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Abstract: Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial
infections. Surveillance of AMR in healthy individuals is usually not considered, though these
individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to
conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics
of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp.,
Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected
to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms.
A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene
responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q,
and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons
of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin
production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces
neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and
surveillance should be extended to healthy individuals, especially children. WGS for epidemiological
surveillance will improve the detection of AMR pathogens for management and control.

Keywords: whole genome sequencing; multidrug resistance; AMR genes; plasmid; virulence;
enterobacteriaceae; healthy children

1. Introduction

Enterobacteriaceae are inhabitants of the gastrointestinal tract, sometimes called enteric
bacteria. Most are commensals, such as gut flora or microbiota, and some are known to
be pathogenic, mainly when found in some specific areas of the human body [1]. Enteric
pathogens significantly cause morbidity and mortality among young children, especially in
low and middle-income countries (LMICs), as well as in adults. However, many enteric
bacterial infections are either asymptomatic or result in only mild-to-moderate disease [2].
Some common enteric pathogens found in children are Citrobacter freundii, Klebsiella spp.,
Escherichia coli, Enterobacter spp., Salmonella typhi, and Shigella spp. [3,4].

The exact burden of diseases caused by enteric bacteria in Sub-Saharan Africa is vague
due to poor healthcare services and lack of proper data documentation, to mention a few
reasons. Recent reports have shown an increase in the prevalence of diseases caused by
enteric bacteria, such as sepsis [5], typhoid [6], cholera [7], shigellosis [8], and diarrheal
infection [9]. This is of great concern, especially regarding proposed disease elimination
and meeting the third sustainable development goal (SDG3), good health and well-being.
It is, therefore, of great importance to embark on active surveillance of these pathogens for
management and control if this goal is to be met by 2030.
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Antimicrobial resistance (AMR) has been established to be a significant driver for the
persistence and spread of enteric diseases, particularly in cases where the causative agents
are multidrug-resistant (MDR) or extensively drug-resistant (XDR) pathogens [10,11] as
MDR pathogens are known to be non-susceptible to one or more drugs in three antibiotics
classes, while XDR pathogens are non-susceptible to at least one drug in all but two or
fewer antibiotics classes. The overuse and misuse of antibiotics have been identified as
significant causes of AMR in enteric bacteria, as these create selective pressure and promote
the emergence of resistance, leading to an alarming increase in the prevalence of MDR
enteric bacteria among healthy individuals [12]. In addition, the ease of transfer of plasmids
and transposons harboring genes associated with AMR amongst enteric bacteria through
horizontal gene transfer enhances the persistence and spread of AMR [13,14].

Currently, most management and control efforts on infectious diseases are focused
on symptomatic cases. It is essential to equally consider and investigate asymptomatic
individuals, especially in LMIC, where enteric diseases are endemic and transmission
is high due to poor hygiene. Furthermore, asymptomatic carriers of pathogenic enteric
bacteria are rarely focused on in research studies, even though they are crucial in disease
transmission and persistence, serving as reservoirs for antimicrobial-resistant genes [15,16].
A healthy human microbiome is one of the major reservoirs of antibiotic-resistant genes
(ARGs) which are transmissible to other pathogenic bacteria [14,17]. Recent research
reveals that ARGs contribute to the prevalence of MDR enteric bacteria in healthy humans,
ensuring the continuous circulation of ARGs in the population [18]. Children constitute a
significant population burdened by MDR enteric infections [19–22]. In addition, reports
have shown AMR enteric bacteria to be a significant cause of mortality in neonatal sepsis in
Nigeria, despite government interventions and policies [22–25]. Furthermore, the country
has only a few in-depth genomic analyses of enteric bacteria that are of public health
interest [26–28].

Genomic surveillance of AMR enteric bacteria that are of public health importance,
such as Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Vibrio cholera, and Shigella
spp., not only informs treatment guidelines for diseases caused by these human pathogens
but is necessary for the design and implementation of AMR interventions and control
measures [29]. Whole genome sequencing (WGS) provides a high-resolution method ca-
pable of providing in-depth genomic characterization and epidemiological information
about a pathogen. This further sheds more light on genomic diversity, transmission dy-
namics, evolution, AMR dynamics, and spread, aiding in better control measures [30]. This
has been implemented in studies of asymptomatic carriers to characterize the pathogens
further, understand the actual dynamics of AMR, and investigate continuous pathogen
development within the natural host [14,31,32].

Thus, this study utilized a whole genome sequencing (WGS) approach to characterize
AMR genes and mobile genetic elements in isolates obtained from fecal samples to understand
the dynamics of AMR enteric pathogens in healthy children from Osun State, Nigeria.

2. Methods
2.1. Ethical Approval

Ethical clearance for this study was obtained from the research ethics committee of the
Ladoke Akintola University of Technology Teaching Hospital (LAUTECH) (LTH/EC/2019/
09/431) and the Ministry of Health (OSHREC/PRS/569T/164), Osogbo, Osun State, Nigeria.

2.2. Bacteria Isolation, Identification, and Selection

A total of 147 fecal samples were collected from presumptively healthy children
between 1 and 15 years of age between 2019 and 2020 in a study focused on typhoid fever’s
seroprevalence and the genomic characterization of enteric pathogens in healthy children.
Serological data for typhoid fever prevalence have been previously published [33]. Fecal
samples were cultured on Salmonella/Shigella and MacConkey agar. Initial identification
was performed with an API 20E test kit (BioMeriuxe, Marcy-l’Étoile, France) for 52 positive
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enteric cultures. Thirteen (13) enteric isolates were selected based on their antibiotic
resistance profile for genomic characterization.

2.3. Antimicrobial Susceptibility Test of the Isolates

Antimicrobial susceptibility testing was performed using the disk diffusion technique.
The antibiotics disc used were Gentamicin (30 µg), Tetracycline (30 µg), Ciprofloxacin (5 µg),
Chloramphenicol (30 µg), Trimethoprim/sulfamethoxazole (25 µg), Ceftazidime (30 µg),
Ceftriaxone (30 µg), Cefotaxime (30 µg), and Aztreonam (30 µg) as described previously
by [34]. Results were interpreted according to the 2017 guidelines provided by the Clinical
and Laboratory Standards Institute (CLSI). Results were analyzed and interpreted using
the ABIS online software v12 (http://www.tgw1916.net/bacteria_logare_desktop.html)
accessed on 22 May 2021 [35].

2.4. Whole Genome Sequencing

The isolates were subcultured before DNA extraction. DNA was extracted using a
Qiagen DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany). Extracted samples were
quantified using a dsDNA high-sensitivity assay kit on a Qubit fluorometer (ThermoFisher
Scientific, Waltham MA, USA)). Sequencing libraries were prepared using a Nextera DNA
flex preparation kit (Illumina, San Diego, CA, USA). Library preparation protocol was
adopted from the CDC PulseNet Nextera DNA Flex Standard operating protocol and
sequenced using a Illumina Miseq platform and NextSeq 1000/2000 at the African Center of
Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Nigeria.

To improve the plasmid assembly, we performed a single run on a GridION x5 to
generate long reads. Library preparation and sequencing were performed using a Rapid
PCR Barcoding kit (SQK-RPB004) (Oxford Nanopore Technologies, Oxford, UK), following
the manufacturer’s recommendations. We used a GridION MK1 sequencer, FLO-MIN10
6D R9 flow cell, and MinKNOW software v22.10.7 for sequencing.

2.5. Genomic Data Analysis

Raw FASTQ files were processed with the Connecticut Public Health Laboratory
(CT-PHL) pipeline, also known as C-BIRD v0.9 “https://github.com/Kincekara/C-BIRD
(accessed on 9 May 2023)”. The assembled contigs were further checked for contamination
using CheckM [36]. Isolates with a bracken taxon ratio <0.7, genome estimated ratio >1.1,
estimated sequencing depth <40×, and genome completeness <90% were excluded from
subsequent analyses, as those isolates were either deemed contaminated with other bacterial
species, had an unusual larger genome size, had low genome coverage, or had a low
sequencing depth. Further analyses, including genome annotation, plasmid detection,
antimicrobial resistance, virulence prediction, and MLST typing, were performed with the
Public Health Bacterial Genomics (PHBG) v1.3.0 “https://github.com/theiagen/public_
health_bacterial_genomics (accessed on 9 May 2023)”. Genome assemblies of isolates were
refined with a unicycler v0.4.9 [37] hybrid assembler using Illumina and Oxford nanopore
sequence reads. The plasmids were reconstructed and typed with MOB-suite v3.1.0 [38]
and annotated with pLannotate v1.2.0 [39] and Prokka v1.14.6 [40].

3. Result
3.1. Isolate of Bacteria Strains

The selected 13 multidrug-resistant isolates were Enterobacter hormaechei (n = 1),
Citrobacter sp. FDAARGOS_156 (n = 1), Enterobacter cloacae (n = 1), Klebsiella quasivariicola
(n = 1), Klebsiella pneumoniae (n = 3), and Escherichia coli (n = 6). All were isolated from fecal
samples obtained from healthy children.

3.2. Antibiotic Susceptibility Test and AMR Prediction

The highest resistance (85%) was observed in ciprofloxacin and cefotaxime, and the
least resistance (46%) was seen in tetracycline. All 13 isolates subjected to antibiotic

http://www.tgw1916.net/bacteria_logare_desktop.html
https://github.com/Kincekara/C-BIRD
https://github.com/theiagen/public_health_bacterial_genomics
https://github.com/theiagen/public_health_bacterial_genomics
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susceptibility tests were multidrug-resistant, defined as resistance to two or more classes of
antibiotics (Table 1).

Table 1. Multiple antibiotic resistance (MAR) pattern of enteric isolates from healthy children in
Osun State.

Sample ID Species Antibiotics Profile (Resistant)

OL31NF Enterobacter hormaechei ATM; CTX; CAZ; SXT; CIP.

OL13NFPC1 Escherichia coli ATM; CRO; CTX; SXT; C.

OL19NF Citrobacter sp.
FDAARGOS_156 ATM; CRO; CTX; CAZ; SXT; C.

OL44NF Escherichia coli TE; SXT; CIP; CN.

OE28NF Escherichia coli ATM; CRO; CTX; TE; SXT; CIP; CN; C

OE36NF Escherichia coli CTX; TE; SXT; CIP; CN.

OE41NF Escherichia coli CTX; CIP; C.

OE43NF Enterobacter cloacae ATM; CRO; CTX; CAZ; TE; SXT; CIP; CN.

OE54NF Klebsiella pneumoniae ATM; CRO; CTX; CAZ; CIP; CN.

OE71NF Klebsiella quasivariicola CAZ; CIP; C; CN.

OE73NF Klebsiella pneumoniae ATM; CRO; CTX; CAZ; TET; SXT; CIP; C; CN.

OE75NF Klebsiella pneumoniae CTX; SXT; CIP; CN

J21 Escherichia coli ATM; CRO; CTX; CAZ; TE; SXT; CIP; CN; C.
ATM: Aztreonam, CRO: Ceftriaxone, CTX: Cefotaxime, CAZ: Ceftazidime, TE: Tetracycline, SXT: Trimetho-
prim/sulfamethoxazole, CIP: Ciprofloxacin, CN: Gentamicin, C: Chloramphenicol.

3.3. Genome Sequence Analysis of the Isolates

Genome sequencing data based on the taxon ratio analysis showed all isolates harbored
a wide range of AMR genes, plasmid replicons, and virulent genes. All of the isolates
harbored beta-lactam-resistant genes, with 23% of the isolates seen to harbor tetracycline-
resistant genes tetA, and macrolides pmrB_R256G and pmrB_Y358N resistance genes,
which are responsible for colistin resistance via the efflux pump mechanism. Also, 92% of
the isolates had different efflux pump genes responsible for at least two classes of antibiotic
resistance (Table 2). Virulence genes were seen in 62% of the isolates, while plasmids were
detected in 92% of the isolates detailed in Table 2.

We then considered sequence data based on the genome estimated ratio > 1.1, esti-
mated sequencing depth <40×, and genome completeness (<90%). Only five out of the
thirteen sequenced isolates passed this quality control step. These isolates asterisked in
Table 2 (E. coli = 3, K. quasiveriicola = 1, and E. hormaechei = 1) were selected for further down-
stream sequence analysis and characterization. The sequence data have been submitted to
NCBI under the BioProject accession number PRJNA838568.

Genome lengths of 4.8 Mbp to 6 Mbp, 5.6 Mbp, and 5.8 Mbp for E. coli, K. quasiveriicola,
and E. hormaechei were observed. The assembled contigs of the bacteria genome antimicrobial
resistance (AMR) detection software (AMRFinder+ v3.10.42 and Kleborate v2.0.4) embedded
in the PHBG pipeline showed the presence of beta-lactam-resistance genes such as blaTEM-
1, blaEC, blaACT, and blaOKP-D, (Table 1). In addition, all five isolates contained other
AMR genes associated with either fluoroquinolone (gyrAS83L, qnrS1), aminoglycoside
(aph(6)-Id, aph(3′′)-Ib), tetracycline (tetA), or sulfonamide (sul1, sul2) resistance. Multilocus
sequence typing (MLST) predicted the ST type for three isolates, E. coli ST 219, ST450, and K.
quasiveriicola ST 3897, while the remaining two isolates, E. hormaechei, and E. coli, had no ST
prediction. This study revealed the presence of fluoroquinolone-resistant genes with more
than triple mutations (gyrA_S83L, gyrA_D87N, parC_S80I, and parE_S458A) in E. coli ST219
and the Colistin-resistant gene (pmrB_Y358N) in E. coli ST450 reported in XDR E. coli.
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Table 2. Summary of genomic characterization of whole-genome-sequenced Enteric isolates.

S/N Sample ID Species Sequence Type AMR Genes Virulence Genes Plasmid Replicons

1 OL31NF * Enterobacter
hormaechei No ST predicted blaACT-16, qnrS1, fosA, oqxB, oqxA

No VIRULENCE genes
detected by

NCBI-AMRFinderPlus

Col(pHAD28), IncFIB(K),
IncFII(pECLA)

2 OL13NFPC1 Escherichia coli ST409 acrF, mdtM, glpT_E448K, blaEC espX1 No plasmids detected in database

3 OL19NF Citrobacter sp.
FDAARGOS_156 ST187 blaCMY

No VIRULENCE genes
detected by

NCBI-AMRFinderPlus
Col(pHAD28), ColRNAI

4 OL44NF Escherichia coli No ST predicted

blaEC, aadA1, dfrA7, sul1, tet(A),
aph(3′)-Ia, mdtM, pmrB_Y358N, acrF,
qnrS, blaTEM-1, aph(6)-Id, aph(3′′)-Ib,

sul2, qnrB19, mdtM

nfaE, afaC, lpfA, senB, iss,
espX1, papA, sat, iutA, iucD,

iucC, iucB, iucA, iha, f17a,
f17g, ybtQ, ybtP, lpfA

Col(MG828), Col(MP18),
Col(pHAD28), Col(pHAD28),

Col(pHAD28), Col(pHAD28), Col156,
IncFIB(AP001918), IncFII(pRSB107),

IncI(Gamma), IncQ1

5 OE28NF * Escherichia coli No ST predicted mdtM, blaEC, blaEC, blaTEM,
acrF, tet(A)

espX1, iutA, iucD, iucC, iucB,
iucA, fdeC, lpfA, iss, ireA,
sigA, iha, lpfA, ybtP, ybtQ

Col(pHAD28), Col(pHAD28),
IncB/O/K/Z, IncFIA(HI1), IncR

6 OE36NF * Escherichia coli ST 219

blaTEM-1, pmrB_Y358N, mdtM, acrF,
emrD, gyrA_S83L, glpT_E448K,

blaEC, sul2, aph(3′′)-Ib, aph(6)-Id,
sul1, dfrA7, tet(A)

eilA, lpfA1, iucA, iucB, iucC,
iucD, iutA, iha, sigA, espX1,

fdeC
IncB/O/K/Z, IncI2, IncQ1

7 OE41NF Escherichia coli No ST predicted qnrB, oqxA, emrD, fosA7,
glpT_E448K, mdtM, blaCMY, blaEC iss, espX1, fdeC

Col156, IncFIA(HI1),
IncFIB(AP001918), IncFIB(K),

IncFIB(pHCM2), IncY

8 OE43NF Enterobacter cloacae ST1236 emrD, satA, mdtM, blaCMH, vmlR,
aadK, mphK, blaEC, blaCTX-M lpfA1, espX1, eilA IncFII(K), IncR

9 OE54NF Klebsiella pneumoniae No ST predicted fosA, oqxB, oqxA, emrD, blaSHV
No VIRULENCE genes

detected by
NCBI-AMRFinderPlus

Col440II, IncFIA(HI1), IncFIB(K)
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Table 2. Cont.

S/N Sample ID Species Sequence Type AMR Genes Virulence Genes Plasmid Replicons

10 OE71NF * Klebsiella
quasivariicola ST3897 emrD, fosA, kdeA, oqxB, oqxA,

blaOKP-D

No VIRULENCE genes
detected by

NCBI-AMRFinderPlus

Col440I, Col440II, FII(pBK30683),
IncFIB(K), IncFII(K)

11 OE73NF Klebsiella pneumoniae ST185 blaTEM, fosA, blaSHV-11, dfrA15,
aadA1, sul1, oqxB, oqxA, emrD alo, plcR Col(pHAD28), Col440I, IncFIB(K),

IncFII(pKP91), IncR

12 OE75NF Klebsiella pneumoniae No ST predicted fosA, emrD, pmrB_R256G, blaOKP-B,
blaSHV-11, oqxB, oqxA, fosA

No VIRULENCE genes
detected by

NCBI-AMRFinderPlus

IncFIA(HI1), IncFIB(K),
IncFIB(pNDM-Mar), IncFII(K),

IncHI1B(pNDM-MAR)

13 J21 * Escherichia coli ST450

blaTEM-1, parC_S80I, parE_S458A,
catA1, gyrA_D87N, gyrA_S83L,

dfrA17, acrF, mdtM, blaEC, aadA1,
blaOXA-1, qepA4, tet(A), aph(6)-Id,

aph(3′′)-Ib, sul2

sigA, sat, astA, ybtQ, ybtP,
espX1, fdeC, iha, papH, papC,

papF, papG-II, iucA, iucB,
iucC, iucD, iutA, senB

Col(MG828), Col156, IncFIA,
IncFIB(AP001918), IncFII(pRSB107),

IncFII(pRSB107)

* Samples which passed the QC step.
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3.4. Detection and Characterization of Virulence Genes and Mobile Genetic Elements in the
Five Isolates

Of the five whole genome sequences that passed the quality control step, virulence
genes were detected in all three E. coli isolates. In contrast, none were detected in K. quasi-
variicola and E. hormaechei (Table 2). Virulence genes responsible for bacteria iron uptake
were detected in all the E. coli isolates. Aerobactin virulence genes iucABCD and iutA were
also present in all the E. coli isolates, but only two E. coli isolates harbored the Yersini-
abactin virulence genes ybtP and ybtQ (Table 2). Other virulence genes detected include
the gene-encoding enterotoxin senB, the increased serum survival iss gene sigA, the se-
creted autotransporter toxin -sat, the east-1 heat-stable toxin -astA, the long polar fimbria
-ipfA, the LEE encoded type III secretion system effector- espX1, for adherence- fdeC, the
P-fimbria operon- papHCFGII, the Salmonella HilA homolog -eilA, and the iron-regulated
outer membrane virulence protein–ireA gene.

A total of 28 plasmids were also detected in these five isolates, with each harboring
between three and nine plasmid replicons known to be associated with antibiotic-resistant
genes (ARGs). The Inc plasmid type is the most common plasmid type across all isolates.
IncF and Col plasmids were detected in 90% (4/5) of the isolates. The IncF replicons
detected included IncFII(pBK30683) (1/5), InFIB(K) (2/5), IncFII(K) (1/5), IncFII(pECLA)
(1/5), IncFIA(HI1) (1/5), IncFIA (1/5), IncFIB(AP001918) (1/5), and IncFII(pRSB107) (1/5).
The Col plasmid detected had replicons which included Col440I (2/5), Col440II (1/5),
ColpHAD28 (3/5), ColMG828 (1/5), and Col156 (1/5). Other plasmid replicons detected
were IncR (1/5), IncI2 (1/5), IncQ1 (1/5), and IncB/O/K/Z (2/5).

3.5. Plasmid Reconstruction Using Oxford Nanopore Sequencing Platform

We reconstructed 13 plasmids from 3536 to 163,036 bp detected in E. hormaechei,
K. quasivariicola, and two E. coli isolates (Supplementary Table S2). Plasmid reconstruction
for the other E. coli was not conducted due to low sequencing library concentration. The
K. quasivariicola plasmids were either conjugative, non-mobilizable, or mobilizable. The
largest plasmid contained 11 contigs with IncFIB, IncFII, rep_cluster_2183, rep_cluster_2327,
and rep_cluster_2358 replicon types. None of the plasmids in K. quasivariicola harbored
any antibiotic-resistance genes; however, several metal-resistance genes and efflux proteins
such as copA, copB, silP, cusA, cusB, and cusC were integrated into the plasmid (Figure 1).
Interestingly, we detected the tetracycline resistance gene tetA and some mercury resistance
genes such as merA and merC integrated into the plasmids of the two E. coli isolates that
code for colicin polypeptide toxins, while the E. hormaechei isolate had plasmids carrying
ylpA virulence genes (Figure 1 and Supplementary Table S2).
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4. Discussion

Antimicrobial resistance, especially in enteric bacteria that are of public health interest,
continues to be of global concern, especially in low and middle-income countries [35]. In
Nigeria, there is a paucity of information on the genomic characterization of circulating
multidrug-resistant enteric bacteria, especially in healthy individuals that serve as reser-
voirs. Therefore, we recovered enteric pathogens that are of public health interest in this
study from presumptively healthy children such as Enterobacter hormaechei, Citrobacter sp.
FDAARGOS_156, Enterobacter cloacae, Klebsiella quasivariicola, Klebsiella pneumoniae, and
Escherichia coli. Most importantly, all the isolates harbored antibiotic-resistant genes for
at least one class of antibiotics; some harbored virulence genes and plasmid replicons
carrying resistant and virulence genes. The presence of these pathogens and, importantly,
the carriage of AMR genes, plasmids, and virulence genes conferring pathogenicity and
resistant phenotypes in these healthy children are of great concern to public health. The
occurrence of these pathogenic enteric bacteria in febrile individuals is well documented
across the country [22,35,41,42]; however, there is limited information on healthy individu-
als in Sub-Saharan Africa as far as the authors know, which makes this study one of the
very few studies with a genomic surveillance report on healthy children in Nigeria.

Similar resistant genes (gyrA_S83L, gyrA_D87N, parC_S80I, and parE_S458A) iden-
tified from this study in presumptively healthy children have been reported in disease
cases of children admitted to hospitals in Bangladesh and Benin [43,44]. The presence of
these enteric pathogens isolated from presumptive healthy children is of great concern as
these children serve as potential reservoirs for transmission of these pathogens to other
susceptible individuals. In addition to transmission, the presence of resistance genes indi-
cates the possibility of treatment failure, further promoting the spread of AMR in society
and its longer existence in the population. It is possible that these pathogens developed
resistance due to consistent drug pressure, as most drugs are readily available to citizens in
the country, encouraging indiscriminate use of these drugs [18].

Our study provides a glimpse into the genetic variation of enteric pathogens in healthy
children in Osun State in the Southwestern part of Nigeria. Virulence genes identified
amongst the E. coli isolates are known to significantly influence the degree of pathogenicity
of bacterial infection in confirmed disease patients in some reported cases [45,46]. It is
unclear how these genes in the bacteria are not causing any symptoms in these children.
However, reports have shown that colonization with AMR enteric pathogens in healthy
individuals could lead to pulmonary infection, urinary infection, and bacteremia [47,48].
K. quasivariicola and E. hormaechei harbored no virulence genes. The presence of more
than three plasmid replicons associated with AMR is of significant concern as reports
of colonizing enteric bacteria resulting in infections are facilitated by MDR and plasmid
carriage [49].

The pathogenic enteric bacteria in this study are known as commensals of the gut
microbiota and have been reported in other studies [22,50]. Once seeded with AMR,
commensal organisms may significantly contribute to the dissemination of resistance due to
the connectivity in microbial communities [51]. The enteric bacteria (E. coli, K. quasiveriicola,
and E. hormaechei) detected in this study have been reported in many cases to cause diarrhea
and sepsis in children and also serve as colonizers in healthy children [4,52,53]. In addition,
the pathogens were observed to be resistant to almost all of the classes of antibiotics. The
presence of AMR genes and plasmids harbored by these bacteria in healthy children further
confirms the in vitro resistance observed, and it is of concern as children in this community
will enable the persistent transmission of diseases caused by these enteric bacteria, leading
to increased community-acquired infections [54]. This could increase morbidity, mortality,
and healthcare costs, especially in immunocompromised individuals. This, therefore,
necessitates active surveillance of these AMR bacteria in both asymptomatic and clinical
cases to give a total overview of the transmission dynamics and evolution.

Although not surprising, the detection of AMR genes in this population of healthy chil-
dren is alarming, as antibiotic abuse has been established in this part of the world [26,55].
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This is seen in the AST result and genomic data, as most isolates were resistant to folate-
pathway drugs, quinolones, and beta-lactam drugs, typically first and second-line antibi-
otics. The presence of efflux pump genes responsible for MDR resistance increases the
expression of resistance in these isolates. Resistance to these drugs, some of the most
common antibiotics used in treating diarrhea diseases in children, could pose a challenge
in future infections with these resistant strains. Also, reports have shown that most cases
of infection with MDR enteric bacteria are not just from a person-to-person transmission
or from contaminated water/food, but could also be transmitted from the individual col-
onized by these MDR bacteria through horizontal gene transfer [49]. This is worrisome
as almost all isolates sequenced in this study, as seen in Table 1, harbored AMR genes for
beta-lactams, aminoglycosides, quinolones, colistin, and fosfomycin drugs.

A significant driver of the spread of antibiotic resistance in bacteria is the presence of
mobile genetic elements [56]. Plasmids spread ARG to other bacteria through horizontal
gene transfer, increasing antibiotic resistance prevalence. They are known to contain
genes responsible for antibiotic resistance, colonization, and virulence, which provides
an advantage for bacteria survival [56]. As seen in this study, the plasmid recovered
from the E. coli ST219 strains harbored a tetA gene responsible for tetracycline resistance
and a caa gene that codes for colicin polypeptide toxins known to destroy cells of other
organisms by depolarizing the cytoplasmic membrane of the cells [57,58]. Also, the plasmid
in the K. quasivariicola ST3897 harbored the cusC gene associated with copper and silver
resistance, which, when found in pathogenic K. pneumoniae, facilitates the invasion of the
brain microvascular endothelial cells, thereby causing neonatal meningitis [59,60].

Apart from the presence of virulence genes and mobile genetic elements as a driver
of MDR, the indiscriminate use of antibiotics in this part of the world is also a significant
contributing factor to the high prevalence of MDR bacteria [27]. Although the healthy
children in this study were not on any antibiotics drugs at the time of sample collection,
it has been reported that children are exposed to antibiotics early on, mainly without a
physician’s prescription [61–63]. To mitigate the continuous spread of MDR enteric bacteria
and the possible emergence of XDR enteric bacteria, there is a need for proper surveillance
in healthy individuals to achieve proper monitoring and control of AMR in the country.
Although some control measures such as infection prevention control and antimicrobial
stewardship have been implemented to monitor AMR in the population [55,64,65], the
non-inclusion of healthy individuals in these control measures will truncate all efforts.
Another critical factor in proper surveillance is the use of sensitive techniques. In addition
to confirming the AST analysis, the whole genome sequencing employed in this study
revealed genetic elements that drive pathogenicity and the spread of MDR enteric bacteria
from healthy children. This might not have been possible by culture or a PCR alone. This
proves the importance of the WGS technique in pathogen enteric bacteria surveillance and
its implementation in healthy individuals to achieve disease elimination and eradication.

Limitation

The limitation of this study is the small number of the isolates (13) considered for
the whole genome sequence from the overall sample size or pure isolates obtained from
the fecal samples. The molecular characterization detected provided an insight into the
existence of AMR genes and other mobile elements that may confer pathogenicity in these
organisms and can further be transmitted to other organisms. Therefore, this study serves as
an indicator for the general and adequate national surveillance of enteric bacteria in healthy
individuals, especially children, for the total control of AMR. We therefore recommend
further studies on the AMR of healthy individuals, especially children who are the major
population at risk of AMR infection, to ensure proper monitoring and management policies.

5. Conclusions

Our findings in this study showed the presence of MDR enteric bacteria harboring
resistant genes, virulence genes, and plasmids in healthy children. This may contribute
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to the continuous, global, and widespread increase in AMR observed. Therefore, close
inspection and surveillance of the healthy population in addition to clinical cases is rec-
ommended to control the spread and ultimately achieve eradication of disease. Applying
WGS in epidemiological surveillance will improve the detection of MDR pathogens by
overcoming the limitation of analyzing only a small part of the genome and providing
more rapid management, thus controlling the emergence of new antibiotic-resistant strains
and their evolution.
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