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Abstract

This communication describes the Pd-catalyzed C(sp3)–H functionalization of a tropane derivative 

to generate products with functionalization at two (β/γ) or three (β/γ/β) different sites on the 

alicyclic amine core. These reactions proceed via an initial dehydrogenation to generate an alkene 

product that can react further to form a Pd(I) alkene-bridged dimer. Functionalization of this dimer 

affords β/γ/β-functionalized allylic arylation and allylic acetoxylation products.

Grahical Abstract

Six-membered alicyclic amines are the single most common heterocycle in pharmaceutically 

relevant architectures.1–2 As such, there is significant interest in approaches for the 

selective C(sp3)–H functionalization of these scaffolds. To date, synthetic methods have 

been identified to target each of the individual C(sp3)–H sites on the core (Scheme 1a–

c).3–5 Most relevant to this report, our group has developed a Pd-catalyzed g-selective 

C(sp3)–H functionalization of alicyclic amines (Scheme 1c) in which the amine nitrogen 

and an appended directing group bind the catalyst and enable selective transannular Cγ–H 

activation.6 A complementary approach (Scheme 1d) would be to functionalize multiple 

sites on an alicyclic amine in a single transformation.7 This would enable the rapid 

generation of derivatives for biological evaluation.

In this communication, we demonstrate the realization of this goal in the context of the 

Pd-catalyzed triple C–H functionalization of tropane substrate 1.8 We show that selective 
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β/γ/β functionalization can be achieved by the transannular dehydrogenation of 1 followed 

by further functionalization of the resulting alkene. An alkene-bridged Pd(I) dimer was 

isolated from the stoichiometric reaction of 1 with Pd(OAc)2, and this complex reacts with 

oxidants to form β/γ/β functionalized products in high yield and selectivity.

This work commenced with studies of the Pd(OAc)2-catalyzed reaction between tropane 

substrate 1 and PhI using conditions previously reported by our group for Cγ–H arylation 

(Scheme 2).6b The expected γ-arylation product 2 was obtained in 63% yield after 18 h at 

140 °C. However, careful inspection of the crude reaction mixture revealed the minor side 

product 3, derived from functionalization at three different sites β/γ/β on the tropane core 

(9% yield). The structure and stereochemistry of 3 were confirmed by NMR spectroscopy 

and x-ray crystallography (see SI for details). Variation of the solvent, base, and picolinic 

acid derivative led to conditions where 3 is the major product (Scheme 2b). However, 

even under these optimized conditions, significant quantities of 2 were formed (~9%). 

Furthermore, the yield of 3 was variable, ranging from 27–64% from run-to-run.9

In an effort to address these issues, we interrogated the pathway to the β/γ/β 
functionalization product, 3. We hypothesized that 3 is formed via sequential Pd-catalyzed 

dehydrogenation followed by allylic arylation (Scheme 3a). Notably, Yu and coworkers 

have reported related Pd(OAc)2-catalyzed oxazoline-10 and carboxylic acid-directed11 

dehydrogenations of alkanes to afford alkenes.12 Furthermore, Pd-catalyzed Heck-type 

reactions between cyclic alkenes and aryl iodides to form allylic arylation products are 

well precedented.13

To test the feasibility of an initial dehydrogenation, we conducted the reaction from Scheme 

2a in the absence of PhI, substituting trifluorotoluene as an inert aromatic solvent. This 

afforded alkene 4 as the major product in 48% yield (Scheme 3b). The conditions were 

optimized (by varying the solvent, base, temperature, and picolinic acid derivative) to afford 

alkene 4 in 63% isolated yield (see SI for details). An isolated sample of 4 was then 

re-subjected to the original Pd-catalyzed C–H arylation conditions. After 18 h at 140 °C, the 

reaction afforded 3 in 30% yield, consistent with 4 as an intermediate en route to 3.14

Our previous work has shown that transannular Cγ–H functionalization of related alicyclic 

amine substrates can be achieved in enhanced yield and selectivity via stoichiometric 

reactions of palladium-amine coordination complexes.15 For example, as shown in Scheme 

4a, we demonstrated that PdII complex A forms under mild conditions from the reaction 

between Pd(OAc)2/pyridine and alicyclic amines bearing fluoroarylamide directing groups. 

A then reacts with oxidants (FG in Scheme 4a) to afford γ-functionalized products.16 In 

some instances, the analogous organic products were formed in poor yield under catalytic 

conditions. Thus, we hypothesized that an analogous stoichiometric sequence might provide 

cleaner access to the target β/γ/β-functionalized product 3 and analogues thereof.

In the event, the reaction of tropane substrate 1 with Pd(OAc)2 and pyridine (identical 

conditions to those in Scheme 4a) did not afford the expected coordination complex B. 

Instead, it resulted in dehydrogenation of 1 and formation of the PdI alkene-bridged dimer 

C as the major distinguishable organometallic product.17 This dimer, which shows four 
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diagnostic 1H NMR resonances between 5.28 and 3.79 ppm, was formed in 17% yield as 

determined by 1H NMR spectroscopic analysis of the crude reaction mixture. Modifying the 

reaction conditions (by changing the solvent from t-amyl alcohol to MeCN and removing 

the pyridine) resulted in a 36% crude yield of C. Purification by column chromatography 

on silica gel afforded an analytically pure sample of C in 35% isolated yield. X-ray quality 

crystals were obtained from a dichloromethane/hexanes solution at room temperature. The 

x-ray crystal structure is provided in Figure 1 and shows that this is a dimeric complex with 

the alkene ligands bridging two palladium(I) centers. The Pd–Pd distance is 2.445 Å, which 

is comparable to that in structurally similar PdI dimers.18

With C in hand, we investigated stoichiometric reactions of this complex with oxidants to 

generate β/γ/β-functionalized products. As shown in Scheme 5, the treatment of C with 

phenyl iodide at 100 °C afforded 3 in 72% yield.19a–b In contrast to the catalytic reactions 

in Schemes 1 and 2, this transformation was reproducible and high yielding. Analogous 

reactivity was observed using 3,5-dimethylphenyl iodide, providing 5 in 77% yield.19a

Based on literature reports from White20 and others,21 we hypothesized that allylic 

oxygenation might also be feasible from C using carboxylic acids in conjunction with 

benzoquinone (BQ). Indeed, the treatment of C with benzoic acid and 2 equiv of BQ 

formed the allylic benzoylation product 6 in 71% yield.19a This reaction proceeded similarly 

with propionic acid to afford 7 in 67% yield.19a The structure and stereochemistry of the 

latter product was confirmed via x-ray crystallography (see SI for details). Overall, the 

stoichiometric formation and subsequent functionalization of C offers a clean, selective, 

reproducible, and high yielding route to the tri-functionalized products 3 and 5–7.

In summary, this report describes a route to β/γ/β-functionalized tropane derivatives 

via dehydrogenation/functionalization. The Pd(OAc)2-catalyzed reaction requires high 

temperatures (≥140 °C) and exhibits poor reproducibility, yield, and product selectivity. 

To address these challenges, we developed a stoichiometric sequence involving 

initial dehydrogenation to form a dimeric Pd(I) intermediate followed by subsequent 

functionalization of this complex. This sequence proceeds under relatively mild conditions 

(60–100 °C) with high reproducibility. Furthermore, it provides a route to diverse C–C 

and C–O coupled products in good yield/selectivity. These studies highlight the value of 

interrogating stoichiometric reactions between metal and substrate as a pathway to achieving 

selective C–H functionalization reactions.
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Figure 1. 
X-ray crystal structure of C. Selected bond distances (Å): N1−Pd1 2.113, N2−Pd1 2.139, 

C34−Pd1 2.131, C35−Pd1 2.184, Pd1–Pd2 2.445. Hydrogen atoms are omitted for clarity.
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Scheme 1. 
(a-c) C(sp3)–H functionalization reactions that selectively target the α-, β-, and γ-C(sp3)–H 

bonds of 6-membered alicyclic amines. [R, R1 = hydrogen, alkyl, aryl, or directing group 

(DG), depending on the transformation.] (d) This work: C(sp3)–H functionalization of the 

β/γ/β sites in a single transformation. [R = directing group, DG]
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Scheme 2. 
(a) Pd-catalyzed reaction of 1 with PhI affords products functionalized at the γ (2) and 

β/γ/β positions (3). (b) Optimized conditions afford 3 as the major product, but selectivity is 

modest, and yield is variable.
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Scheme 3. 
(a) Proposed pathway to 3. (b) Alkene 4 is formed in the absence of PhI. (c) Resubjecting 4 
to the reaction conditions affords 3.
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Scheme 4. 
(a) Previous work on isolation and selective C–H functionalization of A. (b) Stoichiometric 

reaction of 1 with Pd(OAc)2 forms alkene-bridged dimer C
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Scheme 5. 
High yielding functionalization of dimer C to form 3 and 5–7.
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