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A B S T R A C T   

Purpose: We hypothesize that lower grade gliomas (LGG) can be identified and classified into two distinct sub
types: radiologically circumscribed Lower-Grade Gliomas (cLGG) and infiltrating Lower-Grade Gliomas (iLGG) 
based on radiological parameters and that these two different subtypes behave differently in terms of clinical 
outcomes. 
Methods: We conducted a retrospective cohort study on surgical patients diagnosed with lower grade glioma over 
five years. Patient records and MRIs were reviewed, and neurosurgeons classified tumors into cLGG and iLGG 
groups. 
Results: From the 165 patients in our cohort, 30 (18.2%) patients were classified as cLGG and 135 (81.8%) 
patients were classified as iLGG Mean age in cLGG was 31.4 years while mean age in iLGG was 37.9 years (p =
0.004). There was significant difference in mean blood loss between cLGG and iLGG groups (270 and 411 ml 
respectively, p = 0.020). cLGG had a significantly higher proportion of grade II tumors (p < 0.001). The overall 
mean survival time for the iLGG group was 14.96 ± 1.23 months, and 18.77 ± 2.72 months for the cLGG group. 
In univariate cox regression, the survival difference between LGG groups was not significant (HR = 0.888, p =
0.581), however on multivariate regression cLGG showed a significant (aHZ = 0.443, p = 0.015) positive cor
relation with survival. Intense contrast enhancement (HZ = 41.468, p = 0.018), blood loss (HZ = 1.002, p =
0.049), and moderately high Ki-67 (HZ = 4.589, p = 0.032) were also significant on univariate analyses. 
Conclusion: cLGG and iLGG are radiologically distinct groups with separate prognoses, surgical experience, and 
associations.   

1. Introduction 

Gliomas are tumors originating from glial cells in the brain paren
chyma and are the most common type of neoplasm in the central ner
vous system (CNS).1 There are well-described radiological features to 
help differentiate between low- and high-grade gliomas, such as 
contrast-enhancement and necrosis.2 However, the grade II and III cat
egories are more ambiguous, termed as lower-grade glioma (LGG). This 
is more so seen when assessing morphological characteristics of the 
lesion; invasion, surround edema as seen on T2 and FLAIR images, and 

variable contrast-enhancing patterns make it difficult to accurately 
assess whether a certain glioma is likely to be aggressive or benign on 
imaging alone. Texture analysis on MRIs can also be a significant pre
dictor of early malignant transformation of lower-grade gliomas and has 
potential implications in treatment.3,4 

The World Health Organization (WHO) conducted major revisions to 
its classification of diffuse lower-grade gliomas (LGGs).5–7 LGGs include 
WHO grade II and III oligodendroglial and astrocytic tumors, which 
predominantly have a mutation in the isocitrate dehydrogenase 
(IDH).6,8 Several MRI features have been found to have prognostic value 
as they differentiate between grades, diffuse, and discrete tumors but 
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there is insufficient data to evaluate them having any influence on 
resectability of tumor, histopathological characteristics, and overall 
survival. These tumors can either have very distinct borders or an 
infiltrating appearance with ill-defined boundaries. These two differ
ently appearing gliomas on MRI can have the same histopathological 
diagnosis but present as unique surgical dilemmas with distinct 
onco-functional outcomes. 

The authors intend on characterizing the morphological patterns of 
LGG into two separate groups: radiologically circumscribed Lower- 
Grade Gliomas (cLGG) AND infiltrating Lower-Grade Gliomas (iLGG), 
based on radio–morphological parameters. In this study, we assess the 
proposed classification as a robust method of capturing the two distinct 
morphologies and characterizing the demographic distribution, diag
nostic characteristics, treatment modalities, and outcomes (recurrence, 
functionality, progression-free survival [PFS], and overall survival 
[OS]). 

Our proposed classification of LGGs into radiologically circum
scribed and infiltrating is subjective. It may be prone to errors due to 
difference in experience and expertise of the observers. To make this 
process more objective, we also trained machine learning classifiers 
using various shape-based features on FLAIR MRI volume scans. Sta
tistical shape analysis is an analysis of the geometrical properties of a set 
of shapes by statistical methods to model shape variations. Shape-based 
classification in brain tumor MRI, stems from the ability to run shape 
analysis and identify morphological abnormalities of the neuroanatomy. 
The shape features are extracted by the application of Spherical Har
monics (SPHARM). It is an extension of the fourier analysis, creating a 
parametric surface description by using an arbitrary shape function and 
expanding it onto a sphere using a set of orthogonal spherical functions 
as a basis functions.9 Earlier shape-based features have been used to 
classify brain tumors into regular vs irregular tumor and benign vs 
malignant tumor and showed reasonable accuracies with random forest 
classifiers.10,11 

2. Methodology 

We conducted a retrospective cohort study at the Aga Khan Uni
versity Hospital (AKUH), in Karachi, Pakistan. Institutional Board 
approval was obtained from the Ethics Review Committee (ERC: 2021- 
6333-18753) at AKUH and patient records were obtained from January 
2017 to December 2021. Data were extracted from medical records of 
patients diagnosed with lower-grade (grade II and grade III) glioma in 
the last five years (2017–2021). These patients had a confirmed histo
pathological diagnosis of a glioma brain tumor, had a surgical resection, 
and had Magnetic Resonance Imaging (MRI) available. Patients below 
the age of 18 and those who refused to give consent were excluded from 
the study. Patients with outsourced MRI were also excluded due to un
availability of imaging records. Histopathological diagnosis was made 
using the WHO 2016 criteria available at the time. 

Patients were divided into the cLGG and iLGG group based on tumor 
morphology and appearance. Tumors with diffuse infiltration and 
indistinct edges were classified as iLGG, while tumors with discrete, 

well-defined edges and involving only one lobe were classified as cLGG. 
A neurosurgeon divided these tumors in two groups after reading T1, 
contrast enhanced T1, T2, and FLAIR sequences of each patient. 
Following are the examples of cLGG and iLGG (Fig. 1). Specific criteria 
established during the training and validation portion of data assess
ment were as follows: assessment of tumor boundaries, extent of infil
tration into surrounding tissue, and tumor morphology/homogeneity. 
This was independently reviewed by the senior author. 

We investigated interobserver reliability by introducing a neuro
surgical resident and informing him of the definition of the groups. 10 
randomized MR numbers from each LGG group were chosen and he was 
asked to classify them, blinded to original results. The results were 
compared with the initial classification by our neurosurgical faculty. 
Inter observer reliability was 70% for our group. 

Study variables included demographic information, such as age, 
gender, and marital status, duration of hospital stay, past medical and 
surgical history, family history. Details of the pathology i.e., tumor type, 
genetic/molecular analysis, KPS score pre-op and post-op, lesion loca
tion and size, and grade of tumor were recorded as well. Information 
about the surgical course i.e., extent of tumor resection, operating time, 
ASA levels, and blood loss was collected. Finally, post-surgical details 
such as recurrence, and last known status were recorded from the files. 

Patients (who were not reported as expired) were called telephoni
cally. Three attempts at contact were made with a gap of 20 min and 1 
day respectively. Patients or attendants were asked for informed verbal 
consent and administered a questionnaire. The variables assessed were 
mortality status, and evidence of recurrence or progression on recent 
MRIs. 

2.1. Plan of analysis 

STATA version 15 and R was used for statistical analysis. Signifi
cance was assessed by independent t-test/Mann Whitney U test (for 2 
groups) and ANOVA/Kruskal Walis test (for 3 groups) as appropriate. 
The qualitative variables have been reported as frequency and per
centages and were assessed by chi-square/fisher exact test as 
appropriate. 

Logistic regression was used to investigate correlations between 
variables and LGG group. Variables include in the univariate model were 
age, gender, grade, contrast enhancement, KPS pre- and post-op, blood 
loss, length of stay, surgery type, Ki-67, and progression/recurrence. 
Variables that had p < 0.25 or clinically relevant were carried over to the 
multivariate model. These included age, gender, grade, contrast 
enhancement, KPS pre- and post-op, blood loss, surgery type, and Ki-67. 

The mean survival time of the participants was reported by Kaplan 
Meier curves and assessed by the log-rank test. The factors associated 
with overall survival have been determined by multivariate cox 
regression analysis and an unadjusted and adjusted hazard ratio with 
95% CI has been reported. Variables of interest were age, gender, KPS at 
presentation, grade, blood loss, length of hospital stay, and cellularity. 
Univariate cox was reported with Hazard Ratio (HR), p-value, and 
confidence interval (CI), while multivariate was reported with Adjusted 
Hazard Ratio (HR), p-value, and confidence interval (CI). A p-value of 
<0.05 was considered significant throughout the study. 

2.2. Machine learning classifier 

Grade 2 and 3 gliomas with a pre-operative FLAIR volume MRI scan 
available were included (n = 118). These were annotated for glioma 
lesions by the clinical experts and classified into cLGG (n = 26) and iLGG 
(n = 92) cases using the 3D Slicer software. Handcrafted shape features 
were extracted by the application of Spherical Harmonics (SPHARM) 
and fed into machine learning algorithms. We used classical machine 
learning approaches including decision trees, random forests and sup
port vector machine and compared their performance parameters 
(Fig. 2). 

Abbreviations 

cLGG Circumscribed Lower-Grade Gliomas 
iLGG Infiltrating Lower-Grade Gliomas 
CNS Central Nervous System 
IDH Isocitrate dehydrogenase 
PFS Progression-free survival 
OS Overall survival 
AKUH Aga Khan University Hospital 
KPS Karnofsky Performance Score  
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3. Results 

From January 2017 through December 2021, 746 patients presented 
to our center with a diagnosis of glioma. Among these, 288 were grade 2 
and grade 3 patients. MRI and clinical records were available for 165 
patients and comprised the sample population for data analysis. The best 
accuracy for machine learning classification was achieved at 96.4% 
using Random Forest followed by 82.1% for both Decision Tree and 
Support Vector Machine. 

3.1. Patient characteristics 

From the 165 patients in our cohort, 135 (81.8%) patients were from 
the iLGG group, and 30 (18.2%) patients were from the cLGG group. Of 
these 165 patients, 118 (71.5%) patients were male, and 47 (28.5%) 
patients were female. Gender of the patient was not significantly asso
ciated with their respective LGG groups (p = 0.114). 

The mean age was 36.7 ± 11.3 years overall, with the youngest 
patient being 18 years of age and the oldest 70 years. In the cLGG group 
the mean age was 31.4 ± 7.9 while the mean age in iLGG was 37.9 ±

11.6. Younger patients were more likely to be diagnosed with cLGG than 
with iLGG (p = 0.004). The demographic features of our population are 
summarized in Table 1. Presenting complaints are stratified by LGG 
group and demonstrated in Fig. 3 (supplement). 

3.2. Surgical characteristics 

The mean length of in-hospital stay was 1.9 days for our patients, it 
was lower for cLGG at 1.63 days as opposed to 2.15 days for iLGG. The 
mean KPS score at presentation was 78.3 ± 12.5 overall while the mean 
postoperative KPS was 76.3 ± 13.6. The average change in KPS was not 
significant in either of the groups. 

Table 1 summarizes the surgical characteristics of the patients by 
grade and iLGG/cLGG group. There was a significant difference in mean 
blood loss between cLGG and iLGG patients. The overall mean intra
operative blood loss for both cohorts was 389 ml ± 237 ml. For the cLGG 
group, the mean blood loss was 270 ± 128 ml; for the iLGG group, it was 
411 ± 246 ml (p = 0.020). In the type of surgical procedure performed, 
11 patients from the cLGG group and 34 patients from the iLGG group 
were excluded from the analysis due to unavailable data. 

Fig. 1. MRI scans of cases showing radiologically circumscribed LGG (A, B, C) and diffuse LGG (D, E, F).  

Fig. 2. Pipeline showing development of machine learning classifier.  
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3.3. Tumor characteristics 

In the iLGG group 90 (69%) tumors were oligodendroglioma and 40 
(31%) were astrocytoma, while the cLGG group had 20 (70%) Oligo
dendroglioma and 10 (30%) astrocytoma. 5 tumors from the iLGG group 
were not characterized because of missing data. There was no significant 
difference in the tumor type between the two LGG groups (p = 0.785). 
There was a significant difference in grade distribution amongst our 

proposed LGG groups, with cLGG having a higher proportion of grade II 
tumors (p < 0.001). Table 1 demonstrates the tumor type within each 
category. 

Contrast enhancement was assessed in 155 patients. Only iLGG tu
mors had intense contrast enhancement (p = 0.011), cLGG tumors were 
most likely to have no contrast enhancement (p = 0.013), while iLGG 
tumors were most likely to have subtle contrast enhancement (p <
0.001). Fig. 3 shows the different patterns of contrast enhancement. 

Table 1 
Demographic characteristics, surgical features, type of tumor, contrast enhancement and histopathological features of patients in the cLGG and iLGG groups.  

Demographic Characteristics  

cLGG iLGG p-value 

Grade 2 Grade 3 Total Grade 2 Grade 3 Total 

n = 27 n = 3 n = 30 n = 73 n = 62 n = 135 

Age (mean ± SD) 31.1 ± 8.1 34.2 ± 4.9 31.4 ± 7.9 36.1 ± 9.9 39.7 ± 13.2 37.9 ± 11.6 0.004 
Gender Male 22 3 25 (83.3%) 53 39 93 (68.9%) 0.443  

Female 5 0 5 (16.7%) 20 22 42 (31.1%) 
Average Length of Stay (days) 1.7 1 1.6 2.2 2.1 2.2 0.207 

Surgical characteristics  
cLGG iLGG 
Grade 2 Grade 3 Total Grade 2 Grade 3 Total 
N (% within grade) N (% within grade) N (% within cLGG) N (% within grade) N (% within grade) N (% within iLGG) 

Gross total resection 7 (43.8) 3 (100.0) 10 (52.6) 22 (37.9) 20 (46.5) 42 (41.6) 
Sub-total resection 8 (50.0) 0 (0.0) 8 (42.1) 34 (58.6) 22 (51.2) 56 (55.4) 
Biopsy 1 (6.3) 0 (0.0) 1 (5.3) 2 (3.4) 1 (2.3) 3 (3.0) 
Blood loss (mean, in ml) 263.8 ± 130.2 370 270 ± 128 404.4 ± 270.1 419.6 ± 210.3 410.6 ± 246.0 

Tumor type  
cLGG iLGG 
Grade 2 Grade 3 Total Grade 2 Grade 3 Total 
N (% within grade) N (% within grade) N (% within cLGG) N (% within grade) N (% within grade) N (% within iLGG) 

Oligodendroglioma 18 (66.7) 2 (66.7) 20 (70) 56 (80.0) 34 (56.7) 90 (69) 
Astrocytoma 9 (33.3) 1 (33.3) 10 (30) 14 (20.0) 26 (43.3) 40 (31) 

Contrast enhancement  
cLGG iLGG 
Grade 2 Grade 3 Total Grade 2 Grade 3 Total 
N (%) N (%) N N (%) N (%) N 

None 13 (54.2) 1 (33.3) 14 17 (24.6) 11 (18.6) 28 
Subtle 10 (41.7) 1 (33.3) 11 45 (65.2) 33 (55.9) 78 
Definite 1 (4.2) 1 (33.3) 2 3 (4.3) 11 (18.6) 14 
Intense 0 (0.0) 0 (0.0) 0 4 (5.8) 4 (6.8) 8 

Histopathological features  
cLGG iLGG 
Grade 2 Grade 3 Total Grade 2 Grade 3 Total 
N (% within grade) N (% within grade) N N (% within grade) N (% within grade) N 

High Ki67 1 (100.0) 0 (0.0) 1 8 (44.4) 10 (55.6) 18 
Nuclear atypia 4 (80.0) 1 (20.0) 5 22 (48.9) 23 (51.1) 45 
Necrosis 0 (0.0) 0 (0.0) 0 2 (18.2) 9 (81.8) 11 
Reactive gliosis 4 (100.0) 0 (0.0) 4 20 (62.5) 12 (37.5) 32 
Vascular/endothelial 

proliferation 
2 (66.7) 1 (33.3) 3 10 (40.0) 15 (60.0) 25 

Increased Cellularity 3 (50.0) 3 (50.0) 6 19 (30.2) 44 (69.8) 63  

Fig. 3. Pattern of contrast enhancements. A: Subtle enhancement, B: Definite enhancement, C: Intense enhancement.  
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Table 1 demonstrates contrast enhancement stratified by grade and 
cLGG/iLGG group and Fig. 5 (supplement) compares the percentage of 
patients with contrast enhancement in each category according to LGG 
group. Histopathological features are also categorized according to 
grade and LGG group and summarized in Table 1. 

3.4. Regression analysis 

In the univariate model, age had a significant correlation with lower 
grade glioma group (B coeff:-6.493, p = 0.004). Similarly grade 3 tumors 
also had a significant negative correlation with the cLGG group (OR =
− 0.223, p < 0.001). In terms of contrast enhancement, when compared 
to no enhancement, subtle enhancement (OR = − 0.209, p = 0.003) and 
intense enhancement (OR = − 0.333, p = 0.014) had a significant 
negative correlation with cLGG. Blood loss also had a strong correlation 
with the type of lower grade glioma. CLGG were likely to have much 
lower intraoperative blood loss than iLGG (B coeff:-140.652, p = 0.024). 
Similarly, iLGG were significantly more likely to have both definite and 
intense contrast enhancement when compared to cLGG (OR = − 0.179, p 
= 0.008). Gender, KPS pre or post-op, length of stay, type of surgical 
intervention, and progression had no significant correlation with LGG 
group. 

Variables that were significant (p < 0.05), that were clinically rele
vant, or that had a (p < 0.25) were carried forward to the multivariate 
analysis. These included age, gender, grade, contrast enhancement, pre- 
op and post-op KPS score, blood loss, length of stay, surgery type and Ki- 
67 levels. In the multivariate model subtle contrast enhancement (OR =
− 0.175, p = 0.035), subtotal resection (OR = − 0.605, p = 0.028), and 
moderately high Ki-67 (OR = − 0.213, p = 0.028) all had significant 
negative correlations with the LGG group (cLGG compared to iLGG). Our 
findings are summarized in Table 2 (supplement). 

3.5. Survival analysis 

Our patients were followed up for a mean of 69 months (5.8 years). 
At point of last follow-up, 71 patients (46.1%) had a progression or 
recurrence of the disease, while 82 patients (53.8%) had no reported 
recurrence or progression. From the patients with recurrence or pro
gression, 55 (44% of the iLGG cohort) patients were from the iLGG 
group and 16 (55.2% of the cLGG cohort) were from the cLGG group. 
There was no significant association between LGG group and progres
sion of disease. Twelve patients had no follow-up data available and 
were excluded from the analysis. From patients with known outcomes, 
12 (8.3%) patients had passed away, and 132 (91.7%) patients were still 
alive. Of the deceased patients 2 (6.7% of the cLGG group) were from the 
cLGG group and 10 (7.4% of the iLGG group) were from the iLGG group. 
Twenty-one patients (12.7%) had no follow-up data available and were 
excluded from survival analysis. 

Survival analysis was performed using Kaplan Meier analysis with 
Log-rank test and Cox regression analysis for crude and adjusted hazard 
ratios. The results are depicted in Table 3 (supplement) and Fig. 4. The 
survival rate at 1 year was 94.6% with all 3 mortalities being from the 
iLGG group. Survival rate at 3 years was 92.9% for iLGG, and 90.5% for 
cLGG. At 5 years the survival rate for cLGG remained the same but for 
iLGG fell to 91.7%. The overall mean survival time for the iLGG group 
was 14.96 ± 1.23 months, and 18.77 ± 2.72 months for the cLGG group. 
The difference in survival between the LGG groups was not significant 
when stratified by type of surgery as shown in Fig. 7 (supplement). On 
univariate cox regression analysis, the survival difference between cLGG 
and iLGG group was not significant (HR = 0.888, p = 0.581), however 
on multivariate regression, cLGG showed a significant (aHZ = 0.443, p 
= 0.015) positive correlation with survival. Other positive variables on 
univariate cox regression were intense contrast enhancement (HZ =
41.468, p = 0.018), blood loss (HZ = 1.002, p = 0.049), and moderately 
high Ki-67 (HZ = 4.589, p = 0.032). However, the significance did not 
carry over to the multivariate model. 

4. Discussion 

The current study proposes a novel approach to lower-grade gliomas 
in terms of radiological appearance translating to surgical, histological, 
and survival outcomes. Overall, cLGG tumors were more amenable to 
gross total resection compared to iLGG (42% vs. 36%). Our cohort in
dicates a trend for cLGG to be more likely present within younger pa
tients. Radiologically, iLGG within our cohort were more likely to show 
significant (definite or intense) contrast enhancement compared to 
cLGG tumors. Intraoperatively, cLGG group tumors had a significantly 
lower mean blood loss, possibly indicating favorable surgical outcomes. 
Our histopathological analysis showed statistically significant higher 
Ki67 indices within iLGG (13.8% vs. 3.4%, p=0.003) and cellularity 
(56.25% vs. 24%, p=0.004). iLGG were also more likely to have higher 
nuclear atypia, necrosis, reactive gliosis and microvascular prolifera
tion. These factors correlate with the significant difference in WHO 
grade, with cLGG tumors more likely to be reported as grade II glioma. 
Survival analysis yielded no significant difference (p = 0.257); however, 
median survival at 1 year and 5 years was higher for cLGG within our 
cohort (1 year: 9 vs. 7 months, 5 years: 75 vs. 63 months). Cox multi
variate regression analysis indicates significant correlation of LGG type 
with survival. Proportional regression analysis showed significant as
sociations of contrast enhancement, Ki67, and extent of resection in 
predicting for LGG subtype. 

Lower-grade glioma are a heterogeneous group of tumors. Although 
grade III gliomas are thought to be more aggressive and require post
operative chemoradiotherapy, recent data has shown that morpholog
ical appearances of glioma correlate with distinct survival patterns and 
molecular signatures.12 Diffuse infiltration of glioma makes complete 
resection difficult, and this aggressive phenotype is associated with 
worse outcomes. On the other hand, radiologically circumscribed gli
omas are easily accessible and completely resected. These two 
morphological patterns have been shown in previous studies to depict 

Fig. 4. Kaplan Meier plot for survival analysis according to LGG group. (Time 
given in months). 
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distinct molecular signatures.13 Our study applied a more stringent 
radiological criteria for differentiating grade II/III gliomas and validated 
this through evaluating key histopathological, surgical, and survival 
characteristics of our cohort. Within the literature, machine learning 
models have shown value in predicting subgroups of LGG according to 
CT and MRI findings with prediction of molecular subtypes as well.14 

These models focus on features such as T2/FLAIR mismatch, contrast 
enhancement patterns, and clinical data. Similarly, our proposed model, 
although subjective, provides a nuanced and practicable approach for 
surgeons preoperatively evaluating LGGs for resectability and deter
mining the patient’s clinical course. 

We see that patients had no significant difference in presenting 
complaints, with seizures as the most common symptom. Mean length of 
stay was higher for iLGG (2.2 vs. 1.6 days). Surgically, grade II cLGG and 
iLGG showed similar rates of resection – however, grade III cLGG were 
more likely to be completely resected compared to iLGG. A recent study 
in 2019 conducted on 172 diffuse LGG showed an association between 
greater surgical resection and overall survival, with a stronger impact 
with astrocytomas over oligondrogliomas.15 Similarly, a large cohort 
from 2018 evaluating postoperative glioma volume for grade II diffuse 
gliomas showed worse survival with greater postoperative tumor vol
ume, with a similar strong association with astrocytomas over oligo
dendroglioma.16 Our findings show similar trends, with greater median 
5-year survival for cLGG and higher rates of gross total resection in the 
cohort. 

Darvishi et al discovered that preoperative MRI metrics of LGGs 
patients can offer prognostic information within molecularly defined 
classes. They found that contrast enhancement was associated with 
WHO grade III among IDHwt and IDHmut-Noncodel LGGs, but not 
IDHmut-Codel LGGs.17 This study highlights that MRIs are an excep
tional imaging modality to identify brain tumors, but there is no existing 
classification to recognize the type or grade of lower-grade gliomas, such 
that disease progression and outcomes can be foretold on imaging alone. 

Our study is limited by sample size – although we were able to report 
significance for a few key characteristics, greater differentiation may be 
seen with larger cohorts and the inclusion of a T1 post-contrast 
sequence. Our findings are also based on subjective assessment of the 
imaging. Lastly, we were unable to evaluate the significance of molec
ular markers for classifying LGG according to the 2021 WHO Classifi
cation of CNS Tumors, due to many of these cases having occurred 
before the change in criteria.18 

5. Conclusion 

The importance of prognosticating and evaluating the morphology of 
LGG will help optimize patient care and postsurgical outcomes. The 
application of our radiological criteria to a cohort of patients shows 
distinct patterns in terms of histology, surgical resection, and survival. It 
might also be practical to add cLGG and iLGG classifiers in WHO clas
sification to better help classify in multidisciplinary discussions 
regarding patient management. Future research into validating these 
findings and developing radiological biomarkers may improve preop
erative planning and prognostication. 
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