic constants for a transversely
isotropic material (composite reinforced with cylindrical fibers) are thus determined for a real case.

Keywords: finite element method; FEM; reinforced composite; fiber; homogenized constants; epoxy
matrix; generalized Hooke law; constitutive low

1. Introduction

Almost all industrial branches have had an explosive growth in the last few decades
in the use of new and composite materials. It has been practically demonstrated that
they represent in many cases a better alternative to the use of classic materials. This
has determined, as a consequence, the development of manufacturing technologies for
obtaining composite materials and structures made from these materials for industrial,
medical, transport, military, aerospace, etc., applications. One of the major applications of
composites has turned out to be structural applications. Structures made of composites
have greater resistance and less weight. The existence of these materials has determined
numerous studies that have dealt with the properties of these materials, their behavior
in different conditions and the possibilities of improving properties needed for practical
applications. A composite is composed of two or more phases of material, one playing
the role of matrix and the other of reinforcing elements. Fiber-reinforced polymers stand
out among matrix materials. The properties of these materials are defined by the matrix
(usually polyester resin) and the reinforcing materials (fibers) [1].

In designing and manufacturing a structure that has composite materials in its com-
position, knowing the engineering constants of the materials is a major requirement. This
necessity has led to numerous studies in this direction with the aim of providing the de-
signer with efficient and fast calculation methods. This objective (knowing the mechanical
properties of a composite) remains important in the current context of the continuous devel-
opment of the use of composite materials. Up to now, a systematization of this research has
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not yet been carried out. Experimental measurements represent the safest method to obtain
useful and credible results. Unfortunately, experimental methods are time-consuming and
involve large expenses. As a result, the development of methods for the rapid estimation of
elastic constants remains a current and continuous desire. There are a number of methods
that will briefly be presented in the following. Most are focused on the study of linear
behavior. But alongside these, improved methods have been developed that can analyze
the non-linear behavior [2] of composites. Different mathematical principles are used. For
example, a variational principle that also takes into account a time factor allows a relatively
simple mathematical description of such cases [3–5]. The stress field induced by low tem-
peratures in the body of a polymer composite at low temperatures (a spacecraft application
is considered) is presented in [6], where the geometry of the composite microstructure
is studied.

One of the methods used, in order to avoid the calculation of stresses and deformations
in complex cases, is to consider particular loading cases [7]. Thus, in the mentioned paper,
the material constants were calculated for an orthotropic composite and for an isotropic
transverse composite. The disadvantage of this approach is that it provides lower and
upper bounds for the values of the physical constants. Sometimes these methods can be
somewhat or even totally useless because of the large range in which these values can
be found [8–11]. Methods based on the micromechanical analysis of composites were
among the first to be used [12,13]. Experimental results show good agreement with the
results obtained using this method [4,5]. For the study of the most used composites, those
consisting of a matrix and reinforced with fibers, numerous studies have been carried out,
and the results have been presented in numerous papers published in recent years [14–25].
Other results related to the research of these types of problems are described in [26–30].

To analyze the visco-elastic response of a composite with short fibers, an analytical
model is used in [31]. Thus, FEM proves to be a very useful tool in the case of determining
the global mechanical properties of composite materials [32].

Special situations that may appear, such as the influence of temperature and humidity
on the stress field for a unidirectional graphite/epoxy material, were also studied. These
factors were found to lead to a decrease in the tensile strength of a silicon carbide unidirec-
tional fiber composite. Brinson et al. used a similar model in [33–35] to determine material
constants and how these values depend on the values of the component phase constants of
a composite. In the present work, FEM analysis is presented to determine the stress and
strain field in a transversely isotropic composite, in order to finally determine the values of
the engineering constants for the studied material. Other studies concerning the behavior
of these composites are presented in [36–38].

Micromechanical models used together with FEM to determine the stress and strain
field were successfully used in [39] to determine the Young’s modulus and thermal ex-
pansion coefficient of a nanocomposite. For this type of approach, a three-dimensional
volume-representative element with randomly distributed SiC reinforcement particles
inside was used. Based on the results obtained from the calculation, conclusions that
are useful in practical applications were formulated. The performed tests confirm the
correctness of the performed calculation. A study of carbon fiber-reinforced polymer com-
posites containing unwanted voids using FEM is presented in [40]. Voids will cause a
strong decrease in the mechanical properties of a composite. The results of the study are in
agreement with experimental measurements. A micromechanical model of intelligent com-
posites reinforced with piezoelectric constituents is developed in [41]. A hybrid composite
reinforced with carbon fibers based on carbon nanotubes where FEM is used for analysis is
presented in [42]. The damping characteristics [43] of a unidirectional composite material
reinforced with polymer fibers are determined in [44]. Again, micromechanical models
show their efficiency in performing such calculations.

In the paper, the representative volume element (RVE) is used for microstructure
analysis. This method lends itself well to the study of a large class of materials with very
different topologies. Obviously, at the microstructure level, any composite material studied
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is a heterogeneous material. Its properties are determined by the structure of the composite
and the properties of the component materials, matrix and reinforcement material. In the
case of a finite element analysis model, these inhomogeneities are neglected. The properties
of a single finite element are assumed to be constant.

The homogenized parameters of a composite that define the engineering constants of
the material are determined based on a representative volume element using the finite
element method. The obtained values agree very well with experimentally determined
values. FEM also allows the analysis of some material variants, regarding the geometry
and the percentage of the reinforcement material used. Other results concerning the
application of FEM in the problems of determining the elastic constant of the composite
material multiphasic are presented in [45–51]. In any of the proposed methods, FEM
was always used to determine the field of stresses and deformations, which is used in
different ways. Fiber-reinforced composites, used in a wide class of applications, have
attracted the attention of researchers, and there are numerous studies on the subject. Some
more interesting results obtained in the field can be mentioned. Thus, research has dealt
with a wide class of materials, including cement [52]. FEM was used to obtain a field of
stresses and strains, which was then used with homogenization theory to determine two
material constants for cement reinforced with metal fibers. The obtained values proved
to be in accordance with the values obtained using other calculation methods. Polymeric
composites reinforced with natural fibers are used in many applications at the moment. A
study that aims to determine the visco/elastic constants of these materials is presented
in [53]. Natural fibers have viscoelastic behavior and superior specific properties. They
also have good ecological characteristics and a low cost. The mentioned work proposes
an analytical model of homogenization. Experimental checks demonstrate the accuracy
of the model used. A method for determining the mechanical properties of composites
reinforced with fibers (carbon and glass) is presented in [54]. This type of material has
viscoplastic behavior. The creep behavior of such a material subjected to high temperatures
is determined using the presented theory and is verified experimentally. Other research in
the field for different situations that can be encountered in practice is presented in [55,56].

It is expected that the calculation accuracy is that normally obtained by applying FEM.
In general, FEM has proven to be a reliable method that provides credible and sufficiently
accurate results for engineering applications.

In this research, based on micromechanical models, the authors used FEM to calculate
the mechanical constants of a composite material reinforced with unidirectional cylindrical
fibers. Results are obtained for a composite in which the epoxy matrix is reinforced with
carbon fibers. The method can be applied to any type of composite reinforced with fibers, if
as a whole it can be considered as a homogeneous transversely isotropic body. In the paper,
the authors considered several loading cases for the studied specimen, thus obtaining
more information regarding the elastic behavior of the material. In order to obtain the
best possible result, the least squares method was applied. Thus, an objective criterion for
determining the elastic constants is provided. It can be specified that these elastic constants
are obtained and no upper or lower bounds are obtained for them, as happens in a series of
energetic methods, previously presented.

The presented method is extremely suitable for the design phase, where it is desirable
to know sufficiently precise estimates of the mechanical properties of a material in order
to create a mechanical structure. Obviously, after the adoption of a solution and a project
and the realization of a prototype, experimental measurements can be made to provide
numerical values for the estimated properties that allow possible corrections of the project
(if it proves necessary).

The estimation method proposed in the paper is based on models previously estab-
lished by researchers, which establish formula relationships that can be used to help to
determine the mechanical properties of a material if the topology, geometry and properties
of the component phases are taken into account. Most of the methods are definitively
based on the determination of the field of stress and strain for certain load states of the
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material. This can be achieved, in most cases, only using numerical methods, which are
approximate methods. During the work, the least squares method was proposed to find
the best possible approximation, based on the calculation of the stress–strain field in a
composite body in several loading situations. Thus, a theoretical basis is provided for this
type of estimation.

Models used up to now deal with the simulation of particular loading cases on
the basis of which one of the elastic constants can be calculated. The disadvantage of
such analysis is that the models generally provide upper and lower limits for elastic
constants, which are often very imprecise (the given interval is very large). Other methods,
such as the homogenization method, imply as a preliminary stage knowledge of the
stress and strain field, a difficult thing to calculate in general, which leads to the use of
numerical calculation methods, implicitly FEM. After determining these values, quite
difficult calculations follow to obtain these coefficients. The least squares method offers a
more direct approach; the method is well known, and the consideration of a larger number
of analyzed cases leads to more accurate values of the elastic constants with the help of
the least squares criterion.

2. Materials and Methods

Let us consider a composite material made of an epoxy matrix reinforced with aligned
cylindrical fibers (Figure 1). The orientation of the fibers defines the axis of symmetry. If
a reference frame is considered, as in Figure 1, the properties along the x direction are
different if the properties along the y and z directions are considered. In the y and z
directions, the properties are the same.
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Figure 1. Composite material: transversally isotropic.

Plane yz is an isotropic plane. The properties of such a material are defined by five
parameters (the longitudinal (axial) Young’s modulus EA, the transverse Young’s modulus
ET, the transverse and longitudinal Poisson’s ratio (νA and νT) and the shear modulus GA).

The composite material as a whole is treated as a transversely isotropic material.
The properties that are used in strength calculations represent the global properties of
the composite, which is composed of two phases (fiber and matrix) that have different
properties. Obviously, practical applications require knowledge of the global properties
of the material. Starting from the individual properties of the two phases, it is necessary
to determine the properties of the material. Various calculation methods have been used
to determine them. The first methods applied were methods that used micromechanical
models [10–13]. However, these led to the need to know the field of stress and strain in
the resulting material and to obtain the average of the values for stresses and strains. In
general, this method, which involves numerical calculations, was used to determine only
some engineering constants, simply obtained through special loading states [1]. Variational
methods also require the knowledge of functions that define the stress and deformation field.
Other calculation methods [1] operate with simplifications of the model and approximations
for the performed calculations. In general, in most of the works that deal with these
problems, lower and higher bounds for engineering constants (buck modulus, Young’s
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moduli and Poisson’s ratios) are determined. Although useful, for certain areas of fiber
concentration (generally towards the middle of the range), the errors can be huge. This
requires the use of methods that bring us closer to the real values.

In this work, the authors proposed to use a micromechanical model for an elementary
cell (which takes into account a single fiber of a given length embedded in a matrix). This
elementary cell is an RVE, and the material in the assembly can be conceived as an overlap
of such RVEs. Using the results from micromechanical analysis to determine the equivalent
engineering constants of the RVE, it is necessary to determine the stress and strain field for
an arbitrary load and then to determine the average of these quantities [1]. Considering
fundamental relationships in the mechanics of transversely isotropic continuous media, the
values of the equivalent engineering constants can then be determined.

The study is carried out for an RVE and for a package of elementary cells (Figure 2).
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Equations that provide the relationship between stresses and strains, assuming isother-
mal conditions, considering a transversely isotropic material, are as follows [13]:

oxx
oyy
ozz
oyz
ozx
oxy


=



C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 C44 0 0
0 0 0 0 C66 0
0 0 0 0 0 C66





εxx
εyy
εzz

2εyz
2εzx
2εxy


(1)

where:
C44 =

C22 − C23

2
(2)

or:
{σ} = [C]{ε}, (3)

Considering microstructural models [14,15], it can be considered that any part of the
composite behaves as a homogeneous transversely isotropic body [57,58].

As a result, it is considered that if an RVE is taken, its behavior to any demands is,
on average, identical to the behavior of the entire isotropic transverse body. In essence,
the stress and strain field for an RVE is calculated, averages of the stress and strain values
for the entire RVE are calculated, and then it is considered that these values must comply
with Hooke’s generalized law for transversely isotropic materials. In this way, a set of
equations is obtained that connects the average stress and strain to the material constants.
The obtained set of equations is used to determine these constants.
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Obviously, FEM, representing an approximation method, introduces errors into calcu-
lations made. For this reason, a single calculation of the requests that appear in the RVE
could bring errors in the determination of the material constants. For this reason, a large
number of calculations are made with different types of load, after which the least square
method is used to determine the best approximation for the material constants.

In the following, the average of a size will be denoted with a bar over the symbol of
the size.

With FEM, the values of stresses and strains are determined numerically for an RVE
consisting of a fiber incorporated in a matrix. A case of loading the RVE is considered. If n f
is the number of finite elements through which the fiber that is included in the RVE was
discretized, nm is the number of finite elements in which the matrix was discretized and
nt = n f + nm is the total number of finite elements; after FEM modeling, sets of equations
with stress values and strains {σ}k, {ε}k; k = 1, n f , {σ}l , {ε}l ; l = 1, nm are used for each
considered finite element. Vectors {σ} and {ε} have the following components:

{σ} =



σxx
σyy
σzz
σyz
σzx
σxy


; {ε} =



εxx
εyy
εzz
γyz
γzx
γxy


=



εxx
εyy
εzz

2εyz
2εzx
2εxy


. (4)

Averages of these sizes for the entire RVE are given by:

{σ} = ν f {σ}( f ) + νm{σ}(m); (5)

{ε} = ν f {ε}( f ) + νm{ε}(m), (6)

where index (f ) is used to denote a property for a fiber and index (m) is used for a matrix.
The average stresses in the fiber and matrix, respectively, are:

{σ}( f ) =

n f

∑
i=1

σ
( f )
i

n f
; {σ}(m) =

nm
∑

i=1
σ
(m)
i

nm
, (7)

and the average strains in the fiber and matrix, respectively, are:

{ε}( f ) =

n f

∑
i=1

ε
( f )
i

n f
; {ε}(m) =

nm
∑

i=1
ε
(m)
i

nm
. (8)

Here, σ
( f )
i , σ

(m)
i , ε

( f )
i , ε

(m)
i represent the vectors of stress and strain in the RVE, labelled

with index i for fiber and matrix, respectively. Compared to the exact theoretical value that
exists when considering the RVE as an isotropic transverse body, there is a deviation that
can be written as follows:

{δ} = {σ} − [C]{ε}, (9)

with components:
δ1 = σxx − C11εxx − C12

(
εyy + ε̂zz

)
, (10)

δ2 = σyy − C12εxx − C22εyy − C23εzz, (11)

δ3 = σzz − C12εxx − C23εyy − C22εzz, (12)

δ4 = σyz − (C22 − C23)εyz, (13)

δ5 = σzx − 2C66εzx, (14)
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δ6 =
.
σxy − 2C66εxy, (15)

The total squared deviation for the considered load case is{
δ2
}
= {δ}T{δ} = {σ}T{σ} − {σ}T [C]{ε} − {ε}T [C]T{σ}+ {ε}T [C]T [C]{ε}, (16)

Let us consider that the FEM calculation is now conducted for a particular case of
loading. Let us index with i the considered case. In the case under study, different loading
cases will be considered, so i = 1, n. In this case, the components of the deviation vector for
the considered state of load will be noted as f:

δ1(i) = σxx,i − C11εxx,i − C12
(
εyy,i + εzz,i

)
, (17)

δ2(i) = σyy,i − C12εxx,i − C22εyy,i − C23εzz,i, (18)

δ3(i) = σzz,i − C12εxx,i − C23εyy,i − C22εzz,i, (19)

δ4(i) = σyz,i − (C22 − C23)εyz,i, (20)

δ5(i) = σzx,i − 2C66εzx,i, (21)

δ6(i) = σxy,i − 2C66εxy,i, (22)

The squared deviation for the loading state labelled i is:

δ2(i) = δ2
1(i) + δ2

2(i) + δ2
3(i) + δ2

4(i) + δ2
5(i) + δ2

6(i)
=
[
σxx,i − C11εxx,i − C12

(
εyy,i + εzz,i

)]2
+
[
σyy,i − C12εxx,i − C22εyy,i − C23εzz,i

]2
+
[
σzz,i − C12εxx,i − C23εyy,i − C22εzz,i

]2
+
[
σyz,i − (C22 + C23)εyz,i

]2
+[σzx,i − 2C66εzx,i]

2 +
[
σxy,i − 2C66εxy,i

]2 (23)

The total squared deviation is:

δ2 =
n
∑

i=1
δ(i)2 =

n
∑

i=1

[
σxx,i − C11εxx,i − C12

(
εyy,i + εzz,i

)]2
+

n
∑

i=1

[
σyy,i − C12εxx,i − C22εyy,i − C23εzz,i

]2
+

n
∑
1

[
σzz,i − C12εxx,i − C23εyy,i − C22εzz,i

]2
+

n
∑
1

[
σyz,i − (C22 + C23)εyz,i

]2
+

n
∑
1
[σzx,i − 2C66εzx,i]

2 +
n
∑
1

[
σxy,i − 2C66εxy,i

]2.

(24)

The condition for this squared deviation to be minimal is given by relationships offered
by mathematical analysis:

∂δ2

∂C11
= −2

[
n

∑
i=1

σxx,iεxx,i − C11

n

∑
i=1

ε2
xx,i − C12

(
n

∑
i=1

εyy,iεxx,i +
n

∑
i=1

εzz,iεxx,i

)]
= 0, (25)

∂δ2

∂C12
= −2

[
n
∑

i=1
σxx,i

(
εyy,i + εzz,i

)
− C11

n
∑

i=1
εxx,i

(
εyy,i + εzz,i

)
− C12

n
∑

i=1

(
εyy,i + εzz,i

)2
]

−2
[

n
∑
1

σyy,iεxx,i − C12
n
∑
1

ε2
xx,i − C22

n
∑
1

εxx,iεyy,i − C23
n
∑
1

εxx,iεzz,i

]
−2
[

n
∑
1

σzz,iεxx,i − C12
n
∑
1

ε2
xx,i − C23

n
∑
1

εxx,iεyy,i − C22
n
∑
1

εxx,iεzz,i

]
= 0,

(26)



Materials 2024, 17, 1334 8 of 17

∂δ2

∂C22
= −2

[
n
∑
i

σyy,iεyy,i − C12
2
∑
1

εxx,iεyy,i − C22
n
∑
1

ε2
yy,1 − C23

n
∑
1

εyy,iεzz,i

]2

−2
[

n
∑
1

σzz,iεzz,i − C12
n
∑
1

εxx,iεzz,i − C23
n
∑
1

εyy,iεzz,i − C22
n
∑
1

ε̂2
zz,i

]
−2
[

n
∑
1

σyz,iεyz,i − (C22 + C23)
n
∑
1

ε2
yz,i

]
= 0,

(27)

∂δ2

∂C23
= −2

[
n
∑
1

σyy,iεzz,i − C12
n
∑
i

εxx,iεzz,i − C22
n
∑
1

εyy,iεzz,i − C23
n
∑
1

ε2
zz,i

]
−2
[

n
∑
1

σzz,iεyy,i − C12
n
∑
1

εxx,iεyy,i − C23
n
∑
1

ε2
yy,i − C22

n
∑
1

εzz,iεyy,i

]
−2
[

n
∑
1

σyz,iεyz,i − (C22 + C23)
n
∑
1

ε2
yz,i

]
= 0,

(28)

∂δ2

∂C66
= −2

[
n

∑
1

σzx,iεzx,i − 2C66

n

∑
i

ε2
zx,i

]
− 2

[
n

∑
1

σxy,iεxy,i − 2C66

n

∑
i

ε2
xy,i

]
= 0, (29)

The system obtained by applying these conditions represents a linear system of five
equations with five unknowns. By solving it, the five unknowns can be obtained, which
represent material constants with the help of which the usual elastic engineering constants
can then be determined: Young’s moduli, shear moduli, bulk modulus, Poisson’s ratios, etc.

Equation (29) immediately results in the following:

C66 =

n
∑
1

σzx,iεzx,i +
n
∑
1

σxy,iεxy,i

2
(

n
∑
i

ε2
zx,i +

n
∑
i

ε2
xy,i

) , (30)

The system remaining to be solved is presented in Appendix A and offers other
constants of materials, C11, C12, C22, C23. Using these values now, it is possible to obtain the
desired engineering elastic coefficients.

Bulk modulus can be computed by the following relationship:

K23 = C22, (31)

The shear modulus is:

G23 =
C22 − C23

2
= C66 =

σ22 − σ33

2(ε22 − ε33)
=

σ23

2ε23
. (32)

Other relationships between the elastic coefficients give us all the values that are
necessary for the resistance calculation of a structure made of the proposed material.

ν1 = ν21 = ν31 =
1
2

(
C11 − E11

K23

)1/2
=

C12

C22 + C33
; (33)

ψ = 1 +
4ν2

1 K23

E11
; (34)

E22 = E33 =
4G23K23

K23 + ψG23
; (35)

ν23 =
K23 − ψG23

K23 + ψG23
; (36)

C66 =
σ12

2ε12
=

τ12

γ12
= G12 = G13 = G1. (37)
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3. Results

A composite bar made up of an epoxy matrix reinforced with a circular fiber is
considered. In this way, a rectangular parallelepiped is obtained, which represents an RVE.
The results obtained for this RVE will be used in the calculations. In a perfected version, a
rectangular parallelepiped made up of 16 such RVEs is considered. In this case, a calculation
can be made more precisely. To see the potential application of the proposed method, a
micromechanical FEM model is developed for a composite bar made of a glass/epoxy
matrix reinforced with carbon fibers [59].

Values of the main material properties for the two phases of the composite material are:

Em = 4.14 GPa; νm = 0.22; Ef = 86.90 GPa; νf = 0.34.

The two materials are considered homogeneous and isotropic. They are defined by
two material constants. For the situation studied in the paper, the fiber volume ration of
the total volume is v f = 54.54% and represents an important parameter in all methods
of homogenization.

Five distinct load cases of the bar are considered (Figure 3). The load is considered
to be a force that acts on one of the ends of the bar, the other end being embedded. In the
five cases, the force acts under angles equal to 0, 30◦, 45◦, 60◦ and 90◦ from the x axis. For
each of these cases, the stress and strain field is calculated and then the average of these
stresses and strain is calculated for the entire RVE. Based on these values, elastic constants
are then determined.
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In the framework of analysis carried out in the work, the stresses and deformations
are determined with the help of Altair software 2020 and the Hypermesh preprocessor
and Hyperview postprocessor, respectively. These values are then used to determine
the average values of stresses and strains for the fiber, the matrix and then for the RVE.
Tables 1–7 present the results of the analysis.

Table 1. Average strain in fiber for four loading cases.

Loading Case εxx εyy εzz εyz εzx εxy

1 3.60 × 10−4 −1.22 × 10−4 −1.22 × 10−4 −1.60 × 10−13 −1.01 × 10−17 −3.86 × 10−17

2 3.60 × 10−4 −1.22 × 10−4 −1.22 × 10−4 −8.54 × 10−8 −3.27 × 10−9 −5.43 × 10−8

3 3.11 × 10−4 −1.05 × 10−4 −1.05 × 10−4 −2.45 × 10−4 −7.56 × 10−9 2.41 × 10−10

4 1.79 × 10−4 −6.03 × 10−5 −6.02 × 10−5 −4.25 × 10−4 −1.46 × 10−8 2.33 × 10−9

5 −1.46 × 10−6 4.46 × 10−7 4.56 × 10−7 −4.91 × 10−4 −1.67 × 10−8 4.06 × 10−11
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Table 2. Average strain in matrix for four loading cases.

Loading Case εxx εyy εzz εyz εzx εxy

1 3.60 × 10−4 −8.83 × 10−5 −8.83 × 10−5 −4.25 × 10−17 4.38 × 10−11 −1.11 × 10−17

2 3.60 × 10−4 −8.70 × 10−5 −9.15 × 10−5 −1.08 × 10−7 −2.74 × 10−6 −1.42 × 10−7

3 3.11 × 10−4 −7.95 × 10−5 −7.23 × 10−5 −2.48 × 10−4 4.86 × 10−9 −4.83 × 10−10

4 1.79 × 10−4 −4.56 × 10−5 −4.16 × 10−5 −4.29 × 10−4 8.71 × 10−9 −1.05 × 10−9

5 −1.33 × 10−6 3.69 × 10−7 2.32 × 10−7 −4.95 × 10−4 1.43 × 10−8 −1.53 × 10−9

Table 3. Average strain in RVE for four loading cases.

Loading Case εxx εyy εzz εyz εzx εxy

1 3.60 × 10−4 −1.09 × 10−4 −1.09 × 10−4 −2.84 × 10−7 −9.09 × 10−7 −2.84 × 10−7

2 3.60 × 10−4 −1.06 × 10−4 −1.08 × 10−4 −9.58 × 10−8 −1.25 × 10−6 −9.40 × 10−8

3 3.11 × 10−4 −9.33 × 10−5 −9.01 × 10−5 −2.46 × 10−4 −1.92 × 10−9 −8.84 × 10−11

4 1.79 × 10−4 −5.36 × 10−5 −5.18 × 10−5 −4.27 × 10−4 −4.01 × 10−9 7.93 × 10−10

5 −1.40 × 10−6 4.11 × 10−7 3.54 × 10−7 −4.93 × 10−4 −2.58 × 10−9 −6.73 × 10−10

Table 4. Average stress in fiber for four loading cases (in GPa).

Loading Case σxx σyy σzz σyz σzx σxy

1 3.14 × 10 4.71 × 10−2 4.71 × 10−2 −4.38 × 10−8 −5.65 × 10−13 −2.24 × 10−12

2 3.60 × 10−4 −1.22 × 10−4 −1.22 × 10−4 −8.54 × 10−8 −3.27 × 10−9 −5.43 × 10−8

3 3.11 × 10−4 −1.05 × 10−4 −1.05 × 10−4 −2.45 × 10−4 −7.56 × 10−9 2.41 × 10−10

4 1.79 × 10−4 −6.03 × 10−5 −6.02 × 10−5 −4.25 × 10−4 −1.46 × 10−8 2.33 × 10−9

5 −1.46 × 10−6 4.46 × 10−7 4.56 × 10−7 −4.91 × 10−4 −1.67 × 10−8 4.06 × 10−11

Table 5. Average stress in matrix for four loading cases (in GPa).

Loading Case σxx σyy σzz σyz σzx σxy

1 1.46 × 100 −5.72 × 10−2 −5.72 × 10−2 1.08 × 10−18 −3.93 × 10−14 −1.60 × 10−13

2 3.60 × 10−4 −8.70 × 10−5 −9.15 × 10−5 −1.08 × 10−7 −2.74 × 10−6 −1.42 × 10−7

3 3.11 × 10−4 −7.95 × 10−5 −7.23 × 10−5 −2.48 × 10−4 4.86 × 10−9 −4.83 × 10−10

4 1.79 × 10−4 −4.56 × 10−5 −4.16 × 10−5 −4.29 × 10−4 8.71 × 10−9 −1.05 × 10−9

5 −1.33 × 10−6 3.69 × 10−7 2.32 × 10−7 −4.95 × 10−4 1.43 × 10−8 −1.53 × 10−9

Table 6. Average stress in RVE for four loading cases (in GPa).

Loading Case σxx σyy σzz σyz σzx σxy

1 1.78 × 10 −7.15 × 10−3 −7.14 × 10−3 −9.64 × 10−4 −3.08 × 10−3 −9.64 × 10−4

2 3.60 × 10−4 −1.06 × 10−4 −1.08 × 10−4 −9.58 × 10−8 −1.25 × 10−6 −9.40 × 10−8

3 3.11 × 10−4 −9.33 × 10−5 −9.01 × 10−5 −2.46 × 10−4 −1.92 × 10−9 −8.84 × 10−11

4 1.79 × 10−4 −5.36 × 10−5 −5.18 × 10−5 −4.27 × 10−4 −4.01 × 10−9 7.93 × 10−10

5 −1.40 × 10−6 4.11 × 10−7 3.54 × 10−7 −4.93 × 10−4 −2.58 × 10−9 −6.73 × 10−10
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Table 7. Computed values of elastic moduli.

Modulus [MPa] Matrix Fiber Average

E11 4140.0 86,900.0 56,278.0

E23 = E13 4140.0 86,899.0 12,741.0

ν1 0.34 0.22 0.28

ν23 0.34 0.22 0.31

G23 1544.0 35,614.7 12,318.2

K23 4827.4 63,597.7 27,953.2

The same calculations were also carried out considering a material cell made up of
16 fibers (Figure 4).
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Figure 4. The elementary cell made up of 16 fibers and a qualitative representation of displacements
(in colors).

For a load case, the stresses in the sections made in the first, second, third and fourth
rows are represented (Figures 5–8). It is observed that these tensions vary quite strongly at
the ends, unrelated to the overall stress of the bar. This occurs at the ends of the bar: both
the loaded end of the bar and the recessed end (Figures 9 and 10). Due to these variations,
when the averages were calculated, the values obtained in this part of the bar were removed.
In the calculations made in the study, 200 finite elements were removed from one end and
200 finite elements were removed from the other end.
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4. Discussion

The theoretical models developed by the researchers presented in the introduction
section allow the determination of the elastic constants of a material considering a single
RVE. A linear system of five equations with five unknowns is obtained that provides these
values. However, these values are obtained for a single loading case of the material, based
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on the stress and deformation field obtained for that loading, with errors arising from
the determination of this field. The method used is FEM, which, being an approximation
method, inherently introduces some errors. The obtained constants will be affected by
these errors. If different loading situations are considered, the errors will be different and,
obviously, will depend on these loading cases. To minimize the importance of these errors
in the calculation of the elastic constants, several load cases will be considered and the
condition is set to look for those values that minimize the quadratic deviation. It is obvious
that a large number of considered load cases will minimize the errors that may occur in
some situations where the errors may be too large. It is therefore recommended to consider
very different loading situations, so as to cover as wide a range of situations as possible. In
the case of the present study, these were considered as five distinct load cases.

Most of the methods used to determine the properties of a composite material obtain
results in the form of inequalities, which provide the sought constants in a certain interval.
For some concentrations of the phases, these ranges may be wide enough so that the
information provided is ineffective. The presented method provides values that are affected
only by the errors involved in the FEM. This leads to much more useful results for the
designer. Experimental checks for simpler situations, where only a single loading state is
considered, are presented in [40] and show good agreement between the computational
and the experimental results.

The studies that dealt with the determination of the elastic constants of a material
generally considered particular cases of RVE loading and, based on the particular strain
and stress fields, determined some of these constants based on direct calculation [7–13].
Some of the methods obtained only lower and upper bounds of these constants, providing
a relatively large range for these constants. In the case of this paper, several loading cases
were considered and, based on them, elastic constants were considered using the least
squares method. In this way, considering more loading cases (as many as possible) can
minimize the error with which the elastic constants are determined. The accuracy with
which these values are obtained should be higher than the calculation accuracy when
considering a single loading state [60–64].

Other effects, such as thermal, humidity, etc., can be taken into account. But in this
case, the variant corresponding to the considered case must be used in modeling. In this
case, too, homogenization of the elastic coefficients can be carried out by averaging, but
other physical parameters necessary for the studied model can also be obtained. So the
method can be applied in any complex situation, but each time a corresponding model
must be considered, which usually involves additional parameters.

5. Conclusions

The presented method gives us values of the engineering constants of a composite
if these values are known for the components of the composite and if its topology and
geometry are known. It is the case often encountered in practice that it is necessary
to estimate the properties of a newly composed material. These values obtained are
approximate and are affected by errors occurring in the use of FEM. In order to minimize
these errors, the paper proposes the method of least squares, a mathematical method that
provides the best estimate for a set of values obtained by calculating FEM. It is useful
to consider as many load cases as possible to obtain the best estimate. The method has
the advantage of using FEM, which has become a common method, verified by countless
applications and frequently used in engineering. In this way, the sought values can be
obtained with relative ease.

The main novelty is the application of the least squares method, which is a well-known
method. With its help, several elastic constants of a material can be determined (in the
case of isotropic materials, two; in the case of transversely isotropic materials, five; etc.).
The precision in the case of this approximation method increases with the number of cases
considered. For a model of a representative structure of the material, that model is made
with finite elements for which the field of stresses and deformations is determined for
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several different loading cases. Based on these values, it is now possible to determine
the engineering constants of the material using the least squares method, a simple and
easy-to-apply method.

It is mentioned that the study of as many loading situations as possible should give
us, according to the least squares theory, the best approximation of the elastic constants
respecting the conditions presented in the paper. So the goal when applying the method is
to perform as many calculations of the stress and strain field as possible, so as to obtain the
most accurate results of the engineering constants sought.
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