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A B S T R A C T   

Effective management of chronic diseases and cancer can greatly benefit from disease-specific biomarkers that 
enable informative screening and timely diagnosis. IgG N-glycans found in human plasma have the potential to 
be minimally invasive disease-specific biomarkers for all stages of disease development due to their plasticity in 
response to various genetic and environmental stimuli. Data analysis and machine learning (ML) approaches can 
assist in harnessing the potential of IgG glycomics towards biomarker discovery and the development of reliable 
predictive tools for disease screening. This study proposes an ML-based N-glycomic analysis framework that can 
be employed to build, optimise, and evaluate multiple ML pipelines to stratify patients based on disease risk in an 
interpretable manner. To design and test this framework, a published colorectal cancer (CRC) dataset from the 
Study of Colorectal Cancer in Scotland (SOCCS) cohort (1999–2006) was used. In particular, among the different 
pipelines tested, an XGBoost-based ML pipeline, which was tuned using multi-objective optimisation, calibrated 
using an inductive Venn-Abers predictor (IVAP), and evaluated via a nested cross-validation (NCV) scheme, 
achieved a mean area under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.771 when classifying 
between age-, and sex-matched healthy controls and CRC patients. This performance suggests the potential of 
using the relative abundance of IgG N-glycans to define populations at elevated CRC risk who merit investigation 
or surveillance. Finally, the IgG N-glycans that highly impact CRC classification decisions were identified using a 
global model-agnostic interpretability technique, namely Accumulated Local Effects (ALE). We envision that 
open-source computational frameworks, such as the one presented herein, will be useful in supporting the 
translation of glycan-based biomarkers into clinical applications.   

1. Introduction 

In primary care, disease diagnosis heavily relies on the comprehen
sive assessment of the patient’s medical history and current symptoms, 
which may often be non-specific and only poorly predict the presence of 
disease. This degree of uncertainty in diagnosis, even for common dis
ease conditions, leads to high estimated false negative diagnostic errors, 
thus hindering effective and timely interventions [1]. False positives 
also present a significant challenge due to strains posed on diagnostic 
resources. Among diseases such as cancer, traditionally implemented 

diagnostic procedures also have limitations regarding accessibility to 
patients and invasiveness [2]. Imaging technologies offer valuable 
insight into the tumour’s size and position [3], but they may also be less 
accessible to patients in low- and middle-income countries [4]. Endos
copy and tissue biopsies are effective yet invasive diagnostic tools [5]. 
These considerations point to a need for the identification of reliable, 
minimally invasive disease-specific biomarkers for diagnosis along with 
risk analysis tools. 

Glycomics is a subfield of molecular biology concerned with the 
study of the glycome that is generally underrepresented compared to 

* Corresponding authors. 
E-mail addresses: k.flevaris21@imperial.ac.uk (K. Flevaris), cleo.kontoravdi@imperial.ac.uk (C. Kontoravdi).   

1 Authors to whom co-first author status should be assigned. 

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2024.03.008 
Received 29 November 2023; Received in revised form 8 March 2024; Accepted 9 March 2024   

mailto:k.flevaris21@imperial.ac.uk
mailto:cleo.kontoravdi@imperial.ac.uk
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2024.03.008
https://doi.org/10.1016/j.csbj.2024.03.008
https://doi.org/10.1016/j.csbj.2024.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2024.03.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computational and Structural Biotechnology Journal 23 (2024) 1234–1243

1235

other omics [6,7], but has great potential to advance biomarker research 
in the context of chronic inflammatory diseases and cancer [8–10]. 
Glycans are structurally diverse natural biopolymers of mono
saccharides considered to be directly implicated in every major disease 
pathophysiology [11]. Glycomic profiles depend on the expression and 
activity of glycan-modifying enzymes and the metabolome of organisms 
under different temporal conditions and physiological states [12]. 
Although the functional role of glycans in diseases such as cancer has not 
yet been fully characterised, significant progress has been made in 
identifying associations between cancer manifestation and aberrant 
glycosylation profiles [13,14]. To this end, immunoglobulin G (IgG) and 
its N-glycans have been of interest due to a multitude of factors. IgG 
plays a central role in adaptive immunity, accounts for 10–20% of the 
total plasma proteome, thus facilitating analytical detection [15], and 
has a long half-life of approximately 12 days, making it suitable for 
detecting chronic inflammation [16]. N-linked glycomic profiles have 
been shown to be temporally stable in healthy individuals [17] and the 
analytical measurement of IgG N-glycans is more mature compared to 
that of other proteins and/or glycosylation types [18]. This can be 
attributed to the well-characterised N-linked glycosylation sites at its 
crystallisable fragment (Fc) [19], the commercial interest in bio
manufacturing IgG-based monoclonal antibodies with desired glyco
sylation profiles [20], and the emergence of high-throughput techniques 
[18]. Given the extensive research on the link between IgG glycosylation 
and pathophysiology, changes in the former appear to be sensitive to 
perturbations occurring in many health states, ranging from initial 
symptom manifestation to phenotypes preceding severe disease [13,21]. 
These findings consistently point to the plasticity of IgG glycans with 
respect to various stimuli, making it a unique indicator of health and 
disease [22]. 

Identification of differentially abundant glycan structures and/or 
groups of glycan structures sharing similar structural properties (i.e., 
derived traits) in case-control studies is generally achieved via statistical 
hypothesis testing and/or multiple regression analysis [13,23]. Given 
the varying cohort size of these studies, which can range from a few tens 
to a few thousands and the challenges of performing glycomic analysis, a 
small number of studies has attempted to build predictive models for 
disease classification using IgG N-glycan relative abundance data [22]. 
Despite promising results indicated by moderate to high area under the 
Receiver Operating Characteristic Curve (AUC-ROC) [24] scores (i.e., 
0.6–0.9), most existing studies generally place less focus on designing 
modelling methodologies that explicitly account for small cohort sizes. 
Additionally, they do not discuss the reliability associated with classi
fication decisions, which would reflect the risk, i.e., predicted proba
bility, of a sample being diagnosed with a particular disease given the 
information, i.e., empirical probability, from the rest of the available 
samples. The omission of the latter, which is called probability calibration 
[25], is not just an occurrence in glycomic-based predictive modelling 
studies but is pervasive to many clinically-relevant machine learning 
(ML) applications [26]. Furthermore, there is value in using such models 
to infer insights into which features (i.e., relative abundance of glycan 
structures) drive model decisions using global model-agnostic inter
pretability techniques [27]. This additional information complements 
univariate statistical tests with methods that account for glycan 
interactions. 

This work aims to address the above challenges by developing a 
comprehensive framework based on data analysis and ML that could 
enable the extraction of the biomarker potential of IgG N-glycans for 
disease diagnosis and monitoring. This work contributes to ongoing 
research efforts in the field by incorporating a series of ML algorithmic 
approaches used for tabular data into the relatively immature field of 
glycomic-based predictive modelling. Specifically, it integrates key 
concepts, such as the use of all available glycomic data for model 
training, optimisation and performance evaluation using nested cross- 
validation (NCV), places particular focus on probability calibration to 
ensure that the predicted probabilities calculated by the trained ML 

pipelines align with the empirical probabilities and uses global model- 
agnostic interpretability techniques to inspect how these well- 
calibrated probabilities are affected by changes in certain N-glycans. 
To the best of our knowledge, this is the first time that such a framework 
based on probability calibration has been considered in the field of 
glycomic-based predictive modelling studies. To build and test it, a 
published IgG N-glycomic dataset for colorectal cancer (CRC) was used 
[28,29], which was large enough to facilitate the implementation of ML 
and represented a highly incident cancer type, screening and diagnosis 
of which would benefit from the development of minimally-invasive, 
sensitive, and low-cost tools [30,31]. 

2. Materials and methods 

The proposed computational framework comprises two inter
connected modules, namely the glycomic data analysis module and the 
predictive modelling module. A schematic of the proposed computa
tional framework is presented in Fig. 1. All analyses were performed 
using Python 3.9. 

2.1. IgG N-glycomic dataset description 

In this work, a dataset from the Study of Colorectal Cancer in Scot
land (SOCCS) cohort (1999–2006) was used [28,29]. This includes the 
total area normalised relative abundance of 24 total IgG N-glycan peaks 
(hereafter referred to as GPs) derived from human plasma and measured 
by high-throughput ultra-performance liquid chromatography (UPLC). 
The specific structures corresponding to the GPs considered in this study 
expressed using the Oxford nomenclature and accompanied by their 
GlyTouCan accession numbers [32] are available in the Table S1. 
Furthermore, the SOCCS dataset includes anonymised sample identifi
cation (ID), analytical measurement information (sample date and plate 
used), demographic information about individuals in the cohort (sex, 
and age), and CRC status (control or cancer). The SOCCS dataset con
tained 1411 patients with pathologically confirmed CRC and 538 
healthy controls. The dataset presented a notable imbalance in the 
number of CRC patients and healthy controls over the age of 60. The 
scarcity of older-aged healthy controls was overcome via two ap
proaches: dropping all samples over 60 years old from the SOCCS 
dataset leading to the age, and sex-matched Non-Augmented (N-AUG) 
dataset and augmenting the SOCCS dataset to create the age, and 
sex-matched Augmented (AUG) dataset. The data augmentation strategy 
followed is presented in subsection 2.2.2. 

2.2. Glycomic data analysis 

This subsection concerns the data preprocessing steps that were 
carried out to prepare the glycomic data for predictive modelling tasks. 
Unless otherwise stated, data analysis was performed using the numpy 
[33] and pandas [34] packages. 

2.2.1. Batch effect correction 
The presence of batch effects, characterised as undesirable technical 

variation, presents a significant challenge in the analysis of omics data, 
including glycomic data. Stemming from variations in sample process
ing, experimental conditions, or measurement technologies across 
different batches of samples, these effects can confound the true bio
logical signal and lead to potential misinterpretation of the data and the 
inference of spurious associations [35]. Therefore, correcting for batch 
effects is crucial to ensure the validity and reproducibility of omics 
studies and to improve the overall robustness of downstream statistical 
analysis. In this study, batch effects included the year the samples were 
analysed and the plate used for the analytical measurements. Batch ef
fects were corrected using the popular ComBat algorithm [36] using the 
scanpy [37] package after the GPs were first log-transformed [28,38]. 
The ComBat algorithm was originally designed for batch effect 
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correction in gene expression data and uses linear models and an 
empirical Bayes (EB) framework to correct for undesired technical 
variation [36]. 

2.2.2. Data augmentation and statistical hypothesis testing 
The dataset lacks healthy controls older than 60 years. Early epide

miological studies in the field have shown that the relative abundance 
levels of most IgG N-glycans are strongly associated with demographic 
variables of age and sex [39–41], thus confounding the analysis. To 
mitigate spurious associations between the GPs and CRC, this imbalance 
should be addressed prior to analysis and modelling. The first approach 
to address this imbalance was to exclude samples over 60 years old from 
the batch-corrected SOCCS dataset to yield the N-AUG dataset. How
ever, to avoid discarding a large proportion of the available data (i.e., 
more than 700 samples), it was decided to also perform data augmen
tation using the Synthetic Minority Over-Sampling Technique (SMOTE) 
[42] implemented in the imbalanced-learn [43] package to generate the 
AUG dataset. 

SMOTE works by first randomly selecting a sample, a, that belongs to 
the minority class (healthy controls in this study) and then finding the k- 
nearest neighbours (KNN) to a (k = 3 in this study). One of the identified 
KNN samples, b, is randomly chosen to generate a synthetic sample as a 
linear combination of the values of a and b [42]. The SMOTE-based data 
augmentation strategy followed in this work incorporated knowledge of 
the distributions of the age and sex features across the control and CRC 
samples to ensure that subsequent classification decisions would be 
attributable to differences in the GPs and not artificial differences in 
these covariates as a result of data augmentation. Since no control 
samples over the age of 74 were available in the SOCCS dataset, this was 
considered the upper bound with respect to age and all older samples 
from both classes were dropped. Then, for the age range of 61 to 71, the 
data was oversampled to match the exact number of controls and CRC 
patients for each age. Finally, for the age range of 72–74, the data was 
oversampled so that the number of controls for each age would equal 
half the number of CRC patients. Throughout this process, the sex var
iable has been one-hot encoded and the proportion of males to females 
in the synthetic minority samples was kept approximately constant by 
random assignment. 

Statistical hypothesis testing was performed before and after the 
described data augmentation strategy to assess whether differences in 
the underlying distributions of the covariates were statistically signifi
cant. The null hypothesis for each test was that there were no statisti
cally significant differences in the age and sex distributions between the 
two classes at a 95% confidence level. The Mann-Whitney U test was 
used for the age and GP variables, and Fisher’s exact test was used for 
the sex variable, both implemented using the scipy [44] package. In all 

statistical analyses presented in this study, the false discovery rate in 
multiple testing was controlled via the Benjamini-Hochberg (BH) pro
cedure to produce the q-values (i.e., adjusted p-values) [45]. 

2.3. Predictive modelling 

This subsection describes the different steps that were taken to build, 
optimise, and evaluate ML pipelines for binary classification tasks cor
responding to CRC screening and diagnosis. Unless otherwise stated, the 
scikit-learn [46] package was used throughout the subsequent analysis. 

2.3.1. Selection of ML algorithms 
In this work, four ML classification algorithms were considered, 

namely logistic regression (LR), support vector machines (SVM), 
random forest (RF), and XGBoost (XGB). 

LR describes the relationship between features and outcomes by 
incorporating it into the exponential of a logistic function. This adjust
ment allows the output to fall between 0 and 1, effectively converting a 
regression problem into a probabilistic classification framework [47]. 

SVM focuses on the geometry of the data and operates by finding an 
optimal hyperplane that effectively separates the different classes pre
sent in the feature space. The central premise of SVM is the idea of 
maximising the margin around the separating hyperplane, creating the 
largest possible distance between the decision boundary and any sample 
in the training dataset to enhance the generalisation ability of the model 
[48]. In cases where classes are not linearly separable in the original 
feature space, SVM cleverly projects the data into a higher-dimensional 
space via a kernel function, where the data then becomes linearly 
separable. This transformation ability, termed the kernel trick, gives SVM 
the flexibility to handle complex, non-linear relationships [49]. 

RF, a bagging-based ensemble algorithm, integrates a multitude of 
decision tree classifiers, each casting an individual vote based on a 
randomly selected subset of features and the classification of a new 
sample is subsequently conducted based on majority voting [50,51]. 
This approach effectively harnesses the power of collective 
decision-making, improving the robustness of the model by mitigating 
the risk of overfitting often associated with single decision trees [52]. 

XGB, similarly to Random Forest, also derives from decision-tree- 
based ensemble learning. However, it adopts a distinct sequential 
learning strategy inspired by the gradient boosting framework [53]. As 
opposed to the parallel tree-building process in RF, XGB iteratively adds 
new trees to the ensemble, where each new tree is built to correct the 
errors made by the existing ensemble. An embedded gradient descent 
algorithm minimises these errors, thus improving model performance 
with this iterative refinement, lending XGB enhanced predictive power 
and robustness [54]. 

Fig. 1. Schematic of proposed methodological framework for the construction, optimisation, and evaluation of ML pipelines using IgG N-glycomic data for disease 
risk stratification. 
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These four algorithms were chosen as a means of incorporating a 
diverse range of inductive biases into the classification tasks under 
investigation. Furthermore, RF and SVM have been widely used in ML- 
based disease diagnosis tasks in the literature [55,56], and XGB is 
considered one of the most effective algorithms for classification tasks 
based on tabular data [57] having garnered a lot of attention due to its 
success in recent ML challenges [58]. Regarding glycomic-based pre
dictive modelling studies, LR, SVM and RF have been employed in the 
past [22,59–61], however, to the best of our knowledge, this is the first 
time that a predictive modelling study using glycomic data incorporates 
XGB in its analysis. XGB was implemented using the xgboost [54] 
package. 

2.3.2. Construction and optimisation of ML pipelines 
Binary classification tasks were addressed using configurations of 

different types of algorithms and their hyperparameters, which repre
sent different steps of the learning process, hereafter referred to as ML 
pipelines. In particular, a ML pipeline is characterised by the following 
components: (i) a data scaling algorithm, which can be used to 
normalise (i.e., use the minimum and maximum values for scaling) and/ 
or standardise (i.e., transform data to have zero mean and unit standard 
deviation) continuous features, including the GPs, (ii) a ML algorithm, 
which can be any of the four (i.e., LR, SVM, RF, XGB) that were 
considered in this study, (iii) a set of hyperparameters for the selected 
ML algorithm, which depends on the type of algorithm chosen and is 
determined given a hyperparameter grid (Table S2). 

The selection of the constituent components and the optimisation of 
each pipeline was carried out via a multi-stage methodology schemati
cally shown in Fig. 2. Given the N-AUG and AUG datasets, an initial 
pipeline is configured using random sampling, and then multi-objective 
optimisation is carried out to simultaneously maximise the discrimina
tory ability of the pipeline, which is quantified by the AUC-ROC score 
and minimise overfitting, which is quantified as the first Wasserstein 

distance, also known as Earth Mover’s Distance (EMD), between the 
training and validation AUC-ROC scores. The choice of these particular 
objectives was made to encourage the production of non-overfitted 
pipelines with high classification performance. 

Multi-objective optimisation was carried out using the multi- 
objective Tree-structured Parzen Estimator (MOTPE) algorithm [62]. 
MOTPE is an extension of the Tree-structured Parzen Estimator (TPE), a 
type of sequential model-based, probabilistic optimisation strategy that 
iteratively refines the search for the optimal pipeline configuration 
based on the results of previous optimisation trials [63]. Similarly to 
single-objective TPE, MOTPE generates two Gaussian Mixture Models 
(GMMs), l(x) and g(x), each corresponding to a high-performing and 
low-performing region of the search space (i.e., choice of data scaling 
algorithm, ML algorithm, and set of hyperparameters for the selected ML 
algorithm). While single-objective TPE would preferentially sample new 
solutions (i.e., optimal sets of data scaling algorithm, ML algorithm, and 
hyperparameters for selected ML algorithm) by maximising the ratio 
between l(x) and g(x) [64], in a multi-objective context the distinction 
between high and low performance is not binary and straightforward, 
since superior performance with respect to one objective does not also 
guarantee superior performance with respect to the other objectives, as 
these may be conflicting [65]. To address this, MOTPE utilises a Pareto 
dominance-based strategy to determine the compartmentalisation of the 
search space and produce Pareto-optimal solutions in subsequent opti
misation trials. The implementation of MOTPE was considered in this 
study as it is well-suited for multi-objective optimisation involving 
discrete and continuous decision variables due to its probabilistic 
approach, effectively managing mixed variable types [66] and ensures 
that subsequent solutions are based on knowledge from previous trials, 
which is not the case with other popular hyperparameter tuning ap
proaches, such as grid search and random sampling. 

Given that the output of MOTPE is a set of Pareto-optimal solutions, 
which represent optimally performing non-overfitted pipelines, a 

Fig. 2. Schematic of proposed methodology for the construction and optimisation of ML pipelines using the N-AUG and AUG datasets. This procedure was 
implemented for fifty multi-objective optimisation trials per fold of the inner loop of the NCV scheme. The selected Pareto-optimal configuration was subsequently 
calibrated and evaluated on the folds of the outer loop of the NCV scheme. LR: logistic regression; SVM: support vector machine; RF: random forest; XGB: XGBoost; 
Min Max: min-max normalisation; Standard: standardisation; None: No data scaling; AUC-ROC: area under the Receiver Operating Characteristic Curve; EMD: Earth 
Mover’s Distance. 
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further consideration needs to be made regarding the selection of a 
single solution that would be considered the “best” one to be used for the 
final performance evaluation. By definition, Pareto-optimal solutions 
form a set of mathematically commensurable solutions [67], and an 
additional selection strategy needs to be adopted to determine which of 
the solutions is the most desirable. In this work, the selected 
Pareto-optimal ML pipeline is the one that scores the lowest with respect 
to logarithmic loss, also most commonly referred to as log-loss. Log-loss 
is a popular performance metric in classification problems that provided 
a measure of error heavily influenced by the confidence of the predic
tion. It quantifies how close the predicted probabilities are to the cor
responding true values and penalises confident, incorrect predictions (i. 
e., high predicted probability to the wrong class) [68]. Thus, it is a 
metric that can be used to choose a non-overfitted, high-performing ML 
pipeline that is also reliable (i.e., well-calibrated), since log-loss inher
ently encourages the adjustment of predicted probabilities to align as 
closely as possible with empirical probabilities [25,68]. As described in 
subsection 2.3.3, probability calibration usually takes place as a post-hoc 
procedure, meaning that it is carried out once the underlying model or 
pipeline has already been trained and tuned with a use of an additional 
model referred to as calibrator [25]. However, it has been suggested to 
embed considerations about probability calibration into the learning 
process itself to achieve more reliable and robust results [25], which is 
particularly important in clinical applications such as the one presented 
herein, where careful and informed decision-making is required. The 
MOTPE optimisation and Pareto selection procedure were performed 
using the optuna [69] package. 

2.3.3. Post-hoc probability calibration and performance evaluation of ML 
pipelines 

The aim of post-hoc probability calibration is to leverage a hold-out 
subset of the available data, termed the calibration set, to generate a 
mapping for a pre-trained ML model to refine its predicted probabilities 
to reflect observed true probabilities when tested on new, unseen data 
[25]. Among the different calibration techniques available for binary 
classifiers, including logistic calibration, also known as Platt scaling [70], 
isotonic regression, also referred to as ROC convex hull method [71], and 
beta calibration [72], this study used the inductive Venn-Abers predictor 
(IVAP) approach for probability calibration [73]. IVAP is a regularised 
calibration method, which is a special case of well-calibrated Ven
n-Abers predictors and is based on isotonic regression [73,74]. Once 
fitted to the calibration set, IVAP generates a probability prediction 
interval for each test sample by performing two separate fits of isotonic 
regression. This interval, denoted as [p0,p1], is characterised by a lower 
probability bound p0 and an upper probability bound p1, which repre
sent the well-calibrated confidence levels for a particular class of a test 
sample, thus quantifying the uncertainty associated with the calibrated 
predicted probability that a sample would belong into a particular class, 
usually the positive one (i.e., here CRC patients) [74]. To obtain a single 
calibrated predicted probability for each class of a sample, the minimax 
approach can be used to obtain the score for the positive class and the 
negative class as follows [73,74]: ppos = p1/(1 − p0 +p1) and pneg = 1 −

ppos. The IVAP technique overcomes the known reported limitation of 
the standard isotonic regression approach, which is prone to overfitting 
when presented with smaller calibration sets, and unlike Platt scaling 
and beta calibration, which are both parametric calibration methods, 
IVAP does not make specific assumptions about the form of the under
lying distribution of the class labels [73]. Thus, IVAP was selected as the 
post-hoc calibration method used in this study, as it seamlessly aligns the 
overarching aim of this study to design a flexible and generalisable 
methodology to build and reliably evaluate ML pipelines using glycomic 
data for disease risk stratification. The Python implementation of IVAP 
used in this study can be found here [75]. Post-hoc calibration perfor
mance was assessed using the expected calibration error (ECE) and 
log-loss [76,77] metrics. 

Holding out a subset of data just for testing reduces the amount of 
data available for training, which can worsen model performance [78]. 
Especially in the case of glycomic datasets, which tend to be small [22], 
a loss of samples to performance evaluation is not favourable. To that 
end, NCV offers an approach to avoid this pitfall, where, instead of 
employing a strict, one-time partitioning of the data, it uses a scheme of 
multiple rounds of partitioning (i.e., folds) so that all folds serve as 
validation and test sets [79,80]. This allows NCV to produce unbiased 
performance estimates as compared to standard cross-validation, where 
model selection and performance estimation are done on the same 
subsets of each iteration (i.e., validation sets), which has been shown to 
produce biased performance estimates [78,81]. 

In this study, the NCV protocol was employed for the binary classi
fication tasks using stratified 5-folds for the inner and the outer loop. 
The former was responsible for carrying out the multi-objective opti
misation of the ML pipelines using 50 optimisation trials for each fold of 
the inner loop (see subsection 2.3.2). The outer loop was responsible for 
both post-hoc probability calibration and performance evaluation, where 
60% of the data from each outer loop fold were used for the former and 
40% for the latter. Performance was assessed using the AUC-ROC metric, 
with the sensitivity and specificity of the ML pipelines determined using 
a decision threshold of 0.5. Additionally, the count of misclassified 
samples versus the total sample count across all test folds of the outer 
NCV loop for different age ranges was monitored. These counts were 
computing with the same decision threshold of 0.5. 

2.3.4. GP effects using global model-agnostic interpretability 
In the context of clinical decision-making, it would also be valuable 

not only to infer if an individual has a particular chronic disease given a 
set of GPs, but also to determine how the risk of getting diagnosed with 
this particular chronic disease is expected to vary given changes in these 
GPs. To achieve this, trained ML pipelines for disease classification can 
be inspected using global model-agnostic interpretability techniques. 
Global techniques allow the investigation of how feature effects impact 
the model’s output on average, across all samples, rather than focusing 
on understanding individual predictions (i.e., local interpretability). In 
parallel, model-agnostic techniques offer a way to interpret these pre
dictions irrespective of the model’s internal structure or complexity 
[27]. To allow the investigation of the effects of specific GPs on CRC risk, 
while also accounting for their interactions, the Accumulated Local Ef
fects (ALE) technique was implemented in this study [82]. ALE isolates 
the effects of individual features by examining their impact in small 
intervals of their range, thus allowing one to attribute any changes in the 
model predictions to these local changes in the feature of interest. The 
term accumulated stems from the idea that these local effects are aver
aged across the entire range of a feature, giving a global interpretation of 
the feature’s effect on the model outputs [82]. Unlike other global 
model-agnostic interpretability techniques, such as Partial Dependence 
Plots (PDP) [83] and Permutation Feature Importance (PFI) [84], ALE is 
more effective when dealing with correlated features due to its local 
approach, thus allowing a clearer view of individual feature effects [27]. 
In this study, the ALE technique was implemented using the alibi [85] 
package. 

3. Results 

3.1. CRC screening using the N-AUG dataset 

Due to the small number of healthy control samples over the age of 
60 years in the original SOCCS dataset, the first approach was to discard 
all samples from patients over 60 from both classes, thus creating the N- 
AUG dataset (see subsection 2.2.2). By implementing the workflow 
presented in Fig. 1, the mean AUC-ROC test score achieved was 0.578 
(Fig. 3a), with the corresponding 95% confidence interval as evaluated 
by the NCV approach being (0.524, 0.631). Considering that the 95% 
confidence interval of the mean did not include an AUC-ROC score of 
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0.5, which corresponds to a random guess, this result indicates that the 
N-AUG dataset contains predictive information for CRC classification. 
However, the discriminatory ability of the underlying ML pipelines is 
not high enough to be acceptable for screening applications. This is 
further supported by the low mean sensitivity and specificity values of 
0.708 and 0.380, respectively. The former indicates that, on average, the 
underlying ML pipelines across all outer folds of NCV have difficulty 
determining true positives, which leads to a high mean false negative 
rate (i.e., 1-sensitivity: 0.292). This means that certain CRC patients are 
expected to be misclassified as healthy. Looking at the count of mis
classified samples within different age ranges across all test folds of the 
outer NCV loop (Fig S1), it was discerned that the underlying ML 
pipelines struggled to correctly classify the samples equally, irre
spectively of the total sample count in each age range. This suggests that 
there is no clear pattern of GP changes within these age groups that 
could be exploited to differentiate between CRC patients and healthy 
controls. In terms of the ML pipelines selected, LR was chosen as the 
underlying classification algorithm by 3 out of the 5 folds of the inner 
NCV loop, with SVM and RF chosen once each (Table 1). Note that the 
classifier selection was conducted by choosing the Pareto-optimal so
lution generated by a particular fold that scored the lowest with respect 
to log-loss to encourage the selection of the best calibrated ML pipeline 
relative to the rest of the Pareto-optimal solutions (see subsection 2.3.2). 

The different choices made by NCV across the inner NCV folds indicate 
high variance, which could be attributed to the fact that the N-AUG 
dataset contains a relatively small number of samples (i.e., 1226). 

3.2. CRC screening using the AUG dataset 

As discussed in subsection 2.2.2, data augmentation using SMOTE 
was carried out to address covariate imbalance in the dataset and allow 
the use of all existing plasma samples. The quality of the employed data 
augmentation strategy was assessed using statistical hypothesis testing. 
Specifically, the statistical difference between the covariates (i.e., age 
and sex) across the control and CRC classes remained not significant at a 
confidence level of 95% before (q = 0.17) and after (q = 0.08)
augmentation, which indicated that subsequent classification decisions 
based on the AUG dataset could be attributed to observed differences in 
the GPs and not to differences in these covariates as a result of data 
augmentation. It should be noted, however, that SMOTE can negatively 
impact the calibration performance of classification algorithms [86], 
which is particularly undesirable in clinical applications. This consid
eration further supports the use of post-hoc calibration techniques, such 
as IVAP, in this study. 

Looking at the results for the AUG dataset, the mean AUC-ROC test 
score is significantly improved compared to the N-AUG dataset, leading 

Fig. 3. ROC for the ML pipelines evaluated via NCV using the (a) N-AUG and (b) AUG datasets. AUC denotes the mean area under the curve for all five test folds of 
the outer loop and SE denotes the standard error of the mean. 

Table 1 
Configuration of machine learning pipelines for all folds of the inner NCV loop using the N-AUG and AUG datasets grouped by classifier type. Min Max: min-max 
normalisation; Standard: standardisation; None: No data scaling; C: regularisation parameter; L1: Lasso penalty term; L2: Ridge penalty term; Elastic Net: Combi
nation of L1 and L2; Criterion: tree-specific splitting criterion; GBTree: tree-based booster; DART: dropout regularized tree-based gradient booster.  

Algorithm Dataset Hyperparameters   

Scaler C Penalty Solver L1 ratio 

LR N-AUG 
N-AUG 
N-AUG 

None 
None 
None 

0.19 
0.19 
0.36 

L1 
L1 
Elastic Net 

SAGA 
SAGA 
SAGA 

- 
- 
0.85   

Scaler C Kernel   
SVM N-AUG None 0.001 Polynomial     

Scaler Estimators Max Depth Criterion  
RF N-AUG None 40 2 Entropy    

Scaler Estimators Max Depth Booster Gamma 
XGB AUG None 400 6 GBTree 8.44  

AUG Standard 360 5 DART 8.93  
AUG Standard 320 5 DART 8.19  
AUG Min Max 240 6 DART 11.18  
AUG Min Max 240 6 DART 11.18  
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to a performance of 0.771 (Fig. 3b), with the corresponding 95% con
fidence interval being (0.746, 0.795). The resulting performance esti
mate confirms the hypothesis that the originally discarded samples 
contained valuable information regarding CRC classification and im
proves on similar estimates that were generated using IgG N-glycomic 
information from the SOCCS dataset in previous studies, namely a mean 
AUC-ROC of 0.755 in [28] and a mean AUC-ROC of 0.660 in [29]. 
Additionally, both the mean sensitivity and specificity, 0.819 and 0.557, 
respectively, increased as compared to the N-AUG dataset, which leads 
to a pronounced decrease of the mean false negative rate, now equal to 
0.181. This finding suggests that the underlying ML pipelines are, on 
average, better able to detect true positives. However, it should be 
stressed that the moderate mean specificity achieved by these ML 
pipelines indicates that this high true positive rate will be accompanied 
by a relatively high false positive rate, thus being incumbent upon the 
user to consider the relative cost of false negatives and false positives in 
different clinical settings (see Section 4). 

Looking at the count of misclassified samples within different age 
ranges (Fig. S2), the underlying ML pipelines exploit the GP changes in 
older samples (i.e., 59–63, 64–68, 69–73) for correct classifications. This 
trend is consistent with the fact that CRC is more prevalent in people 
over 50 years old in Scotland and the United Kingdom [87,88]. It should 
be highlighted that the oversampling of the controls in this age range 
was based on a small number of samples and the results should be 
validated in independent cohorts. Furthermore, the selection of pipeline 
constituent components was robust, leading to the selection of the XGB 
model in all five NCV inner loops (Table 1). Fig. 4 presents the resulting 
reliability diagram, which was constructed based on all five folds of the 
NCV outer loop. The implementation of IVAP improves calibration both 
qualitatively and quantitatively, thus ensuring that the produced pre
dicted probabilities closely align with the observed empirical probabil
ities in the dataset. This enables the ML pipelines to produce reliable 

estimates of the risk associated with classifying each sample as 
cancerous or not. Overall, these results suggest that human plasma IgG 
N-glycans may aid in CRC screening as sole biomarkers or in combina
tion with other CRC-specific biomarkers in an integrated diagnostic 
workflow [22,29]. 

3.3. GP effects based on the AUG dataset 

Using ALE, it is possible to gain insight into the effect of specific GPs 
on the calibrated predicted probabilities of CRC classification (i.e., risk 
of CRC screening and diagnosis). To achieve this, a final, optimised, and 
calibrated ML pipeline produced on the AUG dataset was required 
(henceforth referred to as final AUG ML pipeline), as NCV does not return 
a final ML pipeline to be promptly deployed, but only acts as a 
comprehensive evaluation framework (see Section 2.3.3). To this end, 
standard 5-fold cross-validation was first performed on the 90% of the 
AUG dataset to obtain the ML pipeline configuration with the best 
hyperparameters, then the resulting pipeline was re-trained on same 
90% of the dataset and was finally calibrated using IVAP on the 
remainder 10%. The final AUG ML pipeline led to the selection of the 
XGB classification algorithm as the underlying classifier, which is in 
accordance with the results obtained by the NCV scheme (Section 3.2). 
Using this pipeline, the ALE values with respect to the well-calibrated 
probability of the CRC class for all features were computed. Interest
ingly, the ALE values for the age and sex variables were both zero, which 
suggests that both covariates were properly balanced across the two 
classes as the pipeline did not leverage changes in these variables during 
training to infer CRC risk. Out of the 24 GPs, 8 have non-zero ALE values, 
namely GP1, GP4, GP8, GP11, GP14, GP15, GP16, and GP22, which 
suggests that these changes in these GPs were the main drivers behind 
decisions about CRC status. Most of these GPs (i.e., 6 out of 8) are core- 
fucosylated neutral N-glycans. This observation is in agreement with 

Fig. 4. Reliability diagram constructed using the predicted probabilities obtained by the ML pipelines evaluated on the five test folds of the NCV scheme using the 
AUG dataset. Probability calibration was carried out using IVAP and the quality of calibration was assessed using ECE and log-loss. 
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previous findings using the SOCCS dataset [28,29], where it was shown 
that changes in core-fucosylated neutral N-glycans are involved in CRC. 
Indicatively, Fig. 5 depicts the ALE plots for two of these GPs, which are 
core-fucosylated galactosylated N-glycans, namely GP8 (FA2[6]G1) and 
GP14 (FA2G2). 

4. Discussion 

Bioinformatics efforts are underway to incorporate glycosylation 
into the central dogma of biology due to its ubiquitous presence in many 
aspects of human physiology and pathophysiology [89,90]. Moreover, 
in recent years, glycan data analysis using open-source tools has 
emerged. Notably the development of resources such as Glycowork [91] 
provides a vast repertoire of computational tools to help process and 
analyse glycan data. Further attempts to design customisable method
ologies to interrogate glycomic data could aid the quantitative analysis 
of disease-related glycan alterations in human plasma proteins. The 
present study uses human plasma-derived GPs from the large SOCCS 
cohort to assess whether they could be employed to screen CRC patients. 
This was achieved via a series of binary classification tasks, which were 
addressed using a modular methodology designed to balance the 
trade-offs between practical constraints, such as available computa
tional resources, and level of detail in the results, such as NCV for the 
performance evaluation of the resulting ML pipelines. 

This work adds to existing CRC-related glycomic studies [28,29, 
92–95] by yielding promising results with respect to the observed 
AUC-ROC scores. Particularly in the AUG scenario, the AUC-ROC score 
was on par with the ones obtained in the referenced glycomic studies. 
Finally, the results of the global model-agnostic interpretability 
approach in this study pointed to neutral fucosylated N-glycans as po
tential biomarkers of CRC, recapitulating observations found in the 
literature using different statistical approaches, such as multiple 
regression analysis [28]. Interestingly, model inspection came to this 
conclusion without knowing the structural characteristics of the un
derlying N-glycans, but solely via the exploitation of the patterns formed 
by their GPs. The proposed ML pipelines now need to be independently 
validated against additional CRC cohorts before implementing them in a 
clinical setting given that more evidence about the role of 
plasma-derived N-glycans in CRC is required. Future extensions of this 
framework will attempt to embed structural information about the 
N-glycan biosynthetic network itself into predictive tasks to assess 
whether this type of information can help improve the insights obtained 
by trained and optimised ML pipelines for CRC and other diseases. 

A key concept in the proposed computational framework was the 
ability to output calibrated predicted probabilities for the patient class 
based on which the risk of being classified with that particular disease is 
quantified. We believe that this is an essential aspect in facilitating the 

adoption of glycan-based biomarkers in clinical settings. Probability 
calibration ensures that the predicted probabilities for the disease class 
provide a reliable risk stratification for the patients. For example, pop
ular metrics for performance evaluation in classification, including 
sensitivity and specificity, require the determination of a decision 
threshold to place all samples in their respective classes to be then 
compared against their true labels. If the predicted probabilities are 
miscalibrated, then the resulting class membership would be invalid and 
the reported performance metrics likely misleading. Additionally, well- 
calibrated probabilities can be used reliably to determine the decision 
threshold in a cost-sensitive manner. When it comes to screening ap
plications, false negatives can be more detrimental than false positives, 
since patients would be wrongly considered as healthy, which would 
hinder timely clinical interventions. In such cases, the decision threshold 
can be lowered accordingly to only make negative predictions if suffi
ciently certain. Our framework allows the user to specify what they 
deem as appropriate relative costs between the false negatives and false 
positives, which is an application-dependent decision based on the 
clinical context. It should be noted that the use of poorly calibrated 
predicted probabilities would invalidate such an analysis. 

Using global model-agnostic interpretability methods on trained ML 
pipelines to infer insights into which GPs influence classification de
cisions can potentially lead to a more dynamic, patient-centred 
approach, which could help the early identification of disease onset or 
progression, possibly even before clinical symptoms appear. The man
agement of chronic diseases, such as autoimmune disorders and cancer, 
could benefit from such an approach, to hopefully provide an incre
mental improvement in patient outcomes. Furthermore, gaining insight 
into how the risk of diagnosis is affected by changes in GPs could serve to 
customise treatment strategies by monitoring patient response to treat
ment [22]. Finally, understanding how GP levels impact the associated 
diagnostic risk could also help clinicians to better articulate the patient’s 
condition and the reasoning behind their treatment plan, thereby 
fostering increased patient understanding, engagement, and trust in 
recommended therapeutic interventions. It should be noted that the 
implementation of appropriate global model-agnostic interpretability 
approaches, such as ALE, should be based on ML models and/or pipe
lines that have been carefully constructed, optimised, and evaluated to 
avoid overfitting and that can produce calibrated probabilities as reli
able indicators of diagnostic risk. 

5. Conclusions 

This study proposed a comprehensive ML-based framework to 
analyse N-glycomic data for disease risk stratification. This framework 
was built and tested using a published CRC dataset producing promising 
results for the use of IgG glycan-based predictive tools for stratifying 

Fig. 5. ALE plots for the core-fucosylated galactosylated IgG N-glycans (a) GP8 (FA2[6]G1) and (b) GP14 (FA2G2).  
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CRC risk that could help prioritise those with non-specific symptoms for 
early access to diagnostic modalities. The present framework is modular 
and can be implemented for the investigation of different disease types. 
Considering the already delineated potential of IgG N-glycans as disease 
biomarkers, particularly characterised by the impressive plasticity to 
various pathophysiological stimuli, it is emphasised that computational 
tools such as the one presented in this study that account for the in
tricacies involved in clinical decision-making could act as a useful pro
ponent in expediting the adoption of glycan-based biomarkers in clinical 
settings. 
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[31] Mármol I, Sánchez-de-Diego C, Dieste AP, Cerrada E, Yoldi MJR. Colorectal 
carcinoma: a general overview and future perspectives in colorectal cancer. Int J 
Mol Sci 2017;18:197. https://doi.org/10.3390/ijms18010197. 

[32] Fujita A, Aoki NP, Shinmachi D, Matsubara M, Tsuchiya S, Shiota M, et al. The 
international glycan repository GlyTouCan version 3.0. Nucleic Acids Res 2021;49: 
D1529–33. https://doi.org/10.1093/nar/gkaa947. 

[33] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, 
et al. Array programming with NumPy. Nature 2020;585:357–62. https://doi.org/ 
10.1038/s41586-020-2649-2. 

[34] Mckinney W. Data Structures for Statistical Computing in Python. Proceedings of 
the 9th Python in Science Conference, 2010, p. 56–61. https://doi.org/10.25 
080/Majora-92bf1922–00a. 

[35] Goh WWBin, Wang W, Wong L. Why batch effects matter in omics data, and how to 
avoid them. Trends Biotechnol 2017;35:498–507. https://doi.org/10.1016/j. 
tibtech.2017.02.012. 

[36] Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression 
data using empirical Bayes methods. Biostatistics 2007;8:118–27. https://doi.org/ 
10.1093/biostatistics/kxj037. 

[37] Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data 
analysis. Genome Biol 2018;19. https://doi.org/10.1186/s13059-017-1382-0. 

K. Flevaris et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.csbj.2024.03.008
https://doi.org/10.1515/dx-2019-0104
https://doi.org/10.3399/bjgp10X483175
https://www.cancerresearchuk.org/about-cancer/tests-and-scans
https://www.cancerresearchuk.org/about-cancer/tests-and-scans
https://doi.org/10.1200/JGO.17.00036
https://doi.org/10.1200/JGO.17.00036
https://www.nhs.uk/conditions/biopsy/
https://doi.org/10.1016/j.mam.2020.100891
https://doi.org/10.1016/j.mam.2020.100891
http://refhub.elsevier.com/S2001-0370(24)00061-8/sbref5
http://refhub.elsevier.com/S2001-0370(24)00061-8/sbref5
http://refhub.elsevier.com/S2001-0370(24)00061-8/sbref5
https://doi.org/10.1016/j.bbcan.2020.188464
https://doi.org/10.1515/cclm-2018-0379
https://doi.org/10.1007/s12014-008-9017-9
https://doi.org/10.17226/13446
http://refhub.elsevier.com/S2001-0370(24)00061-8/sbref10
http://refhub.elsevier.com/S2001-0370(24)00061-8/sbref10
http://refhub.elsevier.com/S2001-0370(24)00061-8/sbref10
http://refhub.elsevier.com/S2001-0370(24)00061-8/sbref10
https://doi.org/10.1016/j.cellimm.2018.07.009
https://doi.org/10.1038/nrc3982
https://doi.org/10.3389/fimmu.2014.00520
https://doi.org/10.3389/fimmu.2014.00520
https://doi.org/10.1007/s10719-015-9626-2
https://doi.org/10.1007/s10719-015-9626-2
https://doi.org/10.1093/glycob/cwp134
https://doi.org/10.1093/glycob/cwp134
https://doi.org/10.1021/acs.chemrev.1c01031
https://doi.org/10.1146/annurev.immunol.19.1.275
https://doi.org/10.1002/btpr.470
https://doi.org/10.1002/btpr.470
https://doi.org/10.3390/ijms23095180
https://doi.org/10.1016/j.biotechadv.2023.108169
https://doi.org/10.1002/1873-3468.13598
https://doi.org/10.1002/1873-3468.13598
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1007/s10994-023-06336-7
https://doi.org/10.1186/s12916-019-1466-7
https://doi.org/10.1158/1078-0432.CCR-15-1867
https://doi.org/10.1158/1078-0432.CCR-15-1867
https://doi.org/10.1038/srep28098
https://doi.org/10.1016/j.eng.2022.08.016
https://doi.org/10.1016/j.eng.2022.08.016
https://doi.org/10.3390/ijms18010197
https://doi.org/10.1093/nar/gkaa947
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1016/j.tibtech.2017.02.012
https://doi.org/10.1016/j.tibtech.2017.02.012
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1186/s13059-017-1382-0


Computational and Structural Biotechnology Journal 23 (2024) 1234–1243

1243
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