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Abstract: Artemisia arborescens is a Mediterranean evergreen shrub, with silver grey-green tomentose
leaves and a strong scent. It has various ethnopharmacological uses and its secondary metabolites
have demonstrated antimicrobial, antiviral, pharmaceutical, phytotoxic, and insecticidal activities.
Different extracts obtained from aerial parts of this species are known for their allelopathic effect,
but similar studies on its essential oil (EO) are lacking. Therefore, we carried out a pharmacognostic
study, obtaining the characterization of the secretory structures and the EO produced. Trans-thujone
and camphor are the main components, followed by aromadendrene, camphene, and 8-cedren-13-ol.
EO phytotoxic activity was tested on weed plants (Lolium multiflorum Lam. and Sinapis arvensis L.)
and crops (Raphanus sativus L. and Cucumis sativus L.), showing inhibition on both germination and
radical growth of the two weeds tested. The effects of the EO against the bacterial plant pathogens
Xanthomonas campestris pv. campestris (Gram−) and Pseudomonas syringae pv. tomato (Gram+) was also
assayed. The minimum inhibitory concentration (MIC) was observed when it was used undiluted
[100% v/v], and growth inhibition when diluted at different doses. The antimicrobial activity was
also confirmed by the cellular material release and biofilm formation assays. The overall data show
that A. arborescens EO can find application as a potential alternative biocontrol product against weeds
and plant pathogens. This goal is particularly important from the perspective of replacing synthetic
pesticides with natural products, which safeguard both the environment and the health of consumers.

Keywords: Asteraceae; glandular trichomes; secretory ducts; phytochemistry; phytotoxicity;
antimicrobial activity

1. Introduction

The genus Artemisia (Asteraceae) includes about 500 species mainly distributed in the
temperate zones of the Northern hemisphere [1], most of which have been traditionally
used in medicine since ancient times for their broad therapeutic potential [2].

Artemisia arborescens (Vaill.) L., also known as silver sage and tree wormwood, is an
endemism of the Mediterranean area. This multi-branched shrub has silver grey-green,
deeply divided leaves, covered by a dense indumentum, and is characterized by a strong
scent. It is mainly used in the culinary and alcoholic beverages industries [3], but it has
been also employed for various ethnopharmacological purposes, such as in traditional
medicine, e.g., for the treatment of digestive and respiratory problems, as a febrifuge for
domestic uses against moths and bed bugs, and as a magical/ritual plant [4–6].
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The plant extract contains several secondary metabolites, which have demonstrated
different biological activities such as an effect on rat-isolated smooth muscle [7] and feeding
deterrent properties [8]. The essential oil (EO) obtained from plants of A. arborescens
growing in Sicily with β-thujone and the sesquiterpene hydrocarbon chamazulene as the
main compounds, had inhibition ability against Lysteria monocytogenes strains [9]. This
essential oil also presented anti-herpes virus activity, being able to inactivate the virus and
inhibit cell-to-cell virus diffusion [10].

Moreover, some Artemisia species have been reported for their allelopathic poten-
tial [11–13]. Regarding A. arborescens, different extracts obtained from aerial parts [14–16]
and from the maceration of leaf litter [17] have shown allelopathic effects. However, the
biological properties of A. arborescens EO have been little explored [18]. In particular, there
is a lack of data on its phytotoxic effect on weeds, as well as on its antimicrobial activities
against pathogenic bacteria that affect agricultural crops. Crop protection is currently in a
transitional phase, in which synthetic chemicals are still widely used, but there is a need
for their reduction in farm management [19]. Therefore, new practices must be gradually
introduced in order to take into account both environmental safety and socio-economic
factors [20]. In recent years, the growth in productivity and international trade has also led
to a growing incidence of some diseases, causing an increase in the use of pesticides, which
are a risk to the environment and agricultural ecosystems [21].

There are various methods to control pathogens, but some of them pose risks for
developing resistance in the pathogen population. For instance, selection of specific genetic
pathways in plant breeding to improve disease resistance are practical but may lead to
the emergence of virulence genes in the pathogens [22]. On the other hand, biological
control involving microorganisms can be an effective way to reduce the negative impact
of synthetic chemicals on the environment and minimize pollution [23,24]. To promote
sustainable agriculture, several countries have adopted a protection plan to reduce the use
of pesticides by up to 50%; however, there are still few valid alternatives [25]. Therefore,
it is important to increase our understanding of the different mechanisms involved in
biocontrol to improve its effectiveness and extend its use.

Several studies have demonstrated that biopesticides derived from essential oils can
be used as selective herbicides [26,27] and for their antibacterial and antifungal properties,
making them ideal for the protection of plants and crops [28].

Therefore, the aim of this study was to carry out a pharmacognostic characterization
of leaves and branches of A. arborescens, to obtain the phytochemical profile of the EO.
Afterwards, the phytotoxicity of the EO was tested on both weed and crop plants, while
its antimicrobial activity was assayed against two bacterial plant pathogens in order to
evaluate its potential use as a new biocontrol product in agriculture.

2. Results
2.1. Anatomical and Micromorphological Analyses

A. arborescens is a branched shrub (Figure 1a) with petiolate deeply divided leaves
(Figure 1b), showing a dense cover of trichomes that gives them a silver grey-green colour
(Figure 1c). Details of the anatomical and micromorphological features of the leaf blade,
petiole, and young stem (small branches) were highlighted by both light microscopy (LM)
and scanning electron microscopy (SEM) analyses (Figures 2–4).
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red arrow). They can be better seen on the leaf surface after bleaching with a solution of 
sodium hypochlorite since the yellow-brown EO is maintained (Figure 2e). Glandular 
trichomes show a sac-like structure, with a short neck bearing a big glandular head 
covered with a thin cuticle sheath (Figures 2c,d and 3d,e) and are of biseriate type (Figures 
2f and 3f). The secretion within the glandular head positively reacts with Fluoral Yellow 
(FY), revealing the presence of lipophilic substances. In the leaf transversal sections 
embedded in paraffin, stained both with TBO (Figure 2h, red arrow) and Haematoxylin–
Eosin (Figure 2i, red arrow), the secretory ducts are well visible and appear located near 
the xylematic portion of the vascular bundles. 

 
Figure 1. Artemisia arborescens (Vaill.) L. (a) Plant growing at the Hanbury Botanical Gardens
(Ventimiglia, Italy); (b) small branches with petiolate and deeply divided leaves; and (c) detail of a
leaf showing a dense cover of trichomes.
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Figure 2. LM micrographs of a leaf of A. arborescens: (a,c,h,i) semithin sections and (b,d,e–g) 
handmade sections. (a) A transversal section stained with TBO showing the general anatomy of the 
leaf; (b) detail of T-shaped non-glandular trichomes; (c) a transversal section stained with TBO 
highlighting capitate glandular trichomes deeply embedded into the leaf surface (red arrows) and 
T-shaped non-glandular trichomes with suberin- or cutin-like hydrophobic substances on the side 
walls of the neck cells (black arrow); (d) a capitate glandular trichome in transversal section cleared 

Figure 2. LM micrographs of a leaf of A. arborescens: (a,c,h,i) semithin sections and (b,d,e–g) hand-
made sections. (a) A transversal section stained with TBO showing the general anatomy of the
leaf; (b) detail of T-shaped non-glandular trichomes; (c) a transversal section stained with TBO
highlighting capitate glandular trichomes deeply embedded into the leaf surface (red arrows) and
T-shaped non-glandular trichomes with suberin- or cutin-like hydrophobic substances on the side
walls of the neck cells (black arrow); (d) a capitate glandular trichome in transversal section cleared
with Chloral Hydrate solution (red arrow); (e) a capitate glandular trichome filled with essential oil
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on the leaf epidermis; (f) a biseriate capitate glandular trichome in transversal section; (g) a glandular
trichome stained by Fluoral Yellow, revealing the presence of lipophilic substances; and (h,i) secretory
ducts near the xilematic portion of the vascular bundles (red arrow). Bars 100 µm.
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Figure 3. SEM micrographs of a leaf of A. arborescens. (a) A transversal section of the leaf showing the
presence of many T-shaped non-glandular trichomes (black arrows) and of glandular trichomes (red
arrows) on both leaf surfaces; (b) a higher magnification of T-shaped non-glandular trichomes on the
leaf epidermis; (c) a leaf transversal section showing capitate glandular trichomes deeply embedded
into the leaf surface (red arrows) and partially hidden by the dense covering of the non-glandular
trichomes; and (d–f) capitate glandular trichomes at higher magnification. In (f), the section shows
the secretory cells within the glandular head.
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Figure 4. LM (a–f) and SEM (g,h) micrographs of transversal sections of a leaf petiole (a–c) and young
stem (d,h). (a) General petiole anatomy; (b) detail of the petiole showing two secretory ducts on
both sides of the main vascular bundle (black arrows) and a thick cuticle over the epidermis, stained
red with Sudan III (red arrows); (c) brilliant yellow fluorescence of the lipophilic substances of the
cuticle (red arrows) and of the essential oil inside the secretory ducts stained with FY (white arrows);
(d) young stem anatomy revealing the presence of secretory ducts in the cortex near the vascular
bundle (white arrows); (e) brilliant yellow fluorescence of the essential oil inside secretory ducts
stained with FY (arrows); (f) periderm (black arrow) in the older stem; (g) glandular trichomes on the
stem surfaces (white arrows); the insert shows the location of the glandular trichomes; and (h) small
crystal druses inside the pith parenchyma cells (white arrows).
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2.1.1. Leaves

On both surfaces, many trichomes are visible (Figure 2a; Figure 3a), mainly consisting
of T-shaped non-glandular trichomes (NGTs) (Figure 2b; Figure 3b). These trichomes
show a neck made of a variable number of cells bearing a terminal cell with long straight
arms (Figure 2b,c; Figure 3a–c). In NGTs, TBO staining highlights, in greenish-blue, the
presence of suberin- or cutin-like hydrophobic substances on the side walls of the neck cells
(Figure 2c, black arrow). Capitate glandular trichomes (GTs) also occur on both surfaces
of the leaf blade, deeply embedded in the epidermis and partially hidden by the dense
covering of the NGTs (Figure 2c,d, red arrows; Figure 3a,c, red arrows). GTs are also
difficult to individuate in transversal sections clarified with Chloral Hydrate (Figure 2d, red
arrow). They can be better seen on the leaf surface after bleaching with a solution of sodium
hypochlorite since the yellow-brown EO is maintained (Figure 2e). Glandular trichomes
show a sac-like structure, with a short neck bearing a big glandular head covered with a thin
cuticle sheath (Figure 2c,d and Figure 3d,e) and are of biseriate type (Figures 2f and 3f). The
secretion within the glandular head positively reacts with Fluoral Yellow (FY), revealing
the presence of lipophilic substances. In the leaf transversal sections embedded in paraffin,
stained both with TBO (Figure 2h, red arrow) and Haematoxylin–Eosin (Figure 2i, red
arrow), the secretory ducts are well visible and appear located near the xylematic portion
of the vascular bundles.

2.1.2. Petiole and Young Stem

The leaf petiole shows a trapezoidal shape and a dense indumentum (Figure 4a).
The mono-stratified epidermis is covered by a thick cuticle stained in red by Sudan III
(Figure 4b, red arrow) and in bright yellow by FY (Figure 4c, red arrow), revealing the
presence of lipophilic substances. Under the epidermis, collenchyma and chlorenchyma
are alternately arranged, and one central and two lateral vascular bundles are well visible
(Figure 4a,b). Two secretory ducts are present on the sides of the main vascular bundle, in
the central zone of the petiole (Figure 4b black arrows). The secretion inside them reacts
positively with FY, appearing bright yellow (Figure 4c, white arrows). In addition, in the
transversal section of the young stem, many large secretory ducts can be found (Figure 4d,
white arrows) located in the cortex, near the vascular bundles and arranged in a circle.
Also, in this case, the secretion within the secretory ducts is stained in bright yellow by
FY (Figure 4e, white arrows). Below the epidermis, the older stem is characterized by a
continuous periderm consisting of two to three layers of enlarged cells arranged in radial
rows (Figure 4f, arrow). SEM analysis at high magnification permitted the individuation
of the presence of GTs also on the young stem surface (Figure 4g, white arrows; the insert
shows, with a white circle, the zone where the GTs are individuated). Moreover, inside the
parenchyma cells of the pith, the presence of small crystal druses is detected (Figure 4h,
white arrows).

2.2. Chemical Composition of EO

The EO yield was 0.12% on a dry weight basis, in agreement with the EO yield of
other species of Artemisa [29].

The analysis of the EO allowed us to identify a total of 51 components, correspond-
ing to 96.3% of the total EO. Monoterpenes (25 components) predominated in the EO
(67.0%), and oxygenated monoterpenes were the most representative class (49.0%). Among
oxygenated monoterpenes trans-thujone (24.2%) and camphor (18.9%) were the main
components of the EO. Among monoterpene hydrocarbons, the main components were
camphene (6.0%), p-cymene (2.4%), sabinene (2.4%), and α-pinene (2.3%). The sesquiter-
pene fraction was almost equally divided among hydrocarbons (14.9%) and oxygenated
compounds (13.9%). Aromadendrene (6.5%) was the main component among sesquiter-
pene hydrocarbons, trans-nuciferol (4.2%) and caryophyllene oxide (3.0%) were the main
components among oxygenated sesquiterpenes (Table 1).
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Table 1. Composition of the EO of A. arborescens.

KI a KI b % Identification c

Tricyclene 844 1047 0.3 1, 2
α-Thujene 850 1020 0.1 1, 2
α-Pinene 855 1036 2.3 1, 2, 3
Camphene 868 1075 6.0 1, 2, 3
Butanoic acid, 2-methylpropyl ester 870 1174 0.1 1, 2
Sabinene 891 1115 2.4 1, 2
β-Pinene 910 1120 0.8 1, 2, 3
α-Phellandrene 918 1177 1.8 1, 2, 3
α-Terpinene 929 1170 0.6 1, 2, 3
Propanoic acid, 2-methyl-, 3-methylbutyl ester 934 0.2 1, 2
p-Cymene 938 1250 2.4 1, 2, 3
Eucalyptol 942 1210 2.2 1, 2, 3
γ-Terpinene 970 1221 1.0 1, 2, 3
Terpinolene 997 1267 0.2 1, 2, 3
cis-Thujone 1009 1430 1.2 1, 2
trans-Thujone 1020 1442 24.2 1, 2
α-Campholenal 1032 1485 0.2 1, 2
allo-Ocimene 1041 1388 0.1 1, 2
Camphor 1050 1491 18.9 1, 2, 3
Pinocarvone 1063 1586 0.1 1, 2, 3
Borneol 1067 1715 0.2 1, 2, 3
Terpinen-4-ol 1079 1590 0.7 1, 2, 3
Isocitral 1084 1690 0.1 1, 2
α-Terpineol 1093 1661 0.3 1, 2
cis-Chrysantenyl acetate 1098 0.2 1, 2
4-Decen-1-ol 1133 0.2 1, 2
Thymol 1199 2172 0.6 1, 2, 3
δ-Elemene 1219 1479 0.1 1, 2
α-Copaene 1255 1477 0.4 1, 2
Isobornyl propanoate 1258 0.1 1, 2
β-Bourbonene 1263 1498 0.3 1, 2
β-Elemene 1266 1579 0.1 1, 2
β-Gurjunene 1273 1615 1.2 1, 2
Aromadendrene 1298 1631 6.5 1, 2
cis-Muurola-3,5-diene 1299 0.7 1, 2
α-Humulene 1322 1641 0.8 1, 2
γ-Gurjunene 1346 0.7 1, 2
Germacrene D 1350 1712 1.5 1, 2
cis-β-Guaiene 1354 1651 0.2 1, 2
trans-Muurola-4(14),5-diene 1365 0.3 1, 2
γ-Amorphene 1383 0.5 1, 2
δ-Amorphene 1393 1751 0.5 1, 2
α-Cadinene 1400 1753 0.1 1, 2
Caryophyllene oxide 1443 2000 3.0 1, 2
Aristolene epoxide 1453 0.2 1, 2
Caryophylla-4(12),8(13)-dien-5α-ol 1498 2324 0.8 1, 2
α-Cadinol 1507 2256 1.3 1, 2
Guaia-3,10(14)-dien-11-ol 1538 0.1 1, 2
cis-Z-α-Bisabolene epoxide 1550 0.1 1, 2
Cedren-13-ol, 8- 1837 2359 5.2 1, 2
trans-Nuciferol 1839 4.2 1, 2
Total 96.3
Monoterpene hydrocarbons 18.0
Oxygenated monoterpenes 49.0
Sesquiterpene hydrocarbons 13.9
Oxygenated sesquiterpenes 14.9
Others 0.5

a,b: Kovats retention indices determined relative to a series of n-alkanes (C10–C35) on the apolar HP-5 MS and
the polar HP Innowax capillary columns, respectively; c: identification method: 1 = comparison of the Kovats
retention indices with published data, 2 = comparison of mass spectra with those listed in the NIST 02 and Wiley
275 libraries and with published data, and 3 = coinjection with authentic compounds.

2.3. Phytotoxic Activity

Table 2 shows the activity of the EO on germination and radical growth of the tested
plant species. The EO demonstrated variable phytotoxicity depending on the species and
the concentration used. It was effective in counteracting the radical growth of weeds but
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less effective in preventing their germination. In fact, at 1000 µg/mL, the germination of
L. multiflorum was completely inhibited, whereas S. arvensis was not affected. At 1000 and
500 µg/mL, the radical elongation of L. multiflorum and S. arvensis was completely inhibited,
while at lower concentrations, the root inhibition was minor. Other concentrations exerted
a weaker effect. Regarding food crops, R. sativus was found to be very sensitive to the EO,
which exerted a complete inhibition of germination at concentration of 1000 and 500 µg/mL
and complete inhibition of radical growth also at 250 µg/mL. C. sativus, on the other hand,
was much less sensitive to the EO for radical growth and especially for germination.

Table 2. Phytotoxic activity of A. arborescens EO on seed germination and root growth.

Number of Germinated Seeds (A) and Percent Inhibition (B)

µg/mL
L. multiflorum S. arvensis R. sativus C. sativus

A B A B A B A B

Control 10.0 ± 0.0 0 9.7 ± 0.6 0 10.0 ± 2.0 0 8.7 ± 0.6 0
125 7.0 ± 1.0 * 30.0 3.3 ± 0.6 **** 65.9 3.0 ± 1.0 * 70.0 9.7 ± 0.6 −111.5
250 6.3 ± 1.5 ** 37.0 2.0 ± 1.0 **** 70.3 1.7 ± 1.2 ** 83.0 9.3 ± 1.2 −106.0
500 1.7 ± 1.5 **** 83.0 10.0 ± 0.0 −103.1 0.0 ± 0.0 *** 100.0 7.0 ± 2.0 19.5

1000 0.0 ± 0.0 **** 100.0 10.0 ± 0.0 −103.1 0.0 ± 0.0 *** 100.0 4.0 ± 1.0 ** 54.0

Radical Length (cm—A) and Percent Inhibition (B)

µg/mL
L. multiflorum S. arvensis R. sativus C. sativus

A B A B A B A B

Control 0.6 ± 0.4 0 0.8 ± 0.6 0 0.9 ± 0.3 0 1.0 ± 0.4 0
125 0.4 ± 0.2 33.3 0.2 ± 0.1 25.0 0.7 ± 0.0 22.2 2.3 ± 0.5 * −230.0
250 0.3 ± 0.1 50.0 0.2 ± 0.0 25.0 0.0 ± 0.0 **** 100.0 1.5 ± 0.4 −150.0
500 0.0 ± 0.0 * 100.0 0.0 ± 0.0 * 100.0 0.0 ± 0.0 **** 100.0 1.6 ± 0.5 −160.0

1000 0.0 ± 0.0 * 100.0 0.0 ± 0.0 * 100.0 0.0 ± 0.0 **** 100.0 0.2 ± 0.1 80.0

The results are the mean of three experiments ± standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.00001
compared with the control (ANOVA followed by Dunnett’s multiple comparison test). Control = 0 µg/mL. Column
B indicates a stimulation of germination or radical growth.

2.4. Antimicrobial and Antibiofilm Activity of the Essential Oil

All EO dilutions tested were able to lyse both Xcc and P. syringae plant pathogens.
On soft agar with the bacteria, the EO spotting consistently formed clearing zones of
approximately 1 cm in diameter (Figure 5) showing a halo of inhibition when the EO was
used pure (100% v/v) and at 10% v/v dilution. In the antimicrobial assay, the EO was
tested for each bacterial strain at different dilutions, demonstrating a MIC value when used
undiluted and 90%, 80%, and 76% for the serial dilutions (Figure 6). The EO showed the
same antimicrobial activity in a dose-dependent manner for both the Gram+ (P. syringae)
and Gram− (Xcc) bacteria.

In addition to the antimicrobial activity, the activity of the EO on biofilm formation
was performed on Xcc, a biofilm-producing bacterium. The results shown in Figure 7
demonstrated that all the dilutions tested have the same ability to reduce the biofilm
biomass by about 80%.
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Figure 7. Activity of the EO on biofilm formation of Xcc after 72 h of incubation. Determination
by spectrophotometer readings at 655 nm of the crystal violet intensity associated with the biofilm
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the mean ± SD of three independent experiments. Statistical analysis was performed with the
absorbance compared to the untreated control and considered statistically significant at p < 0.05
(**** p < 0.0001) according to one-way ANOVA multiple comparisons.

2.5. Activity of EO in Planta

Tomato (Solanum lycopersicum) plantlets were treated by spraying the aerial vegetative
parts with suspensions of the EO at different concentrations and a commercial pesticide.
After three days, the plants were infected by spraying with P. syringae. The results of the
trial showed a statistically significant decrease in disease symptoms (84%) with treatment
at 10% v/v of the EO, but the effect was slightly phytotoxic to the plants. Interestingly,
when the plants were treated with 0.1% v/v of the EO, the decrease in disease symptoms on
the plants was comparable to that of the commercial pesticide treatment (65%) (Figure 8),
without phytotoxic symptoms. As expected, the plants from the H2O control did not
display any symptoms of the disease.
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Figure 8. Effect of EO treatments on disease severity caused by P. syringae inoculated onto the leaves
of tomato plants. Disease severity was measured by the McKinney index. P. syringae was inoculated
at 106 CFU/mL, EO at 10%, and 0.1% v/v and CUPRAVIT BLUE 35WG at 1.4 kg/ha. Values are the
mean ± SD of three replicates (30 plants each) per treatment. Statistical analysis was performed with
the absorbance compared to the untreated control, and data were considered statistically significant
when p < 0.05 (*** p < 0.001, **** p < 0.0001) according to one-way ANOVA multiple comparisons.
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3. Discussion

In the Asteraceae, besides having secretory ducts inside the organs, another secreting
system is represented by glandular trichomes on the organ surfaces [30]. In A. arborescens,
the aerial parts show a dense cover of trichomes, mainly represented by non-glandular
T-shaped trichomes (NTGs), which helps the plant to adapt to dry conditions typical
of Mediterranean coasts. These structures play a role in reflecting high UV and visible
radiation as well as in the control of water loss and temperature regulation [31]. Concerning
secretory tissues, A. arborescens shows both secretory ducts and glandular trichomes (GTs).
These secretory structures are involved in essential oil production and have a significant
role in the plant responses to biotic and abiotic stresses [32], as well as in plant defence
against herbivores and pathogens [33,34]. Many studies documented that the secretion
of both secretory ducts and trichomes consists of several compounds, such as essential
oils, lipids, sesquiterpene lactones, resins, pectin-like substances, alkaloids, flavonoids, and
tannins [35–39].

On the leaf and young stem surface, the presence of a dense cover of NTGs obstructs
the observation of GTs, similar to that reported for other Artemisa species, such as A. nova
Nelson [40] and A. umbelliformis Lam. [41], and for other Asteraceae, i.e., Santolina impressa
Hoffmanns. & Link [42]. In addition, the location of these trichomes in depressions in the
leaf epidermis made it difficult to detect the biseriate structure, a typical characteristic of
the glandular trichomes of many representatives of the Asteraceae and referred for different
species of Artemisia [35,40,43,44].

Our observations confirm the presence of very large secretory ducts in the stem
cortex, while only small ducts are present in the leaf base parenchyma and in the petiole
parenchyma, according to data reported by Janaćković et al. [44]. These authors for the
first time described the secretory structures of A. arborescens, comparing them with those of
other related species. In agreement with the observations made by these authors for both
A. arborescens and A. campestris, we also found in the stem the presence of a well-developed
periderm [44]. Regarding the presence of small crystals inside the pith parenchyma cells,
our analyses by SEM at high magnification showed very small crystals druses instead of
rhomboidal crystals previously referred to by Janaćković et al. [44]

Some studies are available in the literature regarding the composition of the EO of
A. arborescens, and some of these concern the EOs obtained from species growing in Italy.
A study by Ornano et al. [45] analysed an EO from A. arborescens growing in Sardinia
and collected at different times of the year. In this EO, the most present classes were
oxygenated monoterpenes (37.7–57.0%) and sesquiterpene hydrocarbons (32.0–55.3%).
The main components were trans-thujone, with amounts ranging from 33.8 to 53.2%,
chamazulene (25.6 to 51.5%) and germacrene D (3.2–5.4%). This composition agrees only
in part with data reported in our work: trans-thujone was the main component also in
this case but in lower amounts (24.2%) and germacrene D was present for only 1.5%.
Chamazulene, however, was completely absent. The absence of chamazulene could be
due to the genetic background and environmental conditions [46] and to the fact that the
plant was harvested far from its flowering time, which is the most appropriate vegetative
stage to obtain the maximum amount of chamazulene [6]. Militello and others [9] studied
an EO from a Sicilian sample of A. arborescens that was rich in oxygenated monoterpenes
(57.3%) and sesquiterpene hydrocarbons (27.1%). The main components were trans-thujone
(45.0%), chamazulene (22.7%), camphor (6.8%) and germacrene D (3.3%). This composition
also partially agrees with data reported in the present work, as trans-thujone is the main
component but in lower quantities (24.2%), chamazulene is absent, camphor is present
but as the second main component (18.9%), and germacrene D was present in lower
amounts (1.5%) Finally, Presti and coworkers [47] reported the composition of three EOs
of A. arborescens from Calabria, Sicily, and the island of Lipari. These EOs were rich in
camphor (20.1–39.5%) and chamazulene (27.1–37.6%). Between these two components,
only camphor is also present in the EO studied in this work but in lower quantities (18.9%),
while chamazulene is absent. In these EOs, trans-thujone was present only in the EO coming
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from Calabria (1.5%) and from Lipari Island (6.6%), but in much lower amounts than that
found in our work (24.2%), where it represented the main component.

Very few studies in the literature focused on the allelopathic and herbicidal activity
of A. arborescens EO. Dudai and co-workers [18] reported the EO activity of A. arborescens
on wheat seeds, highlighting a reasonable ability to inhibit germination. However, some
extracts of the plant have been reported for their phytotoxicity on Lactuca sativa L. [14].
In addition, a methanolic extract obtained from the maceration of leaf litter released by
the plant showed remarkable phytotoxicity [17]. The EO tested in our work confirms
the presence of allelopathic activity mentioned in the literature, although with different
mechanisms based on the species considered. On weeds such as L. multiflorum, the tested
EO acted on both germination and root growth, while on S. arvensis, it was mainly active in
counteracting root growth. The activity on species of food interest was also variable as the
EO used in this work has allelopathic activity on R. sativus both for germination and root
growth but is not very active on either the germination or root growth of C. sativus.

The different biological responses observed can be explained by the phenomenon
called hormesis, a two-phased biological response in which a low dose of a biological
agent shows inhibitory activity and a high dose shows the contrary effect [48]. Horme-
sis has widely been reported in allelopathic and phytotoxic activity of plant secondary
metabolites [49].

To find and ascertain the antibacterial activity of essential oils, recently, numerous
studies have been carried out [50]. Although the exact mechanism of action is still un-
known, several investigations have indicated that essential oil components may enter cells
and disrupt cellular metabolism [51]. Phenols, such as eugenol and carvacrol, damage
cellular membranes and interact with enzyme-active sites. The lipid bilayer of bacteria
may absorb EOs and their constituents, that interact with the cell membrane, filling in
the gaps between the chains of fatty acids [52]. Several EOs from the genus Artemisia,
as well as their main components, have shown antibacterial properties [53]. Addition-
ally, it has been noted that the most prevalent classes of components in the essential oil
of A. arborescens, including oxygenated monoterpenes and hydrocarbon sesquiterpenes,
have antibacterial properties [54,55]. Moreover, the volatile phase of essential oils of differ-
ent plants was also reported to possess more antimicrobial activity against plant pathogenic
bacteria [27,56]. Some investigators reported that the antimicrobial activity resulted from a
direct effect of essential oil vapours on the bacteria. In our case, it could be hypothesized
that A. arborescens EO presented a better effect as a protective treatment because it was
applied before pathogen inoculation. To the best of our knowledge, this study is the first
to document the antibacterial properties of A. arborescens EO in vitro and in planta. The
EO demonstrated antimicrobial activity in vitro in a dose-dependent manner on both the
Gram+ (P. syringae) and Gram− (Xcc) bacteria and caused a reduction of 80% in the biofilm
formation by Xanthomonas campestris pv. campestris. In planta, the treatment with 0.1% v/v
of the EO was the most promising result since a decrease in disease symptoms on tomato
plants was comparable to that obtained with the commercial pesticide. Furthermore, at
this concentration of the EO, no symptoms of phytotoxicity were observed in the plants.
Overall, our data indicated that the EO of A. arborescens has variable phytotoxicity on
weeds or crops and can inhibit the growth of plant pathogenic bacteria responsible for
significant crop losses. Nowadays, the search for new natural products that can replace
synthetic pesticides to safeguard the environment and the health of consumers is becom-
ing increasingly popular. Recent studies highlight the important role that EOs may play
as biopesticides both used as selective herbicides to control weeds and against bacterial
or fungal pathogens, making them excellent candidates for the protection of plants and
crops [26–28]. Therefore, the findings collected in our study opens interesting perspectives
for the use of A. arborescens EO in organic agriculture, paving the way for the development
of new phytosanitary treatments.
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4. Materials and Methods
4.1. Plant Materials

Samples of leafy young stems of Artemisia arborescens (Vaill.) L. were collected at Hanbury
Botanical Gardens of Ventimiglia (IM; Italy) during March 2023, before the flowering stage.
The species was identified by Prof. L. Cornara. A voucher specimen (GDOR60969) was
deposited at the herbarium of the Natural History Museum Giacomo Doria of Genova (Italy).

4.2. Light and Scanning Electron Microscopy

For the light microscopy (LM), small leaf samples were bleached with a commercial
solution of sodium hypochlorite 2.2% to detect glandular trichomes containing the EO.
Handmade cross-sections of fresh leaves and stems were made by using a double-edged
razor blade and then cleared with an aqueous solution of chloral hydrate and mounted
in a chloral hydrate–glycerol solution to prevent crystallization of the reagent, following
Jackson and Snowdon [57]. This technique allowed us to better characterize leaf and stem
anatomical structures and tissues. Fresh sections of leaves, petioles, and young stems were
also stained with both Sudan III and Fluorol Yellow 088 to detect lipophilic substances [58].
Other leaves were preserved for 48 h in a FineFIX working solution (Milestone s.r.l.,
Bergamo, Italy) [59], dehydrated and paraffin-embedded. Eight-micron-thick cross sections
were obtained using an automatic advanced rotative microtome (Leica RM 2255, Leica
Biosystems, Heidelberg, Germany). After deparaffinization and rehydration, sections
were stained with Hematoxylin–Eosin and with Toluidine Blue pH 4.0 as metachromatic
staining [60,61] to carry out anatomical and histological characterization. Observations were
made with a Leica DM 2000 fluorescence microscope equipped with an H3 filter (excitation
filter BP 420–490 nm) (Leica Microsystems, Wetzlar, Germany) and with a ToupCam Digital
Camera, CMOS Sensor 3.1 MP resolution (ToupTek Photonics, Hangzhou, China).

Small samples were also analysed by Scanning Electron Microscopy (SEM) to highlight
micro-morphological and anatomical features, achieving a more detailed characterization.
Fixed leaves were dehydrated in a graded ethanol series (70, 80, 90, and 100%) for 1 h
each and subsequently critical point-dried using liquid carbon dioxide (CO2) (K850CPD
2M, Strumenti S.r.l., Roma, Italy). The dried specimens were then sectioned and mounted
on aluminium stubs using two-sided adhesive carbon tape and covered with a 10 nm
layer of gold particles. The examination was performed under a VEGA3-Tescan-type
LMU microscope (Tescan USA Inc., Cranberry Twp, PA, USA), operating at an accelerating
voltage of 20 kV.

4.3. Extraction of Essential Oils

Branches and leaves were reduced to fragments and then subjected to hydro-distillation
for 3 h, as reported in the European Pharmacopoeia [62]. The EOs were dissolved in
n-hexane, dried over anhydrous sodium sulphate, and stored under N2 at 4 ◦C in the dark
until analysis.

4.4. Analysis of Essential Oils

Analytical gas chromatography was conducted on a Perkin–Elmer Sigma-115 gas
chromatograph accessorized with an FID and a data handling processor. The separation
was obtained with an HP-5MS fused-silica capillary column (30 m × 0.25 mm i.d., 0.25 µm
film thickness). The column temperature was 40 ◦C, with a 5 min initial hold, and then
raised to 270 ◦C at 2 ◦C/min, 270 ◦C (20 min); splitless injection (1 µL of a 1:1000 n-hexane
solution). The injector and detector temperatures were 250 and 290 ◦C, respectively. The
analysis was also run by using a fused silica HP Innowax polyethylenglycol capillary
column (50 m × 0.20 mm i.d., 0.25 µm film thickness). In both cases, He was employed
as carrier gas (1.0 mL/min). GC–MS analyses were conducted with a Hewlett–Packard
5890 A gas chromatograph linked online to an HP mass selective detector (MSD 5970HP),
equipped with a DB-5 fused-silica column (25 m × 0.25 mm i.d.; 0.33 µm film thickness).
The ionization energy voltage was 70 eV; the electron multiplier energy was 2000 V. The
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gas-chromatographic conditions were those described above; transfer line 295 ◦C. Most
of the components were identified by comparing their Kovats indices (Ki) with those of
the literature [63–66] and by a careful analysis of the mass spectra compared to those of
pure compounds available in our laboratory or to those present in the NIST 02 and Wiley
257 mass libraries [67]. The Kovats indices were determined in relation to a homologous
series of n-alkanes (C10-C35), under the same operating conditions. For some compounds,
the identification was confirmed by co-injection with standard samples. The components’
relative concentrations were calculated by peak area normalization. Response factors were
not considered.

4.5. Phytotoxic Activity

The phytotoxic activity was evaluated on seed germination and radicle emergence/elongation
of several plant species, including weeds (Lolium multiflorum Lam. and Sinapis arvensis L.)
and horticultural crops (Raphanus sativus L. and Cucumis sativus L.), selected for their easy
and well-known germinability. R. sativus and C. sativus seeds were purchased from Blumen
group s.r.l. (Milano, Italy); L. multiflorum seeds were purchased from Fratelli Ingegnoli Spa
(Milano, Italy); and the seeds of S. arvensis were collected from a wild population growing
near the University campus in Fisciano (Salerno, Italy). The seeds were surface-sterilized in
95% ethanol for 15 s and sown in Petri dishes (Ø = 90 mm) on three layers of Whatman filter
paper. They were impregnated with (1) 7 mL of deionized water; (2) 7 mL of water–acetone
mixture (99.5:0.5, v/v), used as a negative control since the EO was dissolved in this mixture
due to its lipophilicity; and (3) 7 mL of the EO solutions at different concentrations (1000,
500, 250, and 125 µg/mL). These concentrations were selected based on previous studies
carried out in our laboratory [68,69]. Controls carried out with the water–acetone mixture
alone (negative control) showed no differences in comparison to the controls in water alone.
The germination conditions were 20 ± 1 ◦C, with a natural photoperiod. Seed germination
was checked in Petri dishes every 24 h. A seed was considered germinated when the
protrusion of the root became evident [70]. On the fifth day (after 120 h) for R. sativus, and
on the tenth day (after 240 h) for the other seeds, the effects on germination and radicle
elongation were determined. The radical length was measured in cm. Each evaluation was
replicated three times using Petri dishes containing 10 seeds each. Data were expressed as
the mean ± standard deviation for both germination and radicle elongation.

4.6. Plant Pathogens

The EOs were tested against two bacterial microorganisms including Xanthomonas
campestris pv. campestris (Xcc), the causal agent of black root disease that causes significant
harvest losses in the Brassicaceae, and Pseudomonas syringae pv. tomato (P. syringae), the
causal agent of bacterial speck of tomato.

4.7. Antimicrobial Activity

A double agar assay was developed for the antimicrobial assessment of the EO on
the tested pathogens. Briefly, stock solutions of the EO were dissolved in ethanol (ratio
EO:EtOH of 1:9); then, serial dilutions were prepared (100%, 10%, 0.1%, and 0.01% v/v) in
distilled water. Next, 500 µL of Xcc and P. syringae strains, grown in Nutrient Broth (NB)
(Sigma Aldrich, Milan, Italy) to the exponential phase, were added individually to tubes
containing 4 mL of 0.7% agar (Sigma Aldrich, Milan, Italy). The bacterial suspension was
poured onto the surface of a Petri dish containing nutrient agar and let to solidify. The
bacterial agar plates were divided into four sections and 10 µL of each EO dilution and the
solvent control were inoculated to three points in each quadrat, then incubated at 25 ◦C
for 48 h for Xcc and 28◦ C for 24 h for P. syringae [71]. The experiment was performed in
triplicate for each bacterial pathogen. To determine the minimum inhibitory concentration
(MIC) of the EO, the following different concentrations were tested on the growth inhibition
of the bacteria: undiluted [100% v/v] and diluted at 1:10, 1:100, and 1:1000. Moreover,
1 mL of each dilutant and 0.5 mL of the bacterial cultures in an exponential growth phase
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(108 CFU/mL) were added to 8 mL of Nutrient Broth with a final volume of 9.5 mL and
incubated under shaking conditions at 25 ◦C for 48 h for Xcc and 28 ◦C for 24 h for P. syringae.
After incubation, bacterial growth was evaluated by spectrophotometric readings of the
culture concentrations via a Model 680 Microplate Reader at 600 nm (Bio-Rad Laboratories,
Segrate, Italy).

4.8. Antibiofilm Activity

The assessment of biofilm formation with different dilutions of the EO was evaluated
using a crystal violet staining assay as previously reported [72]. Two hundred µL aliquots
of Xcc in the exponential growth phase were inoculated into a 96-well polystyrene plate
(ThermoFisher, Waltham, MA USA) then incubated for 72 h at 24 ◦C, in a static condition.
After, each dilution of the EO was added at the same time. After 4 h, each well was
rinsed with distilled water several times. To evaluate the biofilm amount, each well was
treated with 0.1% crystal violet, incubated for 10 min at RT, and rinsed with distilled water.
Subsequently, the crystal violet was solubilized with 20% (v/v) acetone and 80% (v/v)
ethanol, then the samples were measured at 655 nm to evaluate the biofilm biomass using
a Tecan Infinite 200 Pro microplate reader (Tecan, Männedorf, Switzerland). Every data
point consisted of six replicates, performed in three autonomous tests.

4.9. Bioassay on Tomato Leaves Infected with Pseudomonas syringae pv. tomato

A set of thirty tomato plants, in the fourth true leaf stage, were sprayed with distilled
water (negative control), Artemisia EO (10% and 0.1% v/v), EtOH solvent control, and a
commercial copper-based phytosanitary product (CUPRAVIT BLU 35WG; recommended
field dose 1.4 kg/ha). After 3 days, the same plants were spray-inoculated with a suspension
of P. syringae (106 CFU/mL water) in a volume of ca. 30 mL per plant. Treated plants
were incubated in a greenhouse with high humidity to favour stomatal penetration by
the pathogen. For each leaflet, a disease severity index (T = 3) was calculated using the
McKinney index [73] and multiplied by 100 to convert the 0–1 range to a percentage
of disease.

4.10. Statistical Analysis

Statistical analysis of the activity in vitro was performed by one-way analysis of vari-
ance (ANOVA) using GraphPad Prism 6.0 (Software Inc., San Diego, CA, USA), expressed
as mean ± standard deviation (S.D.). The results were compared to the untreated con-
trol and considered statistically significant, by Dunnett’s test, when p < 0.05 (* p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001). The non-transformed values of the McKinney
indexes were analysed by a one-way analysis of variance (ANOVA), and the significance
of the differences was calculated by Tukey’s test (* p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001).

5. Conclusions

Two kinds of secretory structures, namely, the glandular trichomes on the leaves and
the secretory ducts in young stems, petioles, and leaves were observed in A. arborescens.
The hydro-distillation of these plant portions gave an EO, rich in oxygenate monoterpenes
such as trans-thujone and camphor, showing variable phytotoxicity on weeds or crops. In
particular, a remarkable inhibitory activity on the two weed species tested was observed.
Therefore, this EO represents a good candidate for further studies aimed at evaluating its
activity in post-emergence and in vivo plant assays. The EO also showed antimicrobial
activity both in vitro and in planta. Interestingly, inhibition was observed in vitro on
growth of two plant pathogenic bacteria responsible for significant crop losses including
Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. tomato. It also produced
a consistent reduction in biofilm biomass and a decrease in disease symptoms after in
planta treatment. Overall, our data indicate that the EO of A. arborescens can be a promising
treatment against pathogenic bacteria, reducing the symptoms of the disease in a manner
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comparable to commercial pesticides with minimal phytotoxicity in host plants. Nowadays,
the search for new natural products that can replace synthetic pesticides to safeguard the
environment and the health of consumers is becoming increasingly popular. Therefore, the
results from this study open interesting perspectives for the use of A. arborescens EO as a
potential alternative biocontrol product in organic agriculture.
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