Skip to main content
. 2024 Mar 11;23:1234–1243. doi: 10.1016/j.csbj.2024.03.008

Table 1.

Configuration of machine learning pipelines for all folds of the inner NCV loop using the N-AUG and AUG datasets grouped by classifier type. Min Max: min-max normalisation; Standard: standardisation; None: No data scaling; C: regularisation parameter; L1: Lasso penalty term; L2: Ridge penalty term; Elastic Net: Combination of L1 and L2; Criterion: tree-specific splitting criterion; GBTree: tree-based booster; DART: dropout regularized tree-based gradient booster.

Algorithm Dataset Hyperparameters
Scaler C Penalty Solver L1 ratio
LR N-AUG
N-AUG
N-AUG
None
None
None
0.19
0.19
0.36
L1
L1
Elastic Net
SAGA
SAGA
SAGA
-
-
0.85
Scaler C Kernel
SVM N-AUG None 0.001 Polynomial
Scaler Estimators Max Depth Criterion
RF N-AUG None 40 2 Entropy
Scaler Estimators Max Depth Booster Gamma
XGB AUG None 400 6 GBTree 8.44
AUG Standard 360 5 DART 8.93
AUG Standard 320 5 DART 8.19
AUG Min Max 240 6 DART 11.18
AUG Min Max 240 6 DART 11.18