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A B S T R A C T   

Hyperglycemia can cause early damage to human bady and develop into diabates that will severely threaten 
human healthy. The effectively clinical treatment of hyperglycemiais is by inhibiting the activity of α-amylase. 
Black tea has been reported to show inhibitory effect on α-amylase and can be used for hyperglycemia treatment. 
However, the mechanism underlying is unclear. In this study, in vivo experiment showed that black tea thea-
flavins extract (BTE) effectively alleviated hyperglycemia. In vitro experiment showed that the effects may be 
caused by the interation between theaflavins and α-amylase. While TF1 and TF3 were mixed type inhibitors of 
α-amylase, TF2A and TF2B were competitive inhibitors of α-amylase. Molecular docking analysis showed that 
theaflavins monomers interacted with the hydrophobic region of α-amylase. Further study verified that mono-
mer-α-amylase complex was spontaneously formed depending on hydrophobic interactions. Taken together, 
theaflavins showed potential anti-hyperglycemia effect via inhibiting α-amylase activity. Our results suggested 
that theaflavins might be utilized as a new type of α-amylase inhibitor to prevent and cure hyperglycemia.   

1. Introduction 

As the International Diabetes Federation 2023 reported, 10.5% of 
adults that aged 20 to 79 are suffering from diabetes and is estimated to 
reach 11.3% by 2030 and 12.2% by 2045. Type II diabetes has been 
linked mostly to postprandial hyperglycemia, therefore the prevention 
of high blood glucose is of great importance in prevention of diabetes. 
α-amylase is an important digestive enzyme by converting carbohy-
drates into oligosaccharides through cleavaging internal α-D-(1–4) 
glyosidic bonds (Fettach et al., 2019; Sales, Souza, Simeoni, Magalhães, 
& Silveira, 2012), finally contribute to the increase peaks of post-
prandial glucose(Lin et al., 2023). Usually, treatment for hyperglycemia 
mainly focuses on stimulating insulin secretion from the β-cells of 
pancreatic islets, inhibiting the insulin degradation process, repairing or 
regenerating pancreatic beta cells, and inhibiting the activity of starch 
hydrolases, α-amylase or α-glucosidase(Jarald, Joshi, & Jain, 2008). 
Therefore, α-amylase inhibitors that can effectively reduce glucose level 
has been suggested as a potential treatment for hyperglycemia(Magaji, 
Sacan, & Yanardag, 2020). Some α-amylase inhibitors have been 

developed into anti-hyperglycemia drugs, such acarbose and miglitol 
(Jung et al., 2020). However, there are many side effects caused by the 
current use of these drugs, such as weight gain, gastrointestinal disor-
ders, and allergic reactions(Das et al., 2021). Interestingly, plants are 
rich in phenolic substances that can be used as α-amylase inhibitors to 
reduce glucose level without any side effects(Gandhi et al., 2020) (Lim, 
Yu, Lee, Choi, & Kim, 2021) (Tan, Chang, & Zhang, 2017) and are 
believed to have good prospects in the field of hyperglycemia treatment. 

Theaflavins are important bioactive compounds in black tea, even 
though they only account for 2–20 g/kg(dry weight)(Sang et al., 2004), 
they contribute a lot to the distinctive flavor along with the health ad-
vantages offered by black tea (Bhuyan, Borah, Sabhapondit, Gogoi and 
Bhattacharyya, 2015) (Sharma & Rao, 2009). >20 theaflavins have been 
identified, of which theaflavin (TF1), theaflavin-3-gallate (TF2A), 
theaflavin-3-gallate (TF2B) and theaflavin-3,3′-digallate (TF3) are the 
four characteristic structures(J. Teng et al., 2017). Apparently, there 
have been reported that black tea showed antidiabetic effects and 
contributed to the regeneration of Diabetes-induced mice's pancreatic 
cells were treated with streptozotocin (STZ) (J. Teng et al., 2017) 
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(Gomes, Vedasiromoni, Das, Sharma, & Ganguly, 1995). Further results 
verified that oral administration of theaflavins from black tea signifi-
cantly inhibited body weight gain, lowered blood sugar and enhanced 
tolerance to insulin (Cai et al., 2021). However, further in-depth studies 
are necessary for the elucidation of the mechanism underlying thea-
flavins' anti-hyperglycemic activity. 

In recent years, in-silico techniques have been favored by new drug 
development workers. Molecular docking is an exemplary tool to iden-
tify the intermolecular framework of ligand–protein, protein–nucleic 
acid, and protein–protein complexes (Singh, Bhardwaj, Sharma, Pur-
ohit, & Kumar, 2022). Some researchers have sought inhibitors of the 
SARS-CoV-2 from tea by molecular docking to treat COVID-19 (Bhard-
waj et al., 2021) (Singh et al., 2022) (J. Sharma et al., 2021) (Singh, 
Bhardwaj, & Purohit, 2021) (Chauhan et al., 2022). An successful in- 
silico model will help to obtain better understand of theaflavins' inhib-
itory activity against α-amylase and provide new explaination on the 
anti-hyperglycemic effects of black tea. 

This study fully explored the potential α-amylase inhibitors of the-
aflavins and further elucidated the underlying mechanisms. Here we 
evaluated the anti-hyperglycemic effect of black tea theaflavins extract 
(BTE) on diabetic mice. The inhibition effect of BTE and four theaflavins 
monomers on α-amylase was further investigated. The interaction 
mechanism between theaflavins and α-amylase was explained by mo-
lecular docking, Ultraviolet-Visible Absorption Spectroscopy, and 
Fluorescence Spectroscopy. Theaflavins in black tea were found to have 
the potential to successfully lower blood glucose levels by blocking the 
activity of α-amylase. As such, they can be utilized as natural α-amylase 
inhibitors in treating hyperglycemia. 

2. Materials and methods 

2.1. Chemical and reagents 

BTE (total theaflavins>68% including 7.41% TF1, 17.4% TF2A, 
6.63% TF2B and 36.57% TF3) was extracted from black tea and pro-
vided by Hunan Agricultural University (Changsha, China). TF1 (HPLC 
≥98%), TF2A (HPLC ≥98%), TF2B (HPLC ≥98%), TF3 (HPLC ≥98%), 

STZ (HPLC ≥98.5%) and α-Amylase (A109181, 2100 U/mL) were pur-
chased from Aladdin Biotechnology Co., Ltd. (Shanghai, China). 3,5- 
Dinitrosalicylic acid (DNS) and soluble starch were purchased from 
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). 

2.2. Animal treatment 

The animal study was carried out according to a previous study 
(Nakatsuru et al., 2018). All operations were carried out in compliance 
with Hunan Agricultural University's Guidelines for Care and Use of 
Laboratory Animals and were authorized by the Animal Ethics Com-
mittee of Hunan Agricultural University. SPF-grade male 4-week-old 
ICR mice (18 ± 2 g) purchased from Hunan SJA Laboratory animal 
Co., Ltd. (Changsha, China) were housed under standard conditions with 
a strict 12 h light/dark cycle specific pathogen-free animal laboratory 
(humidity at 50 ± 15%, temperature 22 ± 2 ◦C). All mice were provided 
with basal diet and pure water. 

STZ is a broad-spectrum antibiotic with antitumor, carcinogenic, and 
diabetogenic properties. It was isolated from Streptomyces achromogenes 
in the 1960s and has since been shown to have diabetogenic properties 
(Gomes, Vedasiromoni, Das, Sharma, & Ganguly, 1995b). Therefore, 
STZ was selected to establish diabetes mice model. Following a week of 
accommodation, the mice were divided into two groups randomly 
(Fig. 1). Control group (n = 10): mice were fed ad libitum. STZ-induced 
diabetic mice(Furman, 2021): >30 health mice were fed ad libitum, 
provided pure water and injected with STZ 150 mg/kg/d. Fasting blood 
glucose test was performed after 72 h. Once blood glucose level excee-
ded 16.8 mmol/L, the mice were selected as STZ-induced diabetic mice 
for the next stage of experiments. 

Next, STZ-induced diabetes mice were randomly assigned to three 
groups. Model group (n = 10): mice were fed ad libitum. Positive Con-
trol (PC) group (n = 10): mice were fed ad libitum and oral gavage with 
glipalamide 20 mg/kg/d. BTE group (n = 10): mice were fed ad libitum 
and oral gavage with BTE 200 mg/kg/d. Control groups were fed ad 
libitum at the same time. 30 days later, mice in all of the four groups 
fasted for 12 h and then were weighed and executed by cervical dislo-
cation. The blood and liver tissues were collected and stored at − 80 ◦C. 

Fig. 1. Timeline depicting the diet of BTE or ad libitum in each group.  
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2.3. α-amylase activity test 

The described approach was followed in determining the α-amylase 
activity (Little et al., 2022). Before the experiment was conducted, BTE 
(0.75, 1, 1.25, 2, 2.5 mg/mL), TF1, TF2A, TF2B, TF3 (1, 10, 50, 100, 250 
μg/mL respectively), and acarbose (1, 10, 100, 250, 1000 μg/mL) so-
lutions were prepared in phosphate buffered saline (PBS). In the first 
step, 1.0 mL BTE, theaflavins monomers and acarbose were added to 
0.35 mL of α-amylase solution (10 U/mL) and incubated at 37 ◦C for 5 
min, respectively. Then, 0.4 mL soluble starch solution (1%) was added 
and incubated at 37 ◦C for 15 min. Finally, 0.5 mL DNS was added and 
maintained at 100 ◦C for 5 min. The absorbance was measured at 540 
nm by microplate reader (Thermo Scientific, Multiskan FC, USA). 
Deionized water was used as sample negative control and control blank, 
acarbose was used as positive control. Inhibition rate of α-amylase was 
calculated following Eq. 1. 

Inhibition rate = [1 − (A1–A2)/(A3 − A4) ]× 100% (1) 

A1: the absorbance of sample reaction, A2: the absorbance of sample 
negative control, A3: the absorbance of control reaction, A4: the absor-
bance of control blank. 

2.4. Inhibitory kinetic assay 

The Michaelis-Menten kinetics analysis was determined based on 
earlier research (Li et al., 2021). 0.35 mL α-amylase solution (10 U/mL), 
0.35 mL α-amylase solution (10 U/mL) with theaflavins or TF1, TF2A, 
TF2B, TF3 were incubated at 37 ◦C for 5 min, respectively. Then, 0.5%, 
1.0%, 1.5% and 2.0% soluble starch solution was added and the mixed 
solutions were maintained at 37 ◦C for 15 min. Finally, 0.5 mL of DNS 
reagent was added and maintained at 100 ◦C for 5 min. The absorbance 
was measured at 540 nm by microplate reader. The inhibition kinetics of 
α-amylase was calculated by Eq. 2. 

V = Vmax[s]/(Km + [s] ) (2) 

V: the starting reaction velocity (mg/L/min), [S]: the starch solution 
concentration (mg/mL), Vmax: the maximum reaction velocity (mg/L/ 
min), Km: the α-amylase Michaelis–Menten constant (mg/mL). 

2.5. Molecular docking analysis 

The molecular docking analysis was carried out according to a pre-
vious study(Wang et al., 2012). α-Amylase (PDB: 1BVN)(Deng, 2021) 
structure was obtained from the Protein Data Bank (PDB: https://www. 
rcsb.org/). The molecule structures of inhibitors (TF1, TF2A, TF2B and 
TF3) were drawn using ChemDraw 20.0 (PerkinElmer Informatics, 
Boston, MA, USA). Autodock 1.5.7 (Scripps Research Institute, San 
Diego, CA, USA) and PyMOL 2.2.0 (DeLano Scientific LLC, South San-
Francisco, CA, USA) were used to predict the interaction sites between 
α-amylase and inhibitors. Before the formal molecular docking opera-
tion began, the α-amylase molecule was treated with PyMOL to remove 
solvents and small molecules and then together with the inhibitors were 
subjected to hydrogenation and charge calculations using Autodock. As 
for TF1, docking simulations was carried out in a computation grid box 
at the active site of the enzyme with x, y and z dimensions of 78.0, 66.0 
and 68.0. The x, y and z center dimensions were 18.205, 10.849 and 
41.797. As for TF2A, docking simulations was carried out in a compu-
tation grid box at the active site of the enzyme with x, y and z dimensions 
of 79.333, 79.333 and 79.333. The x, y and z center dimensions were 
17.282, 11.599 and 39.260. As for TF2B, docking simulations was car-
ried out in a computation grid box at the active site of the enzyme with x, 
y and z dimensions of 82.0, 60.0 and 62.0. The x, y and z center di-
mensions were 17.282,11.599 and 39.26. As for TF3, docking simula-
tions was carried out in a computation grid box at the active site of the 
enzyme with x, y and z dimensions of 116.0, 86.0 and 82.0. The x, y and 
z center dimensions were 0.185, 0.212 and 38.002. The results were 

visualized by Discovery Studio 2021 (Dassault Systèmes, Concord, MA, 
USA). 

2.6. Ultraviolet-visible absorption spectroscopy analysis 

The Ultraviolet-Visible Absorption Spectroscopy was carried out 
using PerkinElmer LAMBDA 365 (Waltham, MA, USA) according to a 
previous study(Shi, Pan, Jiang, Liu, & Wang, 2016). α-amylase (10 U/ 
mL) and TF1, TF2A, TF2B or TF3 (0.3 mg/mL) were mixed to form the 
monomer-α-amylase system, respectively. The UV–Vis absorption 
spectra of the monomer-α-amylase system was scanned in the range of 
190–800 nm. 

2.7. Fluorescence spectroscopy analysis 

Fluorescence Spectroscopy was carried out using a fluorescence 
spectrophotometer (Vaikhan LUX, Thermo Fisher Scientific, Waltham, 
MA) according to a previous study(Lv et al., 2022). 50 μL α-amylase (10 
U/mL) was mixed with TF1, TF2A, TF2B or TF3 (10 μg/mL-200 μg/mL) 
at 298 K, 303 K and 310 K to form the monomer-α-amylase system, 
respectively. The fluorescence spectra of the monomer-α-amylase sys-
tem was determined at 278 nm wavelength with a scanning range of 
290-450 nm. The thermodynamic parameters (ΔH and ΔS), quenching 
rate constant (Ksv), binding constant (Ka) and the number of binding 
sites (n) were calculated by Eq. 3- Eq. 6. 

FO/F = 1+Kqτ0[L] = 1+Ksv[Q] (3)  

Log(FO − F)/F = Logkb + nLog[Q] (4)  

InKa = − ΔH/RT +ΔS/R (5)  

ΔG = ΔH − TΔS (6) 

F0 or F: the fluorescence intensities in the presence or absence of TF1, 
TF2A, TF2B and TF3, [Q]: the concentration of TF1, TF2A, TF2B and 
TF3, τ0: the constant of the lifetime of the fluorophore (10− 8 s), ΔH: 
changes in enthalpy of the system, ΔS: changes in entropy of the system, 
R: the gas constant of 8.31 J (mol K) − 1. 

2.8. Statistical analysis 

All the data analysis was performed with the SPSS 20.0 (Chicago, IL, 
USA). Statistical significance between groups employed the one-way 
ANOVA coupled with the Tukey and LSD multiple comparison tests. 
Figures were generated using GraphPad Prism 8.0.1 (San Diego, CA, 
USA). Results were expressed as Mean ± SD (standard deviation). 

3. Results and discussion 

3.1. Anti-hyperglycemic effect of BTE on STZ-induced diabetic mice 

As can be seen from Fig. 2, the blood glucose level in the model group 
was 28.001 mmol/L (>16.8 mmol/L). This indicated that the diabetic 
mice model was established successfully. The body weight, blood 
glucose, liver glycogen content and plasma insulin levels of different 
groups were recorded. Compared with normal mice, the blood glucose of 
diabetic mice increased (p < 0.01) while the body weight, plasma insulin 
levels and liver glycogen content of them decreased (p < 0.01). The 
administration of BTE caused a significant change in body weight, 
plasma insulin levels, liver glycogen content and blood sugar, indicating 
that BTE showed effective anti-diabetic activity and that effect was 
comparable to that of glipalamide. These findings were consistent with 
previous study(Li et al., 2021). Gomes et al. reported that STZ treated 
animals showed rapid normalisation in blood glucose level after 
receiving tea extract indicating the tea treated animals overcome the 
toxic effect of STZ(Gomes et al., 1995b). Similarly, Matsui et al. (Matsui 
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et al., 2007) demonstrated that theaflavin-3-gallate had a stronger 
inhibitory effect on the elevation of blood glucose in rats fed maltose. 
Reported data also provided some explanations for the above results. 
Theaflavins were believed to show anti-hyperglycemic activity by 
inducing insulin secretion (Abeywickrama, Ratnasooriya, & Amar-
akoon, 2011), increasing the activity of insulin-degrading enzymes 
(Abeywickrama et al., 2011), stimulating insulin receptor correlated 
signaling pathways(Shoji & Nakashima, 2006) (Wootton-Beard & Ryan, 
2011). However, none of the above studies has fully clarified the un-
derlying mechanisms of theaflavins' hypoglycemic effect. 

3.2. Inhibition kinetics of α-amylase against BTE and the theaflavins 
monomers 

The inhibitory activity on α-amylase of the five compounds 
decreased as follows: TF3 (IC50 = 48.69 μg/mL) > TF2B (IC50 = 57.37 
μg/mL) > TF2A (IC50 = 63.47 μg/mL) > TF1 (IC50 = 71.43 μg/mL) >
acarbose (IC50 = 267.89 μg/mL)(See Fig. 3). This finding was basically 
consistent with previous report that the inhibition of α-amylase activity 
by tea polyphenols with gallate groups was higher than that of tea 
polyphenols without gallate groups(Sun, Warren, Netzel, & Gidley, 
2016). Compared with TF1, which has (E)C as the structural unit, the 
other theaflavins monomers have one additional hydroxyl group on the 
B ring and galactoacyl groups at C3. We speculated that this can partly 
explain the order of theaflavins monomers' inhibitory activity on 
α-amylase. Besides, previous reports also have found that the inhibitory 
effect of polyphenolic compounds on α-amylase are closely affiliated the 
hydrogen bonds that formed between the -OH groups in the compounds 
and the amino acids in the α-amylase side chain(Kawamura-Konishi 
et al., 2012). The inhibitory activity of a polyphenols also depended on 3 
and/or 3’galloyl (GM) in their molecular structures(Sun, Gidley, & 

Warren, 2017). Tea polyphenols that consist GM in the C-ring enhanced 
their binding to α-amylase, thereby increased their inhibitory activity 
against the enzyme(Sun, Warren, et al., 2016). The role of GM in the 
binding of tea polyphenols to α-amylase attributed to form the hydrogen 
binds and π stacks (Cao et al., 2020). 

In a word, BTE and the theaflavins monomers could effectively 
inhibit the activity of α-amylase and are promising α-amylase inhibitors. 
Their effects are closely related with gallate groups in the inhibitors' 
molecular structure. 

3.3. Michaelis-Menten kinetics analysis of α-amylase against TF1, TF2A, 
TF2B, TF3 

The activity of enzyme is influenced not only by their own spatial 
structure, but also by the structure of the inhibitor molecule(Kroll, 
Rawel, & Rohn, 2003). In enzymatic reactions, when the substrate and 
inhibitor compete for the same enzyme binding site, the inhibitor can 
dramatically alter the binding between the enzyme and the substrate 
and show a competitive inhibition effect. When the inhibitor and the 
substrate can bind to the enzyme at the same time, which indicate there 
is no competition between them, the inhibitor show a non-competitive 
inhibition effect. The inhibition type of compound against α-amylase 
was determined by using Lineweaver-Burk double reciprocal plots. 
When the Lineweaver-Burk plots of compound with different concen-
trations had an intersection at y axis, indicating that there was no 
change of Vmax. Meanwhile, the Km increased as inhibitor concentra-
tions increased. The compound was a competitive inhibitor against 
α-amylase (Yaqin et al., 2018). When the Lineweaver-Burk plots of 
compound with different concentrations had an intersection at x axis， 
indicating that there was no change of Km. Meanwhile, the Vmax 
decreased as inhibitor concentrations increased. The compound was a 
non-competitive inhibitor against α-amylase (Martinez-Gonzalez, Díaz- 
Sánchez, de la Rosa, Bustos-Jaimes, & Alvarez-Parrilla, 2018). When the 
curves met at the third quadrant of the figure, indicating that the Vmax 
and Km values decreased with the increasing inhibitor concentration, 
the compound exhibited a mixed-type non-competitive inhibition of 
α-amylase(L. Wang et al., 2018). 

As can be seen from Fig. 4, the lines of the inhibition plot were not 
intercepted with the concentration of TF1 on either the vertical or 
horizontal axis. When the concentration of TF1(Fig. 4a) and TF3 
(Fig. 4d) increased, Vmax and Km decreased, indicating that both TF1 
and TF3 inhibit activity of α-amylase in a mixed manner. Meanwhile, 
Vmax remained constant and Km increased when the concentration of 
TF2A (Fig. 4b) and TF2B (Fig. 4c) increased, suggesting that TF2A and 
TF2B are both competitive inhibitors of α-amylase. These results are 
identical to previous studies(Sun et al., 2016). When TF2A or TF2B 
binded to α-amylase, the EI-complex formed due to the competitive in-
hibition. While, TF1 or TF3 formed the ES-complex with α-amylase and 
further formed the ESI-complex due to the uncompetitive inhibition. 
α-Amylase activity was inhibited by those mixed effects. Previous 
studies also have reported similar results(Gong et al., 2020). Different 
theaflavins (TF1, TF2A, TF2B, TF3) exhibited different inhibition 
modes, which attributed to a decrease in the substrate binding affinity of 
α-amylase after the inhibitor bound to this site(Narita & Inouye, 2011). 

To clarify the inhibitory mechanism of theaflavins monomers on 
α-amylase, further studies were conducted by molecular docking anal-
ysis, UV–Vis spectroscopy, and fluorescence spectroscopy. 

3.4. Molecular docking of α-amylase with TF1, TF2A, TF2B, and TF3 

Molecular docking has been extensively employed to look into the 
connections bridging organic substances and macromolecular com-
pounds(Miao, Jiang, Jiang, Zhang, & Li, 2015). Results showed that TF1, 
TF2A, TF2B and TF3 had low binding energy to bind with α-amylase: 
TF2B (− 9.4 kcal/mol) < TF3 = TF2A (− 9.0 kcal/mol) < TF1(− 8.6 kcal/ 
mol). These results indicated that TF1, TF2A, TF2B and TF3 had high 

Fig. 2. Effect of the BTE on STZ-induced diabetic mice. Control: normal control 
group were fed ad libitum. Model: The diabetic mice induced by STZ were fed 
ad libitum. PC: STZ-induced diabetic mice were fed ad libitum and oral gavage 
with glipalamide 20 mg/kg/d. BTE: STZ-induced diabetic mice were fed ad 
libitum and oral gavage with BTE 200 mg/kg/d. ##: p < 0.01 versus Control. 
**; p < 0.01 versus Model. 
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Fig. 3. The inhibition effects of BTE and theaflavins monomers on α-amylase. 
a: BTE; b: Acarbose; c:TF1; d:TF2A; e:TF2B; f:TF3. 
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α-amylase inhibitory activity. It has been suggested that polyphenols 
with high molecular weights possess a considerable number of hydroxyl 
groups, which might promote hydrogen bonding and hydrophobic in-
teractions between polyphenols and α-amylase, thereby reducing 
enzyme’ activity(Bandyopadhyay, Ghosh, & Ghosh, 2012). In this study, 
some theaflavin molecules were embedded in the hydrophobic pocket of 
α-amylase, the larger the molecular weight are, the more parts were 
involved in the interaction. This help explained the finding that TF3 
showed the strongest inhibitory effect on α-amylase. 

Molecular docking also revealed the binding sites and binding forces 
between theaflavins monomers and α-amylase. As Fig. 5a showed, TF1 
formed hydrogen bonds with α-amylase at Asp456 and Lys457, 
hydrogen carbon bonds with Agr392, π - π stacking interaction with 
Trp396, van der Waals force with Gly36, Val458, Pro34, Gly459 and 
Asn393. Similarly, TF2A formed hydrogen bonds with α-amylase at 
Thr11, Thr6, Arg10 and Gly334, van der Waals force with Gl403, 
Tyr333, Ser289, Asp290, Gln5, Gln7, Ser8, Phe335, Arg252, Tyr2, 
Thr336 and Val401, pi-Alkyl interaction with Pro4 and Ala3, pi-cation 

and pi-anion electrostatic interaction with Arg398 and Asp402 
(Fig. 5b). TF2B formed hydrogen bonds with α-amylase at Ser289, pi- 
anion and electrostatic interaction with Asp402, van der Waals force 
with Thr6, Pro4, Pro405, Thr11, Pro332, Arg421, Thr336, Gly334, 
Gky403 and Asp290 (Fig. 5c). TF3 formed hydrogen bonds with 
α-amylase at Cys378, Trp382, Asp375 and Arg389, a salt bridge, pi- 
cationic, pi-anion and electrostatic interaction with Glu390, van der 
Waals force with Gly379, Val383, Cys384, Thr377, Ala318, Cys322, 
Arg387, Thr376 and Gln484(Fig. 5d). These interactions caused the 
formation of the monomer- α-amylase complex and changed the cata-
lytic activity of α-amylase and ultimately induced the anti- 
hyperglycemic activity of the theaflavins monomers(Xiang et al., 
2020). Similar behaviour of theaflavins was also reported in studies of 
natural inhibitors of α-glucosidase(Zeng, Ding, Hu, Zhang, & Gong, 
2019) (Zhang et al., 2019). 

It should be noted that TF3 showed relatively higher binding affinity 
to α-amylase than TF2B, the Eb values were on the opposite (TF3 <
TF2B). This may result from the higher steric hindrance of TF3-enzyme 

Fig. 4. The double-reciprocal Lineweaver-Burk plot analysis for the inhibition of α-amylase against theaflavins monomers. 
a:TF1; b:TF2A; c:TF2B; d:TF3. 
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than that of TF2B-enzyme due to higher molecular weights of TF3(Cao 
et al., 2020). In addition, molecular docking analysis, although very 
effective, provided static poses of protein-ligand interactions. Acctually, 
these interactions were highly dynamic.Therefore, molecular docking 
analysis were only used in the preliminary screening procedure especilly 
when the number of compounds was large, more validation tests need to 
confirm the results(Durrant & Mccammon, 2011) (Salmaso & Moro, 
2018). 

3.5. Investigation of the interaction between theaflavins monomers and 
α-amylase by ultraviolet-visible absorption spectroscopy 

Ultraviolet-Visible Absorption Spectroscopy is a method that irra-
diate protein molecules and collect the Ultraviolet-Visible absorption 
spectra (Nienhaus & Nienhaus, 2005) (Yu et al., 2020). The spectra can 
be used to determine whether the microenvironment or the structural 
conformation of proteins has been changed (Abbasi, Benvidi, Ghar-
aghani, & Rezaeinasab, 2018). 

In this study, the spectra were used to determine whether the 
interaction occurred between theaflavins monomers and α-amylase. As 
Fig. 6 showed, the theaflavins monomers showed three absorption peaks 
in the wavelength of 200–600 nm (TF1: 262 nm, 365 nm, 452 nm; TF2A: 
267 nm, 367 nm, 452 nm; TF2B: 269 nm, 366 nm, 452 nm; TF3: 270 nm, 
366 nm, 455 nm), and the tryptophan and tyrosine amino acid residues 
in α-amylase produced the greatest adsorption peak, which was 
measured at 276 nm(Abbasi et al., 2018). Strong interactions between 

α-amylase and theaflavins monomers could change the maximum 
adsorption peak(Abdollahi, Ince, Condict, Hung, & Kasapis, 2020). As 
we can see from Fig. 6a-d, the addition of theaflavins monomers steadily 
raised the absorbance peak of α-amylase. Meanwhile, the maximum 
absorption spectra of theaflavins monomers had a slight red shift when 
α-amylase existed. These findings verified that changes in the frame-
work conformation of α-amylase were caused due to the formation of 
monomer-α-amylase complex(Yue, Zhao, Liu, Yan, & Sun, 2017) and 
that there existed strong interactions between α-amylase and theaflavins 
monomers. 

3.6. Investigation of the interaction between four theaflavins monomers 
and α-amylase by fluorescence spectroscopy 

Fluorescence spectroscopy has long been used to investigate how 
ligands and proteins interact with each other(Y. Teng, Zhang, & Liu, 
2011). Tryptophan, tyrosine and phenylalanine are the main contribu-
tors to endogenous protein fluorescence (M. Li & Hagerman, 2014). 

Results showed that the characteristic emission peak of α-amylase 
(314 nm) quenched when theaflavins monomers added in the system 
(Fig. 7). The α-enzyme's fluorescence intensity consistently decreased 
when the concentrations of theaflavins monomers increased, demon-
strating the presence of interactions between the α-amylase and the 
theaflavins monomers. Meanwhile, the Stern-Volmer plot of theaflavins 
monomers was linear with the concentrations range of theaflavins 
monomers, which further verified the quenching effect of theaflavins 

Fig. 5. The image of the interaction obtained after the docking of TF1(a), TF2A(b), TF2B(c), TF3(d) with α-amylase.  
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monomers on fluorescence in α-amylase(M. Li & Hagerman, 2014). 
Besides, when the concentrations of theaflavins monomers increased, 
the characteristic peak of α-amylase were slightly red-shifted, indicating 
that the hydrophobicity of the amino acid residues of α-amylase was 
reduced and the hydrophilicity of the environment was increased. This 
may be attributed to existence of many hydrophilic hydroxyl groups in 
theaflavins monomers(Liu, Han, Zhang, Liu, & Kong, 2019). 

Besides, Further analysis of the fluorescence quenching data was 
conducted using Eq.(3)(Ashwar, Gani, Shah, Wani, & Masoodi, 2016) 
and Eq.(4) to clarify the mechanism underlying the formation of 
monomer-α-amylase complex (C. Li, Yu, Wu, & Chen, 2020). Table 1 
showed that Stern-Volmer curved lines of α-amylase were approximate 
linear with the intercept is 1. The higher the temperature was, the 
smaller the quenching constant (Ksv) slope represent is. These findings 
were according with the characteristics of the static quenching mecha-
nism(Svihus & Hervik, 2016), suggesting that theaflavins monomers and 
α-amylase formed fluorescent compounds(Raeessi-babaheydari, Farha-
dian, & Shareghi, 2021). The results mentioned above indicated that 
static quenching rather than dynamic collision could be the mechanism 

underlying the fluorescence quenching of α-amylase induced by thea-
flavins monomers(Abdollahi et al., 2020). 

The values of n were approximate near to 1, indicating that there 
existed a single high-affinity bonding point between theaflavins mono-
mers and α-amylase(Zhao, Huang, Sun, Zhao, & Tang, 2020). The 
enzyme-ligand binding forces including hydrogen bonds, hydrophobic 
interactions, electrostatic force and van der Waals force four(Wu et al., 
2018). The associated thermodynamic parameters (enthalpy change 
ΔH◦, entropy ΔS◦, and gibbs free energy ΔG◦) were calculated to 
determine the interaction type of theaflavins monomers and α-enzyme. 
The binding reaction values of ΔH◦ and ΔS◦ are positive, demonstrating 
that hydrophobic interactions is the primary binding force(Qie et al., 
2020). The binding reaction's ΔG values are negative, suggesting that 
the reaction is spontaneous. 

Previous study reported that the backbone of phenolic acid displayed 
π-π T-shaped, π-π stacking interactions with His 201, Try 3, and Try 151 
in α-amylase, which contributed to the stability of the complex and the 
inhibition of α-amylase (Aditi et al., 2018). In addition, enhanced in-
teractions altered the secondary structure of α-amylase through a 

Fig. 6. Ultraviolet-Visible absorption spectra of theaflavins monomer-α-amylase system. 
a:TF1; b:TF2A; c:TF2B; d: TF3. 
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hydrogen bonding network, which blocked substrate accessing into the 
catalytic site and led to α-amylase inactivation (Xu, Xie, Xie, Liu, & 
Chen, 2018). Therefore, we speculate that the interaction between 
theaflavins and α-amylase showed influence on enzyme function and 
substrate binding in the following two aspects. First, theaflavins entered 
the hydrophobic pocket of α-amylase and formed a complex under 
electrostatic attraction and hydrophobicity spontaneously, which led to 
static fluorescence quenching. Second, the complex stability were 
enhanced by interaction forces (e.g., hydrogen bonding), which caused 
secondary structure changes in α-amylase and loss of enzyme activity. 

Ultimitely, the starch digestion was reduced and the BTE showed alle-
viation effect on postprandial hyperglycemia. 

In this paper, the in vitro and in vivo studies as well as the mechanism 
underlying the hypoglycemic effects of theaflavins was performed. 
These findings will lay the theoretical basis for the use of black tea 
theaflavins into novel low-glycemic index functional foods or medicines 
targeting α-amylase. However, whether their exists side effecs in the 
application of theaflavins remains unknown. Besides, theaflavins are 
phenolic compounds that has low bioavailability in the gastrointestinal 
tract which may limit their health benefits and hinder their further 

Fig. 7. Fluorescence spectrum of α-amylase (10u/mL) with different concentrations of theaflavins monomer at 298 K, 303 K, 310 K. 
a:TF1; b:TF2A; c:TF2B; d: TF3. 
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application(Karaś, Jakubczyk, Szymanowska, Złotek, & Zielińska, 
2017). Study also found that theaflavins affected the human health via 
the microbiota-gut-brain axis instead of being absorbed(Li et al., 2023). 
Therefore, more work need to be conducted to fully understand the 
hypoglycemic effects of theaflavins. Finally, the interaction between 
theaflavins and α-amylase was not confirmed in the in vivo study and 
there was a lack of direct proof for the connection between the hypo-
glycemic effects of theaflavins and their interaction with α-amylase. 
Further animal studies and human studies will be done in the future. We 
hope that theaflavins can be deveioped into safe and effective α-amylase 
inhibitors and can be used in hyperglycemia prevention and treatment. 

4. Conclusions 

In this research, we revealed the mechanism underlying the anti- 
hyperglycemic effect of BTE, our data suggest that: (1) BTE show sig-
nificant anti-hyperglycemic effect by suppressing hyperglycemia, and 
restoring normal liver in the diabetic mice. (2) Theaflavins monomers 
show high inhibition activity against α-amylase, while TF2A and TF2B in 
a competitive mode TF1 and TF3 in a reversible mixed mode. (3) The-
aflavins monomers bind to the hydrophobic area surrounding the active 
site of α-amylase by hydrophobic interactions. These findings will help 
clarify the mechanism of black tea's anti-hyperglycemic effects and lay 
the theoretical foundation for the applacation of black tea theaflavins 
into novel low-glycemic index functional foods or medicines. 
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