Skip to main content
. 2024 Mar 27;14:7293. doi: 10.1038/s41598-024-57199-4

Table 2.

Stepwise backward regression of baseline characteristics to test for predictors of the presence of MS vs. sON.

Variables p Odds ratio 95% confidence interval
Lower value Upper value
Step 1a Dyschromatopsia 0.071 0.509 0.244 1.059
Visual impairment 0.859 0.853 0.148 4.928
Retrobulbar pain 0.092 0.529 0.252 1.108
Age at presentation 0.343 0.982 0.947 1.019
Sex 0.472 0.761 0.362 1.601
Constant 0.485 2.388
Step 2a Dyschromatopsia 0.066 0.505 0.244 1.046
Retrobulbar pain 0.093 0.534 0.256 1.110
Age at presentation 0.343 0.982 0.947 1.019
Sex 0.467 0.759 0.361 1.595
Constant 0.436 2.060
Step 3a Dyschromatopsia 0.071 0.513 0.248 1.059
Retrobulbar pain 0.092 0.534 0.257 1.109
Age at presentation 0.317 0.982 0.946 1.018
Constant 0.687 1.326
Step 4a Dyschromatopsia 0.068 0.510 0.248 1.052
Retrobulbar pain 0.115 0.559 0.272 1.152
Constant 0.237 0.701
Step 5a Dyschromatopsia 0.021 0.441 0.220 0.885
Constant 0.020 0.548

Results of a binary logistic model with conditional stepwise backward regression to identify the strongest predictors from the baseline characteristics regarding the presence of MS. Included were age, sex, as well as the symptoms visual impairment, dyschromatopsia and retrobulbar pain. MS, multiple sclerosis; sON, suspected optic neuritis.

aVariables entered in step 1: dyschromatopsia, visual impairment, retrobulbar pain, age at presentation, sex.