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Abstract

Synchronization in the gamma band (25–150 Hz) is mediated by PV+ inhibitory interneurons, and
evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise
in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or
via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-
driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work
focused on model neurons with Hodgkin’s Type 1 excitability (integrators) connected by current-based
synapses. Here we show that networks comprised of simple Type 2 oscillators (resonators) exhibit a
supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle
skipping from coupled oscillators to stochastic population oscillator (SPO), as previously shown for
Type 1. We extended our analysis to homogeneous networks with conductance rather than current based
synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise
than those with shunting synapses, both in the coupled oscillator and SPO regime. Assuming that reversal
potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one ex-
perimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas
conversion to purely shunting synapses made synchrony less robust except at very high conductance
strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that
control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters
as a potential therapeutic target to enhance gamma synchrony and cognition.
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Significance Statement

Brain rhythms in the gamma frequency band (25–150 Hz) depend on the activity of inhibitory interneu-
rons and evidence for a causal role for gamma oscillations in cognitive functions is accumulating. Here,
we extend previous studies on synchronization mechanisms to interneurons that have an abrupt
threshold frequency below which they cannot sustain firing. In addition to current-based synapses,
we examined inhibitory networks with conductance-based synapses. We found that if the reversal po-
tential for inhibition was below the average membrane potential (hyperpolarizing), synchrony was more
robust to noise than if the reversal potential was very close to the average potential (shunting). These
results have implications for therapies to ameliorate cognitive deficits.
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Introduction
Synchrony in the gamma frequency band [25–150 Hz (Colgin et al., 2009)] is critical to cognition and disrupted in

Alzheimer’s disease (Sahu and Tseng, 2023) and schizophrenia (Sohal, 2022), giving rise to cognitive deficits.
Rhythmic stimulation at gamma frequency (Lakatos et al., 2019) is being utilized as a putative therapeutic intervention
for cognitive impairment. In order to develop effective and precisely targeted therapeutics, it is imperative to determine
the mechanisms underlying gamma synchrony.
Excitable neurons in general can fire action potentials in twomodes. One is a pacemaker-like mode in which the input to

the neuron is generally above threshold and the firing rate is determined by the mean current input, often called the mean-
driven regime in contrast to a fluctuation-driven regime (Schreiber et al., 2009; Petersen and Berg, 2016). Networks of cou-
pled oscillatory neurons in the mean-driven regime were discovered to be capable of synchrony mediated by inhibitory
synapses (Van Vreeswijk et al., 1994), without the need for excitatory synapses. An influential study showed (Wang and
Buzsáki, 1996) that inhibitory synchrony was not robust to the levels of heterogeneity thought to characterize physiolog-
ical networks. In a seminal series of papers (Brunel and Hakim, 1999; Brunel and Hansel, 2006), Brunel and colleagues
analyzed networks of inhibitory neurons and discovered a type of synchrony mediated by inhibition that did not depend
on coupling between oscillatory neurons, but instead arose from the interactions between population rate and the synaptic
inhibition recruited by that rate. In the mean-driven regime, one would expect the distribution of interspike intervals to be
Gaussian. In the fluctuation-driven regime, the neuron is presumed to be in a state with balanced excitation and inhibition
(Shadlen and Newsome, 1998) biased slightly below the threshold for action potential generation. The balanced excitation
and inhibition produce fluctuations that provide a diffusive drive in the presence of a drift back toward the resting mem-
brane potential. This results in a mean-reverting random walk (Uhlenbeck and Ornstein, 1930) in the membrane potential
(Brunel and Hakim, 1999). The firing of individual neurons appears random and the distribution of interspike intervals (ISI) is
exponential except for a refractory period. Networks in the fluctuation driven regime produce stochastic population oscil-
lations for sufficiently large noise and sufficiently strong inhibition.
The original theoretical work described above used only integrators (Izhikevich, 2000) with Hodgkin’s Type 1 excitability

(Hodgkin, 1948), meaning that they can fire at arbitrarily low rates, and studied only current based synapses. The bifurca-
tion structure defines the difference between Type 1 and Type 2 excitability (Ermentrout, 1996; Rinzel and Ermentrout,
1998). We have previously shown that PV+ interneurons in layer 2/3 of medial entorhinal cortex exhibit Type 2 excitability
(Tikidji-Hamburyan et al., 2015), meaning that there is a cutoff frequency below which repetitive firing cannot be sustained.
We systematically explored the responses of resonator neurons (Izhikevich, 2001) with Hodgkin’s Type 2 excitability. We
identify two routes to the stochastic population oscillator (SPO), similar to the previously observed routes in Type 1 neu-
rons (Brunel and Hansel, 2006), except that that Type 2 excitability endows neurons with postinhibitory rebound (Perkel
and Mulloney, 1974; Wang and Rinzel, 1993; Rinzel et al., 1998; Tikidji-Hamburyan et al., 2015). The first route occurs via
supercritical Hopf bifurcation from the stationary asynchronous mode, in which the firing rate is approximately constant,
into an SPO. The other route is a transition from the coupled oscillator mode to the SPO (Tikidji-Hamburyan et al., 2015).
We also studied a biophysically calibrated (Fernandez et al., 2022; Via et al., 2022) model of a network of PV+ interneurons
in layer 2/3 of medial entorhinal cortex with conductance rather than current based synapses with either shunting or
hyperpolarizing synapses (Vida et al., 2006), or a uniform distribution of reversal potential between the two extremes.
Whereas synchrony was more robust in networks with hyperpolarizing synapses compared to shunting or a uniform
distribution, the uniform distribution only outperformed shunting below a threshold for synaptic connection strength.

Materials and Methods
Izhikevich Type 2 model
The equations describing the dynamics of an Izhikevich resonator neuron model are as follows:

Cm
dV (t)
dt

= 0.04 V2(t)+ 5 V (t)+ 140− u(t)+ I(t) = fIzhi(V , u)+ I(t), (1)

du(t)
dt

= a (b V (t)− u(t)). (2)

If V . vpeak, then V � c, u � u+ d. We use the same values as in our previous work (Tikidji-Hamburyan et al., 2015). The
parameters values are a=0.1 ms−1, b=0.26 nS, c=−65 mV, d=0 nA. Cm is 1 µF/cm2. Currents are in nA/cm2.
Postspike adaptation was neglected with parameter d set to zero. As the parameter b is positive, this model exhibits

Type 2 excitability, with a discontinuous f-I curve.

Via PV+ fast spiking interneuron model
We also use a calibrated Hodgkin–Huxley type conductance-based model with Type 2 excitability. The model is

described in detail in (Via et al., 2022). This single compartment model neurons has five state variables: the membrane
potential (V ) and four gating variables (m, h, n, and a) that use the same kinetic equations as the original Hodgkin–
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Huxley model (Hodgkin and Huxley, 1952; Baxter et al., 2004), but with different parameters tuned to replicate the dynam-
ics of fast spiking neurons in the medial entorhinal cortex. We included two delayed rectifier K+ currents (IKv7 and IKv3). KV7
wasmislabeled asKV1 in (Via et al., 2022). The differential equation for themembrane potential (V ) of each neuron with this
correction is now as follows:

Cm
dV
dt

= INa + IKv7 + IKv3 + IL + I(t) = fVia(V , m, h, n, a)+ I(t), (3)

where Cm=81.4 pF is the membrane capacitance, I(t) is the external current, INa is the fast sodium current, and IL is
the passive leak current. The equations for the intrinsic ionic currents are as follows: INa = gNam3h(ENa − V ),
IKv7 = gKv7a4(EK − V ), IKv3 = gKv3n4(EK − V ), and IL = gL(EL − V ), with ENa = 50 mV, EK =−90 mV, EL =−77.8 mV,
gL = 13.8 nS, gNa = 18,929 nS, gKV7 = 58.5 nS and gkV3 = 784.5 nS. The dynamics of the gating variables are given by
dx/dt = ax(1− x)− bxx for the activation variables (m, n, a) and by dx/dt = bx(1− x)− axx for the inactivation variable
h, where ax = k1x(ux − V )/( exp ((ux − V )/s1x)− 1) and bx = k2x exp (V/s2x) using parameters in Table 1.

Homogeneous networks
We consider a fully connected network of N inhibitory neurons as N was varied from 800 to 3,000. In the subthreshold

range (V ≤ Vt), where Vt is the firing threshold, the membrane potential has the following dynamics:

Cm
dVi

dt
= f (Vi, {x})+ I(t) = f (Vi, {x})+ Iext(t)+ Ii,rec(t)+ Ii,noise(t), (4)

where f (Vi,{x}) is the function describing the single neuron membrane dynamics, where {x} stands for the gating variables
(see Eq. 1 for Izhikevich model and Eq. 3 for Via model), and Cm is the membrane capacitance of the model. Here, Iext is a
constant external input, Ii,noise(t) is a noisy external input and Ii,rec(t) is the recurrent input due to the interactions between
the neurons.
The noisy current is modeled as Ii,noise(t) = s hi(t). Here, hi(t) is a white noise uncorrelated from neuron to neuron and

from time to time. We define the noise intensity as s (in nA/cm2 for Izhikevich model and nA for the PV+ FS model).
Since the network is fully connected, the recurrent synaptic input is the same for all neurons:

Ii,rec(t) = J
N

∑N
j=1

∑
k

s(t − tkj ), (5)

where J is the coupling strength which scales the postsynaptic current for a single synapse (current is given in nA/cm2 for
Izhikevich model and in nA for Via model), N is the network size and s(t − tkj ) denotes the postsynaptic current (PSC)

elicited by a presynaptic spike in neuron j occurring at time tkj .
For the conductance-basedmodel, the righthand side of Equation 5 ismultiplied by the driving force, current is in nA and

J is given in nS:

Ii,rec(t) = J
N

∑N
j=1

∑
k

s(t − tkj )(Vi − Esyn). (6)

Esyn is the synaptic reversal potential. We ran simulations with purely hyperpolarizing (Esyn =−75 mV) or shunting
(Esyn =−55 mV) synapses, and for the case in which Esyn was uniformly distributed between these two values. The first
sum is over synapses, whereas the second sum is over spikes. We modeled the PSC function as a biexponential with
latency tL =1 ms, rise time constant tR =1 ms, and decay time constant tD =6 ms.

s(t) =
0 if t , tL

1
tD − tR

e
t−tL
tD − e

t−tL
tR

( )
if t ≥ tL

⎧⎨
⎩ . (7)

Table 1. Parameters for gating variables

m h n a

Θ (mV) −47.95 −49.72 11.32 42.85
σ1 (mV) 4 −20 12 12
σ2 (mV) −13 3.5 −8.5 −80
k1 (ms−1) 0.25 0.012 1 1
k2 (ms−1) 0.1 0.2 0.001 0.02
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The factor (1/(tD − tR)) ensures that the integral of the PSC (i.e., the total charge received in the postsynaptic neuron due
to a presynaptic spike) is one, i.e.,

�
s(t) dt = 1. For conductance-based synapses the maximum of s(t) is normalized to 1

(Via et al., 2022)

Heterogeneous network. A biophysically realistic heterogeneous network was constructed only for the conductance-
based Via model with a 3D spatial structure corresponding to a mouse brain slice of layer 2/3 medial entorhinal cortex
(mEC) measuring 800 µm×300 µm×800 µm. Based on the measured PV+ cell density in layers 2/3 of mEC (Bjerke et
al., 2021), we assigned 321 neurons to the slice and positioned them randomly. The full extent of the experimentally mea-
sured variability across the PV+ population in terms of their passive properties and their frequency current relations was
captured in our previously published 100 neuron model (Via et al., 2022). We used 50 unique neurons and cloned them as
necessary to construct the 321 neuron heterogeneous network. Gabaergic synaptic connectivity was calibrated
according to (Fernandez et al., 2022) in which the connection probability was found to be 36% in each direction inside
a radius of 150 µm with a lognormal distribution of the synaptic conductances with a mean of J×1.65 nS (Via et al.,
2022), where 1.65 nS was the measured average synaptic conductance. The standard deviation 1.56 nS of the synaptic
conductances used here was less than that used in (Via et al., 2022). However, that study assumed strong electrical
synapses in order to obtain synchronous activity, and we neglect electrical synapses here. Synaptic delays were assigned
with the observed range (Fernandez et al., 2022) anddepend linearly on the distance inside a 150 µm radius, from0.4 to 1.2 ms.

Prediction of Hopf bifurcation surface usingmean field theory. Brunel and colleagues developed a clever method to find
the parameter sets at which an oscillation becomes possible. They used amean field approximation to the stationary state
in which each neuron receives the same oscillation in synaptic current, and each synapse receives action potential inputs
at the same frequency as the oscillation in current. In order for an oscillation at a given angular frequency v to exist, the
oscillation in the firing rate must have the same phase and amplitude after transformation to an oscillation in current by the
biexponential synapse and subsequently back into an oscillation in rate by the individual neurons receiving the oscillatory
synaptic input. A linear time invariant system is a cascade of linear operators that scale the amplitude of the input signal via
multiplication by |H(v)| and shift the phase by,) H(v). These quantities can be calculated for a linear system, but the trans-
fer function H(v) must be measured at each frequency for a nonlinear system. At a given level of external bias current and
noise, the frequency at which the Hopf bifurcation occurs was determined by the value at which all the phase lags around
the circuit summed to −360°. The phase lag for the synaptic latency is ,) HL(v) = vtL, where tL is the latency. The phase
lags for the rising and decaying exponentials are ,) HR(v) = arctan (−vtR) and ,) HD(v) = arctan (−vtD), where tR and tD
are the rising and decaying time constants, respectively. Since the firing rate is positive but the synaptic current causes a
negative change in the rate, an additional −180° phase lag ensues. The phase lag for the neural model ,) HN(v) must be
calculated numerically using simulations of a single neuron for each pair of σ and Iext values by applying a sinusoidal input
with J=1 then measuring the phase lag of the noisy sinusoidal output. We made predictions at constant firing rate, con-
sistent with previous work (Brunel and Hansel, 2006). The constant current Iext was adjusted using a bisection search
method, to obtain a constant average firing rate (with an error of 0.5 Hz) for every value of noise intensity σ, coupling
strength J and network size N. Since the input is noisy, we found Iext by averaging over 3 s of simulation, after discarding
the initial 1 s transient.
Next we found the response of the neuron to a sinusoidal input with amplitude 10% of the external bias current to mimic

a small sinusoidal perturbation to a steady asynchronous state, with the average frequency fixed at 17 or 30 Hz. Frequency
of the input varied between 1 and 250 Hz, with a 2 Hz step. The simulations were run for 50 s and averaged over 20,000
realizations. To find the linear gain and the linear phase shift introduced by the neuron between the oscillatory input current
to the oscillation in rate output, we used the phase and amplitude of the discrete Fourier transform for the peak output
frequency.
Finally, the synaptic strength J was adjusted to ensure that the amplitudes of the rate and current waveforms were

unchanged from cycle to cycle. The amplitude scale factor for a biexponential synapse with unitary conductance strength
is as follows:

|Hs(v)| =
																								

1
(1+ v2t2R)(1+ v2t2D)

√
.

The scaling factor|HN(v)| for the neural models was calculated using the same method to get the phase lag. Since the
connection strength scales the output of the synaptic current, J was set according to the following:

|HN(v)| = 1
J|HS(v)| .
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Network simulations
Parameter sweeps were performed on the high-performance computing cluster Tigerfish using BRIAN software

(Stimberg et al., 2019). We varied the three parameters J, s, and Iext independently for each of four network sizes
(N = 800, 1,400, 2,200, 3,000).

Participation measure
In order to differentiate between SPOs and coupled oscillator regimes, we used a method developed by our group

based on the cycle by cycle population period, as defined by the peaks of the population histogram (Tikidji-Hamburyan
et al., 2015). The spikes were binned in 1 ms windows and a pulse with the height determined by the number of spikes
in the bin was placed at the center of the bin. The resultant pulse train was low pass filtered by convolution with a
Gaussian kernel with standard deviation of 10 ms and a length of 100 ms, which produced a time series with clear peaks
in the network activity to use as a clock to compute the average level of participation in the oscillation, which we track as
the average number of spikes per cycle (SPC) normalized by the population size. Note that random peaks of spike rate can
be detected in finite networks even in the absence of network oscillations, for example, in random firing or in phase dis-
persion. In this case, the SPC still reflects the mean firing rate of the population. Values of SPC<0.6 for a SPO and SPC>
0.9 for coupled oscillator (CO) and postinhibitory rebound (PIR) regions matched the regions in which an exponential ver-
sus a Gaussian distribution of the ISI was observed. Intermediate values corresponded to a transitional oscillatory region
with subharmonic peaks in the distribution (for 10 ms bin width). For SPC>0.9, we distinguished PIR from CO for regions
in which the average instantaneous current (external bias plus recurrent input) remained below the Hopf bifurcation for the
individual neuron at all times.

Synchrony measures
We used a synchrony measure to quantify the boundary between synchrony in our simulations in order to test our mean

field predictions. Since synchrony is related to the fluctuations of global variables, it can be defined by averaging these
fluctuations over a long time (Hansel and Sompolinsky, 1992; Golomb and Rinzel, 1993, 1994; Ginzburg and
Sompolinsky, 1994). The average membrane potential across a population of neurons at time t is as follows:

V (t) = 1
N

∑N
i=1

Vi(t).

The average over time, or expectation value, of the population-averaged membrane potential is V (t)
〈 〉

. In a completely
asynchronous system, any allowable value of V(t) has the same probability for an individual neuron across time as for sin-
gle neurons across the population. Since these probability distributions are equal, the expectation value of their difference

is zero. This makes the expectation value of the population variance s2
V = V (t)− V (t)

〈 〉( )2
also zero. As a measure of syn-

chrony (Brunel and Hansel, 2006), we normalized the population variance to the mean value of the variance

s2
Vi
= Vi(t)− Vi(t)

〈 〉( )2( )
of single-cell membrane potentials Vi(t):

x(N) =
																	

s2
V

(1/N)
∑N

i=1 s
2
Vi

√√√√ . (8)

Thus, for a fully asynchronous system x(N) = 0. In a completely synchronized system, the expectation value of the pop-
ulation variance is nonzero. Since all neurons have identical activity, the population variance (top term in Eq. 8) is equal to
the average expectation value of the individual variance of each neuron (bottom term in Eq. 8), thus x(N) = 1. For less than
perfect synchrony, the degree of synchrony can be quantified by themeasure above. The central limit theorem implies that
for an infinite network, N � 1, the synchrony measure behaves as follows:

x(N) = x1 + dx		
N

√ +O
1
N

( )
, (9)

where x1 is the large N limit of x(N) and dx measures the finite size correction to x at the leading order.
For each network size N, we can simulate a network for a given noise intensity, coupling strength and external bias cur-

rent and calculate the synchrony measure x(N). After simulating several network sizes, we can fit the parameter x1 using
Equation 9. The set of parameters J, σ and Iext that makes x1 = 0 define the Hopf bifurcation manifold, which is the border
between synchrony and asynchrony. At each value of J and Iext, we find the critical value of σC corresponding to the Hopf
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bifurcation by plotting the values x1as a function of σ and noting the point at which x1 deviates from zero. At constant J
and Iext, the following mathematical function describes the dependence of x1 on σ:

x1 = A (sC − s)1/2 if s ≤ sC

0 if s ≥ sC

{
, (10)

where sC is the critical noise at the Hopf bifurcations, for a given J and Iext. This method allowed us to find the surface
corresponding to the Hopf bifurcation in the 3D space.
We contrasted this method of quantifying synchrony with one developed by our group based on the cycle by cycle

population period, as defined by the peaks of the population histogram (Tikidji-Hamburyan et al., 2015) and described
above in the Participation Measure section. Peaks were detected using downward zero crossings of the first derivative
of the smoothed signal. The peak at the beginning of each network cycle was assigned a phase value of 0 and, at the
end, a phase value of 2p. Each spike was assigned a phase depending upon where it fell within the cycle and a vector
length of 1 starting from the origin. Then the vector sum of all the spike vectors constructed in this fashion was taken
and normalized by the number of vectors, resulting in a vector with an average phase and a length between 0 and
1. This measure quantifies the level of synchrony of the individual neurons with the population rhythm but gives no infor-
mation regarding the average level of participation in the oscillation, which we track separately as the average number of
spikes per cycle (SPC) normalized by the population size. Note that random peaks of spike rate can be detected in finite
networks even in the absence of network oscillations, for example, in random firing or in phase dispersion. In this case, the
vector length is close to 0, but the SPC still reflects the mean firing rate of the population. The advantage of the vector
length measure is that only the population raster plot is required to calculate synchrony and participation therefore we
used this measure for the heterogeneous, finite size network.

Software availability
https://github.com/RomanB22/NoisyInhibitoryNetwork.git

Results
Transitions to SPO in Type 2 model with current based synapses
In order to determine whether our model neurons are in the mean driven or fluctuation driven regime, we first need to

understand the bifurcation structure of Type 2 neurons that produce hysteresis in the frequency/current relationship.
There is a bistable range of injected currents for which either repetitive firing or quiescence can be observed, depending
upon whether the external bias current is stepped up such that the current steps become more depolarizing or stepped
down. In the Izhikevich Type 2model, there is a subcritical Andronov–Hopf (AH) bifurcation at I=0.2625 nA/cm2, and there
is a saddle node of periodics (SNP) bifurcation at I=0.1795 nA/cm2. The AH is simply the threshold at which repetitive
firing begins as the injected current becomes more depolarizing, and the SNP is simply the threshold below which repet-
itive firing (minimum value 27 Hz) cannot be sustained as the injected current becomes less depolarizing. The AH and SNP
are marked in the next three figures to show that above the AH the neuron is suprathreshold, between the AH and the SNP
the neuron is bistable, and below the SNP it is subthreshold. Figure 1 shows the transition from the stationary asynchro-
nous state to the SPO. In the stationary asynchronous rate (Fig. 1A), the mean firing rate of the population is stable over
time; an increase (decrease) from the mean firing rate recruits more (less) inhibition, which lowers (raises) the firing rate
back towards the mean. At relatively high noise levels, increasing the external bias current triggered a transition through
a population Hopf bifurcation to the SPO because the increased bias current increases the firing rate so much that the
additional inhibition recruited overshoots the mean rate, initiating an oscillatory cycle of overcorrections (Fig. 1B) with
small amplitude near the bifurcation. The oscillatory amplitude grows with distance from the bifurcation (Fig. 1C). The
Hopf bifurcation for single neurons described above is unrelated to the Hopf bifurcation that occurs at a population level.
However, in these subthreshold regimes, the noise overwhelms the intrinsic dynamics so that the excitability type does not
matter. The transition in Figure 1 for networks of Type 2 neurons is qualitatively similar to that found for networks of Type 1
neurons. The interspike interval histogram remains approximately exponential as the drive to the network is increased
(Fig. 1A1–C1), despite the emergence of an oscillation in the population rate (Fig. 1B2,C2) and in the averagemean current
(Fig. 1B4,C4, green curve). However, peaks at multiples of the oscillation period will always be observed if there is suffi-
cient data and the temporal resolution is sufficiently fine.
Figure 2 illustrates a different route to the SPO. In contrast to the transition shown in the previous figure, this transition is

gradual and does not involve a bifurcation. Figure 2A shows a coupled oscillator regime in which the mean current is well
below the threshold for repetitive firing. The concept of a spiking threshold does not strictly apply to neurons operating
near a subcritical Hopf bifurcation. Between the two thresholds (AH and SNP, see methods) there is a bistable region
of single neuron dynamics, in which either depolarization or hyperpolarization can trigger spiking because the stable rest-
ing potential is surrounded by an unstable limit cycle. Unlike the case for integrator neurons exhibiting Type 1 excitability

Research Article: New Research 6 of 17

March 2024, 11(3). DOI: https://doi.org/10.1523/ENEURO.0399-23.2024. 6 of 17

https://github.com/RomanB22/NoisyInhibitoryNetwork.git
https://github.com/RomanB22/NoisyInhibitoryNetwork.git
https://doi.org/10.1523/ENEURO.0399-23.2024


(Ermentrout, 1996; Rinzel and Ermentrout, 1998; Izhikevich, 2007), an inhibitory input can trigger a spike via postinhibitory
rebound (PIR), as shown in Figure 2A4. Here, not only does the average current remain below the bifurcations that deter-
mine the threshold for repetitive spiking, but also the instantaneous values of the total input current to a single neuron.
Thus, even though this is clearly a coupled oscillator regime, the mean current is not a reliable determinant of whether
the firing is “mean-driven” or fluctuation-driven. Other than the PIR nature of the coupled oscillator spiking, the transition
to the SPO for networks of Type 2 neurons is similar to that found for networks of Type 1 neurons. For the coupled oscil-
lator regime, the ISI distribution is a narrow Gaussian (Fig. 2A1), the population is tightly synchronized (Fig. 2A2,A3) and
neurons spike on every cycle (Fig. 2A4). As the noise increases, neurons begin to skip cycles, leading to the transition
regime in Figure 2B, with peaks in the ISI histogram (Fig. 2B1) at subharmonics of the population frequency corresponding
to skipped cycles, and a subthreshold oscillation in the membrane potential of individual neurons during a skipped cycle
(Fig. 2B4, light blue trace). Once the firing rate of individual neurons becomes sufficiently sparse, the peaks in the ISI his-
togram merge into a seemingly exponential distribution (Fig. 2C1) and firing in single neurons appears random (Fig. 2C2,
C4) despite a clear oscillation in the population rate (Fig. 2C3). As stated above, there is no bifurcation, only a gradual tran-
sition from a coupled oscillator regime to the SPO.
Figure 3 shows the transition from asynchrony to synchrony in the coupled oscillator regime. Consistent with previous

studies (Brunel and Hansel, 2006) and with Figure 1, the transition is via a supercritical Hopf bifurcation. At high levels of
noise and external bias current, individual neurons fire irregularly as evidenced by the ISI histogram (Fig. 3A1), the firing

Figure 1. Transition from stochastic population asynchrony to SPO in a Type 2 neuron with increasing bias current.A, Stochastic population asynchrony (Iext
= 0.4 nA).A1, ISI histogram.A2, Spike time histogram.A3, Raster plot (down sampled 71 neurons out of 3,000).A4. Current relative to bifurcations [red dashed
lines, AH Andropov–Hopf, SNP saddle node of periodics, total synaptic input current averaged over the network (green), and mean current for single neu-
rons (dark blue)]. Single neuron voltage trace (light blue).B, Emergence of SPO at the Hopf bifurcation (Iext = 1 nA). B1–4 as in A1–4. Spikes per cycle (SPC)
is 0.49.C, Beyond the Hopf, the oscillation amplitude increases (Iext = 1.6 nA).C1–4 as inA1–4. In all the three cases the synaptic strength is 7.94 nA and the
noise intensity is 3.16 nA. SPC is 0.59. All units are given per cm2.
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rate is stationary over time (Fig 3A2) and the raster plot shows the network is desynchronized (Fig. 3A3). The mean synap-
tic current (green curve in Fig. 3A4) is above both thresholds for repetitive firing. At the Hopf bifurcation, determined by the
mean-field analysis (Fig. 4A), the input to an individual neuron becomes sinusoidal (Fig. 3B4) and remains suprathreshold.
In this case, the firing rate was held constant at 30 Hz by decreasing the noise and bias current simultaneously. Decreasing
the noise allows the network to start firing in a correlated manner (Fig. 3B3), causing an oscillation in the population rate
(Fig. 3B2) that regularizes the ISI histogram, which is now centered around themean firing rate (Fig. 3B1). As the noise (and
bias current) are decreased further, a tight global synchrony emerges (Fig. 3C2,C3) with neurons firing very regularly, ev-
idenced by the narrow, approximately Gaussian ISI histogram (Fig. 3C1). The original theoretical work (Brunel and Hansel,
2006) examined a 2D parameter space of the standard deviation of the current noise and the strength of an individual
current-based inhibitory synapse, converted to units of voltage by multiplying by the membrane resistance (at rest).
The firingrate was kept constant by adjusting the mean level of excitatory external bias current as in Figure 3.
Figure 4 explains how the transitions between asynchrony and synchrony can be predicted using mean field theory,

which assumes all neurons in the network receive identical input. The oscillations in firing rate and oscillations in synaptic
current give the output and input of the network, respectively, and must be self-consistent as illustrated in Figure 4A and

Figure 2. Transition from coupled oscillator synchrony to SPO in a network of Type 2 neurons with increasing bias current and noise intensity. A, Coupled
oscillator synchrony due to postinhibitory rebound (noise intensity is 0.03 nA and bias current is 0.2 nA). A1. ISI histogram. A2. Spike time histogram. A3.
Raster plot (down sampled from 3,000 to 50).A4. Current relative to bifurcations [red dashed lines, AH Andropov-Hopf, SNP saddle node of periodics, total
synaptic input current averaged over the network (green), and mean current for single neurons (dark blue line)]. Single neuron voltage trace (light blue).
Spikes Per Cycle (SPC) is 1. B, Gradual transition via cycle skipping (noise intensity is 0.79 nA and bias current is 0.77 nA). B1–4 as in A1–4. SPC is
0.8. C, With sufficient noise, the SPO emerges (noise intensity is 3.16 nA and bias current is 1.5 nA). C1–4 as in A1–4. SPC is 0.58. In all the three cases
the synaptic strength is 7.94 nA and the mean firing rate is 30 Hz. All units are given per cm2.
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described in the Methods. ,) HR(v) and ,) HD(v) represent the phase lags for the rising and decaying exponentials in the
definition of the synapse; ,) HL(v)is the phase lag for the synaptic latency; ,) HN(v) is the phase lag for the neural model,
while |HS(v)| is the amplitude scale factor for the biexponential synapse with unitary conductance strength.
Figure 4B–D gives an example of the determination of the location of the Hopf bifurcation that gives rise to a SPO (see

Materials and Methods for detailed explanation). The neuronal phase shift for a low noise case ( Fig. 4B, blue curve) and a
high noise case (magenta curve) was calculated numerically by applying a sinusoidal drive to a single neuron (Fig. 4A) with
different contributions of a steady bias current and added noise to give the same mean firing rate of 30 Hz. The synaptic
phase shift (Fig. 4C) for a biexponential synapse is the same for both cases. The 180° phase shift for the sign inversion

Figure 3. Transition from coupled oscillator asynchrony to coupled oscillator synchrony in a network of Type 2 neurons with decreasing noise intensity and
bias current. A, At high noise, the asynchronous state has a stationary mean firing rate (noise intensity is 0.56 nA and bias current is 0.428 nA). A1. ISI
histogram. A2. Spike time histogram. A3. Raster plot (down-sampled to 71 out of 3,000 neurons). A4. Current relative to threshold. Threshold at the saddle
node (SN, red dashes) bifurcation, total synaptic input current averaged over the network (green), and mean current for single neurons (blue line).
B, Transition from network asynchrony to synchrony (noise intensity is 0.14 nA and bias current is 0.398 nA). B1–4 as in A1–4. Spikes per cycle (SPC)
is 0.98. C, Coupled oscillator synchrony (noise intensity is 0.05 nA and bias current is 0.359 nA). C1–4 as in A1–4. SPC is 0.99. In all the three cases
the synaptic strength is 0.16 nA and mean firing rate is 30 Hz. All units are per cm2.
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shown in Figure 4Awas combined with other two phase shifts in Figure 4D. A peak in the rate causes, with synaptic delay,
a peak in the absolute value of the inhibitory synaptic current. The current then decays to a minimum. After another delay,
which in is part dependent on the neuronal properties, the current minimum results in another peak in the rate. The timing
of the delays between peaks (or any part of the rate waveform) must equal the cycle period for global synchrony to exist.
Multiple current peaks in between rate peaks correspond to solutions in which subclusters fire one after the other in the
coupled oscillator regime. Global synchrony can arise when the oscillation in rate is phase locked 1:1 with the oscillation in
current and remains in phase with itself after traversing the loop in Figure 4A, meaning that the sum of the phase shifts
equals −360°. For the high noise case, the intersection is at 46.7 Hz. For the low noise case, the intersection at 31 Hz cor-
responds to a Hopf bifurcation for global synchrony (the intersection at −720 is a two-cluster solution [Brunel and Hansel,
2006)]. Figure 4E shows a spot check of themean field predictions (dashed curves) of the location of the Hopf bifurcation at

Figure 4. Hopf bifurcation between stochastic asynchrony and synchrony. A, Self-consistent criterion for an oscillation in population rate. The sum of the
phase shifts must equal −360°. B–D, Self-consistent phasic relationship for an oscillation in population rate. B, Numerically calculated neuronal phase
shifts with s=0.16 nA, for low noise and s=2.8 nA for high noise. Iext is adjusted to maintain a constant firing rate of 30 Hz. C, Analytically calculated
synaptic phase shift. D, The sum of the phase shifts must equal zero or a multiple of 360° (see Fig. 2) E, Projection of two curves onto the noise versus
synaptic strength plane. Prediction, simulation result. The points corresponding to Figures 2 and 3 are depicted in cyan and purple, respectively.
Dashed arrows depict transition in the synchronous region, full arrows correspond to asynchronous region. In E, we vary Iext for each (sC, J ) to keep
the mean firing rate constant. F, G, Finite-size scaling to find the Hopf bifurcation for Izhikevich model. F, Value of x(N) for the four sizes of the network
together with the fit of Equation 9. This fit gives a value of x1 for each J, s and Iext. In this case J=2 nA, s=2 nA and Iext = 2 nA. G, After finding x1, we
find the noise value that destabilizes the asynchronous state for each value of J and Iext. Thus, we end up with a set of values (J, Iext, sC) which determines
the Hopf bifurcation surface. J and Iext are as (in F). All units are given per cm2.
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two constant firing rates, (17 and 30 Hz), projected onto the plane of synaptic strength and standard deviation of the noise.
The neuronal phase shift and the transfer function were calculated from the largest Fourier coefficient (Richardson, 2008).
The mean field theory (dashed curves) accurately predicts the actual Hopf bifurcation (solid curves) in both the coupled
oscillator and SPO regimes. We also utilized a vector length method (dot-dashed curves) described in the Methods to
quantify the onset of synchrony at the bifurcation. The point at which the vector length exceeded 0.3 provided a reason-
able approximation to the Hopf bifurcation in Figure 4E. The transitions in Figures 2 and 3 were generated at a constant
firing rate of 30 Hz; thus they can be visualized in Figure. 4E. The cyan line shows the path from coupled oscillators to SPO
from Figure 2; all values are to the left of the Hopf bifurcation into asynchrony shown at 30 Hz by the green curve. The
purple line shows the transition in Figure 3 from a mode in which neurons are suprathreshold but asynchronous (coupled
oscillator asynchrony COA) to a coupled oscillator (CO) synchronous regime when the green curve is crossed from the left.
The solid curves in Figure 4E were obtained by applying the synchrony measure x(N) for networks of size N in Figure 4F
described in the Methods to find the synchronization index for an infinitely large network x1. The point at which this index
deviates from zero is the Hopf bifurcation (Fig. 4G). Hence this metric (as described in theMethods) was used to determine
the full 3D structure of the Hopf bifurcation surface (Fig. 5A) that separates synchrony from asynchrony.

Figure 5. Transitions in the full 3D parameter space. A, Bifurcation in the full 3D parameter space. The points corresponding to Figures 1–3 are depicted in
orange, cyan and purple, respectively. Dashed arrows depict transition in the synchronous region, full arrows correspond to asynchronous region.
B, Transition from coupled oscillator synchrony to SPO. The color code indicates the spikes per cycle (SPC), which is the average fraction of oscillation
cycles in which an individual neuron spikes. Population oscillations disappear on the upper surface of the colored region, which is the Hopf bifurcation
surface from a different perspective than that shown (in A). C, Plane depicting the low coupling region of the 3D space. The transition is from coupled os-
cillators synchrony (CO) to coupled oscillators asynchrony (COA). Total synaptic coupling is 0.16 nA.D, Plane depicting the high coupling region of the 3D
space. Total synaptic coupling is 7.94 nA. All units are given per cm2.
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The transition from the asynchronous stationary state to SPO from Figure 1 is shown as an orange curve in Figure 5A
and can also be visualized as a downward crossing of the contour of the top of the surface shown in Figure 5B; that man-
ifold is the Hopf bifurcation shown at a different angle from the one in Figure 5A.
The transition from coupled oscillators (including the PIR regime) from Figure 2 to SPO (cyan trace in Fig. 5A) is gradual

via cycle skipping. Figure 5B illustrates the gradual transition via cycle skipping shown in Figure 2 in the full 3D space as
the participation index (SPC) drops from yellow for full participation in which every oscillator participates in each cycle of
the population oscillation and decreases gradually (orange) as the SPO region (purple) is approached. The transition from
coupled oscillator to SPO (cyan trace) is also shown in the plane section in Figure 5D; the PIR region is marked for low
noise and low bias current, and TO stands for transitional oscillation with subharmonic peaks.
The transition from coupled oscillator asynchrony to synchrony from Figure 3 is shown in purple in Figure 5A. The SPC

measure is only defined for synchronous regions, thus the coupled oscillator asynchrony and stochastic population asyn-
chrony regions are not evident in Figure 5B. Figure 5C depicts a plane section of the bifurcation diagram in the low cou-
pling region and shows the transition in Figure 3 (purple curve) from a CO asynchronous to a CO synchronous state as the
Hopf bifurcation (black curve) is crossed.

Transitions to SPO in Type 2 model with conductance-based synapses are more robust to noise with
hyperpolarizing compared to shunting synapses
The results in the previous figures were all obtained with current-based synapses. We used conductance-based biex-

ponential synapses and a biologically calibrated model of the PV+ inhibitory interneurons with Type 2 excitability in layers
2/3 of the medial entorhinal cortex. Previous studies in the dentate gyrus suggested that the reversal potential of GABAA

synapses on PV+ fast spiking basket cells is shunting (Vida et al., 2006) rather than hyperpolarizing. However, a more
recent study (Otsu et al., 2020) suggests that in area CA1 the reversal potential can be quite variable. Figure 6A shows
the full 3D parameter space and the region of synchrony and asynchrony for both hyperpolarizing and shunting inhibition.
Similar to previous results for the coupled oscillator regime (Via et al., 2022), hyperpolarizing synapses are more strongly
synchronizing and are thus more robust to noise. The red dashed lines in Figure 6B4 and C4 explain the difference
between hyperpolarizing and shunting synapses. Hyperpolarizing synapses cause downward deflections in the
membrane potential towards the reversal potential (red dashed line in Fig. 6B4). In contrast, a shunting synapse does
not produce appreciable deflections in the membrane potential (reversal potential indicated by red dashed line in
Fig. 6C4), but only increases the conductance and resists deflections from that reversal potential. Figure 6B shows a
SPO in a network with synapses with a hyperpolarizing reversal potential of −75 mV and exhibiting an approximately
exponential ISI histogram (Fig. 6B1), an oscillation in population rate (Fig. 6B2), sparse firing (Fig. 6B3), and a random walk
in the membrane potential of individual neurons (Fig. 6B4). We then examined the case in which the reversal potential of
the inhibitory synapses was set to a shunting value of −55 mV. A SPO (Fig. 6C) was easily observed in this network.
Therefore, the SPO does not require hyperpolarizing inhibition. Nonetheless, the shunting synapses destabilize the

Figure 6.Hyperpolarizing inhibition ismore robust to noise than shunting inhibition for all values of coupling and external current.A, Bifurcation in the full 3D
parameter space for hyperpolarizing (blue) and shunting (magenta) inhibition. B, SPO for hyperpolarizing inhibition. Peak conductance is 66 nS. B1, ISI
histogram. B2. Spike time histogram. B3, Raster plot (down-sampled). B4, Membrane potential of a representative neuron.C, SPO for shunting inhibition.
Peak conductance is 412.5 nS. C1, ISI histogram. C2, Spike time histogram. C3, Raster plot (down-sampled). C4. Membrane potential of a representative
neuron. In both cases the noise intensity is 0.16 pA and bias current is 0.5 nA. Red dashed lines indicate the synaptic reversal potential.
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asynchronous regime for a lower noise level, whichmeans that the synchrony is less robust to noise for these synapses, both in
the coupled oscillator and the SPO regimes.
Figure 7 shows the participation (top) and frequency for the homogeneous network with hyperpolarizing and shunting con-

ductances. Consistent with Figure 6A, synchrony is more robust to noise with hyperpolarizing inhibition, as evidenced by the
taller columns in A compared to B. Participation is highest with low noise and falls off as noise is increased. The prevalence of
cool colors in the region in Figure 7A1 that supports synchrony for hyperpolarizing, but not shunting (Fig. 7A2), inhibition
shows that synchrony is preserved via sparse participation at high noise intensity. For comparable parameter values, net-
works with shunting inhibition exhibit greater participation than hyperpolarizing, except at low noise values, and generally
faster frequencies (Fig. 7B). Hyperpolarizing inhibition displaces the membrane potential and time is required for the mem-
brane potential (and therefore the firing rate) to recover after an inhibition, lengthening the cycle period. At a given synaptic
reversal potential, frequency appears to be largely independent of the conductance value and applied current value but is
determined by the noise level. Figure 4B1 shows that increasing noise makes the dependence of the neuronal phase lag
on frequency less steep, resulting in an intersection with the −360 line at higher frequencies as in Figure 4B3.

Uniform distribution in reversal potential is less stable than hyperpolarizing for a homogeneous network
According to a recent study, the reversal potential of somatically evoked GABAAR-mediated currents for PV+ interneurons

inCA1 is distributed from−55 to−75 mV, in an approximately uniformway (Otsuet al., 2020). There is also a somatic-dendritic

Figure 7. Participation and frequency in homogeneous networks of Type 2 interneurons with hyperpolarizing compared to shunting inhibition.
A, Participation is quantified as the fraction of the population that participates on average in each oscillation cycle, or spikes per cycle (SPC). B, The
oscillation frequency in general remains in the fast gamma regime.
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gradient within the PV+ cells, which justifies varying the synapses projecting to a single neuron (Otsu et al., 2020). Thus, we
compared networks with either homogeneously hyperpolarizing or shunting synapses to a network with uniform distribution
between the two extremes. Figure 7 shows that although the hyperpolarizing synapses are still the most synchronizing
ones (Fig. 7A,B) across all the parameter space, a uniform combination of shunting and hyperpolarizing synapses is
not always more synchronizing than shunting (Fig. 7A,B). For a region with low total synaptic coupling (below around
2–2.5 nS) the uniform distribution of reversal potentials is more stabilizing than shunting, whereas the opposite occurs
above these values (Fig. 7B).

Biophysically realistic network
The results in Figures 4–8were obtained for homogeneous networks because their properties can be analyzed precisely

in the limit of an infinite network. In order to show that the same general principle applies to a biophysically realistic
network, we constructed a model of layer 2/3 PV+ interneurons that captures the measured heterogeneity in the electro-
physiological properties of these neurons (Via et al., 2022) as well as the variability in synaptic connectivity. Both connec-
tion probability and connection strength were randomized as described in the Methods section on the Heterogeneous
Network. We ran ten simulations at each noise value for the measured average synaptic conductance value (1.65 nS)
and for an average five times larger (8.25 nS) to ensure that we sampled the SPO regime (point B in Fig. 9A with the ISI
distribution, population spike time histogram and down-sampled raster plot in Fig. 9B1–3). For each of the two conduc-
tance values, hyperpolarizing inhibition was the most strongly synchronizing in the presence of noise, whereas shunting
inhibition was the least effective, with a uniform distribution at an intermediate level of synchrony between the two ex-
tremes. Increasing the conductance for hyperpolarizing and uniformly distributed conductances always increased the
vector length, whereas for shunting it decreased the vector length. A Kruskal–Wallis test showed that the medians of
the distributions at each noise and conductance level differed in every case for the three types of inhibition with a p <
4 × 10−6, and a post hoc pairwise Wilcoxon test showed pairwise differences in every case with p < 4 × 10−05.

Discussion
Type 2 networks with current-based synapses
The transitions in Figures 1 and 3 cross the border between asynchrony and synchrony to the SPO regime and to the

coupled oscillator regime, respectively, and are equally well predicted by mean field theory (Fig. 4E). Another transition
does not involve a bifurcation but instead involves a gradual increase in cycle skipping by which coupled oscillator neu-
rons that fire early in a cycle suppress some of the other neurons on that cycle (Fig. 2), until the inhibition is so strong that
neurons participate only sparsely and apparently randomly. A somewhat counterintuitive finding is that in “mean-driven”
coupled oscillator regimes, the mean current can be subthreshold (Fig. 2A). The bifurcations and gradual transitions ob-
served in networks of inhibitory neurons with Type 2 excitability parallel those in networks with Type 1 excitability (Brunel
and Hansel, 2006).

Networks with conductance-based synapses
The transitions described in the preceding paragraph for current-based synapses generalize to conductance-based

synapses. The representation of an inhibitory synapse by an outward current waveform implicitly assumes a hyperpolar-
izing synapse. Using conductance-based synapses introduces an additional parameter, that of the synaptic reversal
potential, which is neglected in the studies with current based synapses. Although shunting synapses do not carry the
hyperpolarizing currents upon which the SPO theory is based, networks with shunting synapses nonetheless exhibited
SPOs (Fig. 6C). Moreover, the synaptic reversal potential parameter EGABA,A exerts a powerful influence on synchronizing
tendencies, consistent with previous studies (Wang and Buzsáki, 1996; Proddutur et al., 2013). In coupled oscillator net-
works, we have shown that the phase response curves (PRC) of experimentally calibrated models of PV+ interneurons
explain why hyperpolarizing synapses are more strongly synchronizing than shunting synapses (Via et al., 2022) (provided
there are synaptic delays in the physiological range of 1 ms), in contrast to a previous study (Vida et al., 2006). Specifically,
if all other parameters are held constant at sufficiently strong synaptic conductance value, the PRC for hyperpolarizing
inhibition exhibits monotonically increasing delays with a slope of one, whereas the PRC for shunting inhibition is rather
flat (Via et al., 2022). The slope of the PRC at the locking point determines how quickly perturbations from synchrony decay
or grow, and the PRC for strong hyperpolarizing ismaximally stabilizing. Intuitively, the inhibition brings the neuron to equi-
librium near the synaptic reversal potential such that the memory of the previous phase is erased, and there is a constant
rebound interval until the next spike. This results in a linear PRC with a slope of one, which, as stated above, is maximally
stabilizing. The present study extends these results that hyperpolarizing synapses are more strongly synchronizing to the
SPO regime. We hypothesize that the synchronizing tendencies in the coupled oscillator regime persist in the SPO regime
for Type 2 neurons because their resonant properties endow them with a preferred frequency (near the minimum fre-
quency that can sustain repetitive spiking) even in the subthreshold regime. Under this scenario, the synchronizing ten-
dencies of their PRCs are still relevant.
The blue Hopf bifurcation curves in Figure 8B for hyperpolarizing synapses have an inflection point at which the

slope flattens out. We suspect that this is due to the saturating effect of hyperpolarizing conductance-based
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synapses. Whereas outward current synapses can cause an unlimited amount of hyperpolarization, conductance-
based synapses cannot hyperpolarize the membrane potential beyond the reversal potential (−75 mV here), and
therefore saturate. The green curves for a uniform distribution of firing rates also have an inflection point, but it occurs
at higher values of conductance strength and is not as pronounced, likely due to the presence of shunting synapses as
well as hyperpolarizing. The red curves for shunting inhibition (−55 mV) do not have an inflection point in the regime
studied and have a slope intermediate between the steep and flat portions of the green curve, which results in the in-
tersection points in which robustness of these two synaptic distributions to noise is reversed. At high levels of bias
current, the membrane potential of individual neurons in the model may become sufficiently depolarized that syn-
apses with a reversal potential of −55 mV have a small hyperpolarizing effect, which could be a potentially nonphy-
siological confound in our analysis.

Heterogeneity
Previous theoretical studies used temporal heterogeneity in that individual neurons receive distinct current noise, as we

did in Figures 4–8. Actual inhibitory interneurons are heterogeneous in the synaptic connectivity, their passive and active
properties (Fernandez et al., 2022; Via et al., 2022). We honored this heterogeneity in Figure 9 and found that hyperpolar-
izing inhibition rendered synchrony in the heterogeneous networkmore robust to noise. This builds upon our earlier results
that hyperpolarizing inhibition is better at synchronizing heterogeneous inhibitory interneurons in the coupled oscillator
regime. Modeling the dendritic locus of inhibitory synaptic input makes interneurons more robust to heterogeneity
(Kriener et al., 2022).

Increasing gamma synchrony as therapeutic strategy
PV+ fast spiking inhibitory interneurons have been shown to mediate gamma synchrony (Bartos et al., 2007; Cardin

et al., 2009; Sohal, 2022). In some cases, the gamma oscillations can be supported by inhibitory interneurons alone
(Vinck et al., 2013, 2015, 2016) as in the computational examples in the current study, although there is frequently an
interplay between inhibitory and excitatory cells (Tiesinga and Sejnowski, 2009). There is mounting evidence to suggest
that enhancing gamma synchrony may have multiple therapeutic benefits. Optogenetic stimulation of entorhinal cortex
perforant path engram cells at high-gamma (100 Hz) frequency rescued memory impairments in a mouse model of AD
(Roy et al., 2016). Moreover, gamma oscillations can also affect molecular pathology; entrainment of gamma in the visual
cortex by 40 Hz flickering light and by optogenetic stimulation of PV+ interneurons in hippocampal area CA1 in a mouse
model of AD reduces Aβ levels in those respective areas (Iaccarino et al., 2016).

Figure 8.Uniform distribution of reversal potential is less robust than hyperpolarizing for all values of bias current, noise and coupling, and less robust than
shunting for high synaptic coupling. A, Bifurcation in the full 3D parameter space for hyperpolarizing (blue), shunting (magenta) inhibition and uniform dis-
tribution (green) for reversal potential between −55 and −75 mV. B, Hopf bifurcation in the total synaptic coupling versus noise intensity for external bias
current equal to 0.5 nA (full line) and 0.6 nA (dashed line) for hyperpolarizing (blue), shunting (magenta) and uniform distribution (green). For synaptic cou-
pling higher than 250 nS (for 0.6 pA of bias current) and 300 nS (for 0.5 pA), a uniform distribution in synaptic reversal potential is less robust than shunting
reversal potential.
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In a coupled oscillator regime, enhancing gamma synchrony could involve targeting specific intrinsic ion channels to
fine tune the phase resetting properties. Regardless of the oscillatory mechanism, this study shows that the reversal
potential for GABAA receptor chloride channels is a likely therapeutic target to enhance gamma synchrony. However, it
seems likely that the synaptic reversal potential is heterogeneous across synapses (Blaesse et al., 2009; Otsu et al.,
2020). If we assume a physiological network with the synaptic reversal potential distributed uniformly between the
two extreme values, then manipulations to reduce internal Cl− concentrations in PV+ interneurons should increase
gamma synchrony, because networks with purely hyperpolarizing synapses synchronize more robustly than those
with a uniform distribution (Fig. 8).

Implementation of therapeutic strategies
In mature neurons, the reversal potential of the GABAA synapses is thought to be determined by the expression of

anion cotransporters, primarily KCC2 (Blaesse et al., 2009). However, bicarbonate ions also flow through GABAA

channels, causing the reversal potential of GABAA to be more depolarized than the reversal potential for chloride
ECl (Blaesse et al., 2009). One caveat in designing therapies to modify ECl is that chloride microdomains due to the
inhomogeneous distribution of anionic polymers such as actin, tubulin, and nucleic acids (Rahmati et al., 2021)
may exert a strong local influence on ECl. There is growing evidence that a defective ratio of chloride importer
NKCC1 and chloride exporter KCC2 is present in several neurodevelopmental conditions (Savardi et al., 2021).
Since these cotransporters are fundamental in the regulation of neuronal chloride concentration, therapies focused
on restoring chloride homeostasis, and hence modifying EGABA,A, could have an impact in restoring core symptoms
of several disorders. For example, (Parrini et al., 2021) showed that reducing NKCC1 expression in a Ts65Dn mouse
model of Down syndrome restores the intracellular chloride concentration, efficacy of GABA-mediated inhibition,
and neuronal networks dynamics, rescuing cognitive deficits as well. Thus, although there are many technical chal-
lenges to selectively targeting the reversal potential for GABAA synapses selectively in PV+ inhibitory interneurons,
this strategy could have powerful implications for gamma synchrony and its potential role in reversing cognitive
impairment.

Figure 9.Comparison of different kinds of inhibition in a heterogeneous network.A, Average vector length at different noise levels. Shaded area shows the
standard error of the mean. Dashed lines are for the weaker conductance value. The labels are in the same order as the traces. B, SPO. B1, ISI histogram.
B2, Spike time histogram. B3, Down-sampled raster.
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