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Abstract: The purpose of this review is to elucidate the actual threat of the most prevalent mycotoxins
in agricultural commodities and human/animal food/feed for the induction of foodborne diseases
or ailments. The underestimated hazard of combined mycotoxin uptake by animals or humans is
critically discussed with regard to synergistic or additive interaction between some target mycotoxins.
The real toxicity of target mycotoxin combinations as it happens in practice is evaluated and possible
lower limit values or control measures are suggested in such cases. Some critical points on adequate
risk assessment, hygiene control, and regulation of mycotoxins are discussed. The efficiency of
current mycotoxin regulations and control measures is evaluated in regard to human/animal health
hazards. The risk assessment in the case of multiple mycotoxin exposure of humans/animals via
food/feed or agricultural commodities is evaluated and some suggestions are proposed in such cases.
Appropriate control measures and food safety issues throughout the food supply chain are proposed
in order to prevent the target foodborne diseases. Some preventive measures and possible veterinary
hygiene controls or risk evaluations are proposed in some natural cases of foodborne diseases for
preventing mycotoxin contamination of animal products designed for human consumption and to
avoid possible public health issues.

Keywords: food security; food safety; foodborne ailments; mycotoxins; hygiene control; risk
assessment; mycotoxin interaction; control measures; One Health

1. Introduction

Mycotoxins are fungal metabolites that are often contaminants of feeds or food com-
modities. This poses a serious hazard to animal/human health around the world. A lot of
health ailments in animals/humans can be provoked by food/feed that is contaminated
by mycotoxins. Cereals are invaded by different fungal species in the field or after the
harvest, and such invasion and subsequent mycotoxin production is often unavoidable
due to environmental predisposing factors such as excessive rain at the time of harvest,
increased humidity, and inadequate storage conditions [1,2]. Independent of the large
number of natural fungal metabolites (above 400), only 10–14 are mostly responsible for
foodborne ailments or compromised public health, e.g., ochratoxin A (OTA), aflatoxins
(AFs) among which aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1) are the most problem-
atic, fumonisins (FUMs) among which fumonisin B1 (FB1) is the most problematic, ergot
alkaloids, zearalenone (ZEA), patulin (PAT), deoxynivalenol (DON), diacetoxyscirpenol
(DAS), T-2, and HT-2. These mycotoxins often contaminate feedstuffs, food commodities,
or animal/chick products, e.g., eggs, meat, or milk, in concentrations that can compromise
human health or animal wellbeing [3–6].

Animals exposed to mycotoxins via feedstuffs often have changes in behaviour, such as
nervousness or refusal to eat such feedstuffs, showing poor conversion of feed or decreased
weight gain. Foodborne diseases, increased number of secondary bacterial infections, or
decreased reproductive capacities can be often seen in such animals [7,8]. The well-known
toxic effects of mycotoxins are nephrotoxic (mainly OTA and slightly FB1), neurotoxic
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(mainly FB1), immunosuppressive (mainly OTA, AFB1, DON, and T-2 toxin), genotoxic
(mainly AFB1, OTA, T-2), carcinogenic (mainly AFB1, OTA, and FB1), and oestrogenic
(ZEA) effects [2,9,10].

Multiple mycotoxin contamination with several mycotoxins often occurs in many
feedstuffs or food commodities. The mycotoxin contents in the same cases are often below
the maximum permitted levels and within European requirements, but such multiple
mycotoxin contamination at low levels could also be harmful to humans or animals, taking
into consideration the additive or synergistic interactions between some target mycotoxins,
which are often responsible for the appearance of foodborne ailments. Such joint mycotoxin
interactions should be carefully investigated via in vitro or in vivo studies and appropriate
measures should be taken in regard to the necessary hygiene control and the required risk
evaluation. In such a way, the possible hazards for animals or humans could be analyzed
in depth, and adequate preventive measures could be proposed for each particular case.

According to the Food and Drug Administration (FDA), the economic costs of crop
losses in the USA due to mycotoxin contamination and subsequent condemnation of feeds
or food commodities are nearly USD 930 million per year [11]. The Food and Agricul-
ture Organization (FAO) reported that nearly 25% of the world’s crops are contaminated
by mycotoxins each year, which contributes to nearly 1 billion tons of annual losses of
feeds/foods [12]. However, this percentage greatly underestimates the occurrence above
the detectable levels (up to 60–80%), which could be explained by the improved sensitivity
of analytical methods and climate change [13]. In this regard, different kinds of losses
attributed to mycotoxins are known, e.g., decreased livestock production, illness or death
of animals/humans, increased necessity for medical care and veterinary service, increased
costs for regulatory and preventive measures or mycotoxins detoxification, economic losses
caused by food/feed scrapping, etc. [5,10].

Currently, the European Union (EU) has accepted maximum permissible levels for
most dangerous mycotoxins in human food commodities or animal feedstuffs [7], but these
limits do not take into consideration joint mycotoxin exposure and mycotoxin interactions,
synergistic or additive effects of some mycotoxins, and increased toxicity of such mycotoxin
combinations even at lower contamination levels than permitted ones. Therefore, the
effectiveness of current regulatory measures could be questionable because the regulations
are based only on the toxicity of individual mycotoxins without taking into account possible
mycotoxin interactions. In order to ensure adequate food safety and effective control,
additional regulatory measures have to be introduced, which must have in mind additive
or synergistic mycotoxin interaction. Therefore, the competence of qualified experts in the
required research field, including the science of food, veterinary and human medicine, and
agriculture, is of crucial necessity for the introduction of such regulatory measures [10].

This review will elucidate the most prevalent mycotoxins in feedstuffs and food
commodities and evaluate the hazards of mycotoxin contamination on human or animal
health. The possible hazard of joint mycotoxin intake in animals or humans will be briefly
elucidated. The effectiveness of the current provisions for the regulation of mycotoxins
in feedstuffs and foods will also be discussed in relation to human and animal health. A
brief investigation will be made about possible veterinary preventive measures, hygiene
control, and risk assessment in regard to some foodborne ailments/diseases provoked by
mycotoxins in order to reduce mycotoxin content in meat and other animal products and
to prevent the subsequent entering of mycotoxins into commercial channels.

2. Mycotoxin Prevalence and Current Regulations

The seasonal weather conditions within each geographical area during the critical
growing stages of each plant species are of particular importance for explaining the levels of
mycotoxin contamination. The variation in the results is usually a consequence of various
important circumstances, such as the type of analyzed samples, the periods of the surveys,
and the climatic differences in each particular year of the survey. In addition, various
environmental conditions, such as increased humidity, temperature, excessive rainfall,
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drought conditions, and damage by insects, in addition to the agronomic practices used,
could provoke stress and further contribute to the development of mould in the respective
plants in the field before harvesting [13–15]. For example, the weather conditions known to
lead to extensive AFs contamination are mainly increased temperature, scarce rainfall, and
drought stress, whereas DOJN and ZEA production by Fusarium spp. is mainly facilitated
by cool weather and extremely wet growing seasons [13,16]. Some mycotoxins, e.g., OTA
and AFs, are mainly produced under the conditions of storage for a prolonged time and,
therefore, are known as storage mycotoxins, whereas others, such as FUMs, trichothecenes,
DON, ZEA, and some other Fusarium mycotoxins are mostly produced in field conditions
before harvesting [1]. In addition, the international trade of feed/food ingredients may
further facilitate the distribution of materials contaminated with mycotoxins outside their
natural areas of occurrence and, therefore, additionally complicate the possible prediction
of mycotoxin contamination of feeds or foods.

The range of EU regulatory limits is from 0.1 µg/kg (AFB1 content in processed
cereal-based foods for children) up to 4000 µg/kg (FB1 and FB2 content in unprocessed
maize for humans). For milk and milk products, the AFM1 limit is 0.05 µg/kg [2,17]. The
accepted EU limit of mycotoxins in wheat is 4 µg/kg (AFs), 2 µg/kg (AFB1), 5 µg/kg
(OTA), 1250 µg/kg (DON), and 100 µg/kg (ZEA), and the most common mycotoxins in
flour prepared from wheat are AFs, OTA, and DON [2,17]. Therefore, the EU limits of the
same mycotoxins in processed cereal products are lower, such as 3 µg/kg for OTA, etc. [18].
The maximum permitted levels of mycotoxins in maize when used for human consumption
according to EC regulation are 2 µg/kg (AFB1), 10 µg/kg (AFs), 5 µg/kg (OTA), 4000 µg/kg
(FUMs), 1750 µg/kg (DON), 350 µg/kg (ZEA), and 100 µg/kg (T-2 + HT-2) [2,7]. The main
mycotoxins contaminating rice are AFB1, ZEA, DON, FUMs, OTA, and HT-2/T-2 [19]. The
maximum permitted levels of these mycotoxins in rice defined by the EC are 10 µg/kg
(AFs), 5 µg/kg (AFB1), 5 µg/kg (OTA), 1250 µg/kg (DON), and 100 µg/kg (ZEA) [2,7].

The most common mycotoxin in barley is DON, whereas AFs and DON prevail in
cereal porridge, and AFs prevail in breakfast cereals [5]. The most common mycotoxins
in vegetables and fruits are PAT, OTA, and trichothecenes [5,20]. AFs were most often
found as natural contaminants in South Asia (78% positive samples with an average
contamination level of 128 µg/kg), followed by Southeast Asia (55% positive samples with
an average contamination level of 61 µg/kg) [21]. In Germany, seven oilseed samples
investigated in 2010 were found to contain AFB1 above the maximum limit [20]. ZEA
was the most often contaminant in North Asia (56% positive samples with an average
level of 386 µg/kg). DON was the most often found natural contaminant in North Asia
(78% positive samples with an average contamination level of 1060 µg/kg). However, the
highest average DON contamination was found in North America (68% positive samples
with an average contamination level of 1418 µg/kg) [21] (Table 1). DON was also equally
prevalent in food from Europe and Canada with about 57% of the European [22] and
about 59% of the Canadian food [23]. In Austrian feeds and feed raw materials, DON
was found in around 60% of investigated cereal samples other than maize and in around
95% of maize samples [20]. High DON contamination levels were also found in liquid pig
feed samples in The Netherlands, and 10% of the same sample exceeded the maximum
permitted values [24]. DON is also the most prevalent mycotoxin in beer and, consequently,
would be a real public health problem [25]. AFs, FUMs, OTA, and ZEA have also been
reported to contaminate the beer at various stages of brewing [25]. FUMs were found to be
the most frequent contaminant in South America (77% positive samples with an average
contamination level of 2691 µg/kg). OTA was seen to be most prevalent contaminant in
South Asia (55% positive samples with a mean level of 20 µg/kg). OTA was also seen
to be a frequent contaminant in Eastern European samples (49% positive) evaluating the
OTA exposure of the EU population, but the average level of contamination was much
lower (4 µg/kg) [6,21] (Tables 1 and 2). OTA in the same studies was found to be most
prevalent in cocoa products (81%), dried fruit (73%), and wine (59%), but it was most
prevalent in red or sweet wine as compared to the other wines [6,26]. In addition to cocoa
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products, coffee and chocolate were also reported to contain high contamination levels of
the same mycotoxin [27–29]. A high prevalence of OTA was also found in wheat-based
products (94%) in Canada [23], but the highest OTA levels have been reported in countries
in Southern Europe [26]. AFs were found to be the most common mycotoxins in the peanuts
and pistachios [5].

Table 1. A brief overview of mean natural mycotoxin contamination of feed worldwide.

Mycotoxin Feeds or
Ingredients

Mean Level
(µg/kg) Positive % Continent

(Region) Reference

AFs various 128 78 South Asia [21]
AFs various 61 55 Southeast Asia
OTA various 20 55 South Asia
OTA various 4 49 Eastern Europe

FUMs various 2691 77 South America
DON various 1418 68 North America
ZEA various 386 56 North Asia
DON various 1060 78 North Asia

Table 2. A brief overview of ranges of natural mycotoxin contamination of feed or feed ingredients
in Europe.

Mycotoxin Feeds or
Ingredients

Range
(µg/kg)

Number of
Samples Positive % Continent

(Region) Reference

OTA wheat, maize 22–33 82 2 Europe [30]
FB1 wheat, maize 36–5114 82 44 Europe
ZEA wheat, maize 58–387 82 15 Europe
DON wheat, maize 74–9528 82 63 Europe
HT-2 wheat, maize 22–116 82 9 Europe
AFs various 0.5–66 127 25 Southern Europe [31]
OTA various 1–54 46 22 Southern Europe

FUMs various 25–36,390 89 66 Southern Europe
DON various 52–4827 348 66 Southern Europe
ZEA various 10–2939 303 28 Southern Europe

T-2/HT-2 various 35–137 65 8 Southern Europe

OTA, in addition to AFs, has also been reported to contaminate animal products
such as dried meat and other meat products such as sausages and salami or eggs, which
presents a global problem for human health [32–34]. DON and ZEA were also reported
to contaminate meat, but to a lower degree [5]. AFs have been reported to be the most
important contaminants of milk or dairy products, e.g., yogurt and cheese [5]. The most
often contaminants of eggs have been reported to be AFB1, OTA, ZEA, and DON [35],
which appear to be a potential public health problem.

Contamination peaks of mycotoxins are often traceable to target regions and are usu-
ally seen in response to extreme weather conditions. On the other hand, having in mind
climate change in Europe and all over the world, a possible increase in the magnitude or
frequency of human/animal exposure to mycotoxins is expected to occur, which could
further increase public health concerns. In this regard, mycotoxins that are not usually
found in foods/feeds from European countries might occur as a result of changes in the
distribution of some target fungal species in regions with climate changes, e.g., wider dis-
semination of Fusarium fungi and mycotoxins is expected to be seen in EU countries [36–39].
Therefore, a different exposure pattern to mycotoxins is expected to occur in EU countries
now or in the near future. For example, a strong Aspergillus flavus infection was seen in
2003 because of the hot and dry weather, which led to high contamination of maize with
AFB1 in northern Italy [40]. A study of 110 samples revealed the presence of AFB1 in 75%
of them, with a mean level of 4.4 µg/kg. Because of the use of such maize as a feed source
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for dairy cattle, high contamination of AFM1 was subsequently seen in milk. Therefore,
thousands of tons of milk had to be removed due to exceeding the EU maximum permitted
levels of 0.05 µg/kg [20,41]. In addition, some species, such as F. verticillioides, usually
encountered in warmer and drier regions of Europe, e.g., Spain and Italy, were the most
prevalent Fusarium species in German maize in 2006, which subsequently increased FUMs
contamination of maize to 34% of the studied samples [42]. Such high contamination levels
of AFB1 in the EU also shows that climate change will entail a change in the pattern of the
current mycotoxin distribution in the future.

In this regard, the development of predictive models for mycotoxin contamination in
cereals, foods, and feedstuffs based on the data of the regional climate would be useful to
evaluate the risk of mycotoxin contamination in each season. Although the climate is one of
the most influential parameters in regard to the extent of mycotoxin contamination, some
other measures such as crop rotation, tillage, or planting time (earlier planting of maize is
important) are also of crucial importance in order to reduce mycotoxin contamination of
cereals [20].

In order to obtain reliable results for mycotoxin contamination, proper sampling has to
be performed. It is well known that sampling could be a significant source of error in quan-
tifying mycotoxin contamination levels due to difficulties in sampling from large batches of
grain and because of the different levels of mycotoxin contamination in various places in a
single feed/food ingredient [43]. In order to ensure an effective sampling procedure for ce-
real mycotoxin detection or quantification, EC Regulation 2023/2782 defines the sampling
and analyzing methods for mycotoxin control in food/feed and repeals EC Regulation No
401/2006. In this regard, the details of sampling methods, acceptance parameters, and
defined analytical criteria for the methods used are provided for the official controls, in
addition to the criteria for reporting and interpretation of the results received [44]. In this
regard, a lot of analytical methods for defining mycotoxin content in food commodities
or feed ingredients were elaborated, e.g., immunoassay, high-performance liquid chro-
matography (HPLC), gas chromatography (GC), tandem mass spectrometry (MS/MS), gas
chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spec-
trometry (LC/MS), among which the last one is increasingly widespread for detection of
multiple mycotoxin conjugates [45–52]. Some high or ultra-performance chromatography
systems, together with mass spectrometry, are also found to be useful in the examination of
multiple mycotoxins in various foods/feeds [53]. The areas that need further investigation
and refinement are regarding the conjugated or modified mycotoxin determination and
the elaboration of a new, convenient, rapid, and cheap analytical approach [54]. Moreover,
further studies on the elaboration and application of such methods are necessary. Some
analytical methods, such as commercial ELISA kits, are also very useful because they are
cheap and easy to apply [54].

3. Joint Mycotoxin Exposure as a Cause of Foodborne Ailments

Currently, there is evidence of mycotoxin involvement in diseases in humans or farm
animals, such as pulmonary oedema in pigs, equine leukoencephalomalacia, vulvovaginitis
or rectal prolapse in pigs, Alimentary Toxic Aleukia in people, stachybotryotoxicosis,
mycotoxic porcine/chicken nephropathy, Balkan Endemic Nephropathy (BEN), ergotism,
and some others [7,10,55–57]. Different animals have different sensitivity to mycotoxins, as
poultry species are less sensitive to the toxicity of FUMs, DON, and ZEA, but pigs are more
sensitive to T-2 and DON [54].

Unfortunately, the toxic effects of mycotoxins, and especially the toxicity of various
mycotoxin combinations on human health, are scarcely investigated. Currently, there
is no sound evidence for the involvement of mycotoxins in some particular diseases in
humans from developing countries where people are continuously exposed to mycotoxin-
contaminated foods. However, a simple connection was seen between the FB1 content in
maize, the quantity of ingested maize products by humans, and the rate of oesophagal
cancer in people, which suggested that FB1 is probably responsible for human oesophagal
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cancer in some countries, e.g., South Africa and China [58]. It was also found that pregnant
women who ingested high concentrations of FUMs via their food at the initial stage of the
pregnancy have a high risk of the appearance of neural tube defects, such as birth defects of
the spinal cord or brain in their newborn children [59]. Idiopathic Congestive Cardiopathy
(ICC) in humans is another common disease seen in South Africa, which is also associated
with ingestion of high levels of FB1 and other trichothecenes, incl. moniliformin (MON),
which is suspected to be partly responsible for the cardiac weakness. The disease is mainly
established in elderly people who consumed a lot of home-produced maize and drank a lot
of homemade beer [7,60].

On the other hand, feedstuffs contaminated by mycotoxins contribute to mycotoxin
contamination of some food products from animal origin, e.g., milk, dairy products, meat,
or eggs, due to the transmission of some mycotoxins from the forages to defined food
commodities. This situation may further contribute to the increase in human exposure to
mycotoxins [4,61,62]. Another circumstance contributing to mycotoxin exposure in humans
is their thermal and chemical stability and the minimal loss during thermal treatments or
production processing [63].

The multiple mycotoxin contamination of forages and food commodities was reported
to provoke many foodborne ailments/diseases in animals and humans (Figure 1) [7,56,57,64].
In addition, mycotoxins are reported to be responsible for some secondary bacterial diseases
due to their immunosuppressive effects [56,57]. Some foodborne mycotoxicoses, e.g., equine
leukoencephalomalacia, vulvovaginitis and rectal prolaps in pigs, Alimentary Toxic Aleukia
in people, porcine pulmonary oedema, human oesophagal carcinoma, stachybotryotoxicosis
(Figure 1), mycotoxic porcine/chicken nephropathy (Figure 2), ergotism, and many other
diseases or ailments in animals or humans are some of the well-known examples of foodborne
mycotoxicoses [2,10].

Fusarium mycotoxins, such as DON and ZEA, are mainly responsible for multiple
mycotoxin contamination of maize and, less often, of oats, barley, and wheat. ZEA is
reported to contaminate cereal products, including feedstuffs, pasta, bread, and beer [65],
as well as animal products, including milk, meat, and eggs [5]. DON is mainly reported
to contaminate wheat, rye, corn, oats, barley, rice, and sorghum [5]. ZEA was found
to be involved in the appearance of many vulvovaginitis, rectal or vaginal prolapse in
female pigs (Figure 1), and some other estrogenic symptoms, including swelling of the
mammary glands or infertility [7,66], whereas in male pigs, a feminization and decrease in
testosterone levels and/or spermatogenesis, as well as decreased libido, were observed [67].
ZEA has a genotoxic action and could be partly responsible for breast and esophageal
carcinomas [68,69]. The International Agency for Research on Cancer (IARC) classified
ZEA in Group 3, mycotoxins that do not exert carcinogenic effects on humans [70,71].
Hyperestrogenism in young female pigs is defined by vaginal or rectal prolapses, and
a high percentage of vulvovaginitis in the same pigs, known to be the main symptoms
of ZEA-toxicosis, is usually seen only after prolonged ZEA ingestion above a month.
However, the first clinical symptoms of ingestion of such feedstuffs moulded by F. culmorum
or F. graminearum are due to the toxic action of DON, e.g., cytotoxic effect on neurons
(manifested by paresis), damages in the gastrointestinal system (manifested by vomiting),
and immunosuppression (manifested by secondary microbial infections) [2,7,72,73]. In
humans, the main clinical symptoms due to DON exposure are vomiting, acute nausea,
diarrhea, abdominal pain, dizziness, headache, and fever [5].

Some other Fusarium mycotoxins, such as DAS, T-2, and HT-2, which are produced
mainly by Fusarium spp. belonging to the Sporotrichiella section or by F. poae species, were
reported to also possess strong cytotoxic, genotoxic, and immunosuppressive effects [74].
Barley and oats are mainly the cultures that are frequently contaminated with T-2 and
HT-2 [20]. Damage to the hematopoietic system, damage to eggshells and egg production,
feed refusal, and growth retardation are the main symptoms of T-2 toxicity [75]. Damage to
the cardiovascular system, growth retardation, and lung damage are the main symptoms of
DAS toxicity, which could add to the clinical picture provoked by T-2 and HT-2 [7]. The most
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sensitive species to this fusariotoxicosis are pigs and poultry [20], and the symptoms are
seen mainly after ingestion of hay, straw, or grain wintered outdoors. This fusariotoxicosis
in people is known as Alimentary Toxic Aleukia [76]. The clinical signs characteristic of this
fusariotoxicosis are catarrhal or haemorrhagic gastroenteritis accompanied by ulcerations
and necrotic changes in the gastrointestinal system, damage in the kidney, heart, liver,
peripheral ganglia, and brain, responsible for subsequent muscular spasms, paresis of
limbs, and tremors [7]. Abdominal pain, diarrhea, nausea, tremors, and weight loss are
seen in the initial stages of this fusariotoxicosis [77].
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Equine leukoencephalomalacia is another important foodborne mycotoxicosis, which
is provoked mainly by FUMs, among which FB1 is the most toxic. These mycotoxins were
reported to contaminate mainly maize in developing countries [55,78]. Porcine pulmonary
oedema, which was recognized for the first time in the USA and is responsible for the death
of many pigs, is another foodborne mycotoxicosis provoked by mouldy maize containing
FUMs [79]. The heart failure and subsequent oedema in the lungs of pigs can be explained
by disturbances in the contractility of the myocardium in pigs, induced by the increase in
sphingosine and subsequent inhibition of L-type calcium channels in the myocardium [80].
A similar disturbance in the contractility of the myocardium in humans is known as ICC
and was first recognized in 1980 in S. African rural hospitals. The same disease was
supposed to be due to the intake of Fusarium mycotoxins such as FB1, MON, and some
others [1,7].

AFs are potent mycotoxins that are often seen in feedstuffs or food commodities
together with other mycotoxins, which can strongly complicate the clinical and pathological
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findings. These mycotoxins, among which AFB1 is the most dangerous, affect mostly the
liver; the most sensitive species are turkeys and ducks, as well as all young animals. The
typical signs in the early stage of intoxication are fatty changes and necrotic damage in
the liver, accompanied by connective tissue proliferation, enlargement of the gall bladder,
and intestinal damage. The typical signs in later stages are icterus and cirrhosis of the liver,
hydrothorax, and ascites, accompanied by skin thickening near the mouth or neck and
papillomatous formations on the mucosal surface of the abomasus, which are characteristic
symptoms mainly in cattle. A decrease in body weight gain, immunosuppression, and
anaemia [7,62,81,82] are some additional chronic signs of aflatoxicosis in animals, poultry,
or humans, which can be complicated by some other co-contaminating mycotoxins with
similar toxicity [7]. AFB1, together with other mycotoxins, can also induce oedematous
changes and is often associated with Kwashiorkor disease in humans [71,83]. AFB1 is
classified by the IARC as a carcinogenic mycotoxin for humans (Group 1 mycotoxin) and is
the main cause of nearly 28% of all carcinomas in the liver [71]. AFs were also reported to
have teratogenic effects on embryos and to be able to cross the placental barrier [84].

Mycotoxic porcine nephropathy (MPN) is also a mycotoxicosis, which is induced
by combined mycotoxin action, as reported in some Balkan or African countries, with
OTA, FB1, and penicillic acid (PA) being the most important mycotoxins involved [56,57].
The same mycotoxins have synergistic (OTA and PA) [85,86] or additive (OTA and FB1)
interactions [87]. The main clinical symptoms of MPN are strong damage to the kidneys
(Figure 2) [56,57,88,89], but a decrease in weight gain, nervous symptoms (Figure 3), hepa-
tocellular changes, and egg weight reduction (Figure 4) were also seen in laying hens or
chicks exposed to the same mycotoxins [90–94].

The fungal species Claviceps purpurea, which can produce a lot of mycotoxins, e.g.,
ergocristine, ergocryptine, peptide alkaloids such as ergosine, lysergin derivatives such as
ergine and ergometrine, ergotamine and ergosecaline, biogene amines such as histamine
and acetylcholine and some others, can provoke another dangerous mycotoxicosis known
as ergotism [7]. These mycotoxins are found in the sclerotia of this fungus, which is similar
to a dark, big wheat grain [3]. This fungus contaminates mainly wheat, rye, barley, oats
and millet. In humans, ergotism is famous as St Anthony’s fire, which was accompanied
by hallucinations and was the cause of death for many humans in France in the past [95].
Nowadays, St Anthony’s fire is still found in some developing countries [96,97]. The main
pathological/clinical symptoms of ergotism are ischemic necroses of peripheral parts of the
body, e.g., tail, ears, or crown of hooves, induced by the contraction of vessels, gangrene
of the peripheral part of extremities, enhanced contractions of the uterus and subsequent
prolapse of uterus and/or abortions, as well as some gastrointestinal signs [96–98].

Another mycotoxicosis widely known in animals is stachybotryotoxicosis, which is
induced by the fungal species Stachybotrys altra (Stachybotrys alternans), encountered in
moist straw/oats/hay and other cellulose-rich foods. This fungus can produce very toxic
compounds, e.g., satratoxins, roridins, and verrucarins, and can be defined by its black
colour. These fungal mycotoxins irritate the mucosa of the oral cavity and gastrointestinal
tract, causing strong hyperaemia and inflammation. On the other hand, after mycotoxins’
accumulation, deep neurotrophic symmetrical necrotic damages and ulcers on the mucosa
of the gastrointestinal system, oedema, and haemorrhages are seen [7,99,100] (Figure 1).
This mycotoxicosis shows a stationarity because the fungus survives in the soil (outside the
contaminated materials) for a lot of time, which explains the repeated contamination of
animal feedstuffs [7].

Another dangerous mycotoxin for humans is PAT, which is often seen together with
some other mycotoxins. PAT is reported in apples, grapes, and pears damaged by brown
rot, and also in the juice from the same fruits. It is also reported to contaminate vegetables,
cereals, and various types of cheese [5]. The rotten part of fruits should be removed
before consumption to reduce the PAT content ingested by consumers. PAT was reported
to induce various toxic effects, e.g., neurotoxic, cytotoxic, or carcinogenic, in addition
to reproductive disturbances [83,101,102]. The cytotoxic effect is manifested by damage
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to the gastrointestinal tract, liver, and kidneys, and disturbances in the endocrine and
immune systems [103]. PAT is classified by the IARC as a suspected carcinogen (from
Group 3) [104,105].
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Figure 4. Small size of eggs with a weight of 15.8 g (centre) and 25.8 g (right) and different-sized
damages or spots in the shell originated from laying hens treated with 5 mg/kg OTA in the diet.
Normal size of an egg from the control group (left) [94].

It is worrying that a lot of mycotoxins have carcinogenic (Figure 5), genotoxic, ter-
atogenic (Figure 6), and immunosuppressive properties in addition to their acute toxic
action [68,106–112]. A good example in this regard is FB1, which is suspected to provoke
human esophageal cancer in South Africa [58] and to induce liver carcinomas in rats [113],
in addition to its nephrotoxic effect [56,57]. The available data in the literature investigated
mostly the carcinogenic effect of single and, rarely, double mycotoxin exposure via in vitro
studies [114], but in vivo studies investigating the chronic effect of multiple mycotoxins on
the induction of neoplasia are scarce [115–117].

It is well known that most mycotoxins have strong immunosuppressive properties
and can increase susceptibility to secondary bacterial infection in concentrations similar to
those in practice [118–123], including susceptibility to salmonellosis [124–126] or colibacil-
losis [127] or provoke a heavy progression of some infections such as Pasteurella multocida-
induced disease [128] or porcine reproductive and respiratory syndrome (PRRS) [129–132]
(Figure 7) or parasitic invasions such as coccidiosis [92,133]. Having in mind this cir-
cumstance, it can be assumed that combined mycotoxin exposure could compromise the
immune system of animals in very low concentrations, having in mind the synergistic
or additive interaction between some target mycotoxins [87,90]. Therefore, it could be
concluded that the increased morbidity and mortality in livestock and poultry exposed
to various mycotoxin combinations via feedstuffs is possibly a consequence of increased
susceptibility to secondary microbial infections or a heavier course of some parasitic or
bacterial diseases [2]. Oxidative stress, which can be provoked by many mycotoxins, could
additionally threaten animal and human health [134,135].
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Figure 5. (A) Neoplasia (fibroadenoma and fibroma) in spontaneous cases of MPN in Bulgaria [88];
(B) A kidney with adenocarcinoma (pale protruding neoplastic areas on kidney surface) in a rat treated
with 5 mg/kg OTA via the consumed feed during an experimental period of 24 months [108,109];
(C) Intestine with adenocarcinoma (large protruding pale neoplasia on intestinal surface) in a rat
treated with 10 mg/kg OTA via the consumed feed during an experimental period of 19 months [108];
(D) An eye with squamous cell carcinoma in a rat treated with 10 mg/kg OTA via the consumed feed
during an experimental period of 24 months [108].
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Figure 7. (A) Computed tomography (CT) photo of lung damages in M. hyopneumoniae experimen-
tally compromised pig in a definite sectioning plane done on day 58 of the experiment showing
small focal damages with patchy ground glass opacification. (B) CT photo of the lung damages in
M. hyopneumoniae experimentally compromised pig treated additionally with 20 mg/kg FB1 via the
consumed feed conducted in the same sectioning plane on day 58 of the experiment showing severe
worsening of pneumonic changes as seen from the enlargement of the same damage [131,132].
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4. Some Critical Points in Adequate Risk Assessment, Hygiene Control, and Regulation
of Mycotoxins

The following components of the analysis of risk, e.g., assessment, communication,
and management of risk, should be analyzed to provide adequate food safety. In order
to provide adequate risk assessment, the following components have to be evaluated:
identification and characterization of hazards, characterization of possible risks, and as-
sessment of the exposure. To ensure adequate risk communication, a regular exchange of
knowledge and opinions between the risk evaluators, risk managers, and consumers is
necessary during analyzation of the risk. However, the adequate risk management decision
should be based not only on the risk assessment but some additional matters should also
be addressed, e.g., economic, environmental, ethical, and other circumstances, in addition
to the feasibility of effective control [1,7].

Therefore, the Joint FAO/WHO Expert Committee on Food Additives (JECFA), after
evaluating the most dangerous mycotoxins, provided a mechanism for assessment of the
toxic impact of each mycotoxin [136], which includes defining the “no observed effect
level” (NOEL) via experimental investigations and subsequently applying “a factor of
safety”, in order to estimate the Provisional Tolerable Daily (PTDI) or Weekly Intake
(PTWI). This approach evaluates the maximum tolerated mycotoxin levels in feedstuffs
or food commodities but could not be used in regard to the carcinogenic effect of some
mycotoxins such as AFS, where the “as low as reasonably achievable” (ALARA) approach
or “as low as possible but technologically feasible and analytically detectable in the food
ready for consumption” approach should be applied [137]. The IARC provides such a
mechanism for the assessment of cancerogenic properties of mycotoxins, according to
which mycotoxins were divided into Group 1 (“cancerogenic mycotoxins for humans”,
incl. AFB1), Group 2A (“probably cancerogenic mycotoxins for humans”), Group 2B
(“possibly cancerogenic mycotoxins for humans”, incl. FB1 and OTA), and Group 3 (“not
classifiable as cancerogenic for humans”) [70]. Some revisions of the accepted criteria
for this classification and regular updates in regard to some mycotoxins are periodically
undertaken [10,71]. The European Food Safety Authority (EFSA) also ensures independent
scientific advice regarding food-related risks in relation to AFs via using a margin of
exposure (MOE) approach. More than 200,000 analytical studies on Afs presence were
used in the assessment. When using such a MOE approach for the characterization of risk
for the incidence of hepatocellular carcinomas (HCC) in male rats after AFB1 exposure,
“a benchmark dose lower confidence limit” (BMDL) for a benchmark response of 10% of
0.4 µg/kg b.w. per day was established. Unfortunately, the establishment of such BMDL
via using the available data for humans was found to be inappropriate. A potency factor of
0.1 in relation to AFB1 was applied in such assessment in regard to AFM1 [138].

In regard to DAS, T-2, and HT-2, a group TDI of 25 ng/kg b.w. for a single mycotoxin
or mycotoxins combination was recently decided by JECFA [139], and the former group
“provisional maximum tolerable daily intake” (PMTDI) of 60 ng/kg b.w. (incl. T-2 and HT-2),
accepted on the 56th meeting and updated on the 83rd meeting (via the inclusion of DAS), was
changed. A PMTDI of 0.4 µg/kg b.w. was also set in regard to PAT (Table 3) [17,41,139–142].

Similarly, a group TDI value of 1 µg/kg b.w. was designed in regard to DON and its
derivatives, e.g., 15-acetyldeoxynivalenol (15-ADON), 3-acetyldeoxynivalenol (3-ADON),
and plant metabolite DON-3G, which was based on experiments in mice with chronic
mycotoxin exposure [142] (Table 3). In acute cases, however, 8 µg/kg b.w. per eating
occasion was accepted as a reference dose due to gastrointestinal damage reported in
DON-exposed humans in China [142,143]. This TDI was based on the circumstance that the
same three derivatives can be biotransformed into DON in humans [144]. The evaluation
of the risk of DON exposure to humans in the EU population revealed that a part of it is
exposed to concentrations that suppose a significant health hazard [65,145].
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Table 3. Tolerable Daily Intake (TDI) of mycotoxins according to EU regulations and recommendations
[17,41,139–142].

Mycotoxins TDI (µg/kg b.w.)

Ochratoxin A (OTA) 0.0002–0.017 (the lower figure refers to a cancerogenic effect)

Aflatoxins (AFs)
(sum of AFB1, AFB2, AFG1, AFG2, AFM1)

No exact value (ALARA principle is applied)—less than
0.001–0.01 are advisable—the lower figure refers to a
cancerogenic effect

Patulin (PAT) 0.4

Deoxynivalenol (DON) 1

Nivalenol (NIV) 1.2

T-2 + HT-2 toxins + DAS 0.025

Zearalenone (ZEA) 0.25

Fumonisins (FUMs) 2

The TDI of FUMs was set at 2 µg/kg b.w. because FB1 was suspected to provoke neural
tube defects in the embryo [146] and scarce data are available for the mechanism of renal
excretion of FB1 in humans. The same mycotoxin is scarcely absorbed in the gastrointestinal
system, is quickly eliminated from the circulated blood by hepatobiliary excretion, and is
mainly eliminated by the faeces [65], which explains the absence of the required attention
from the scientific community. Additional efforts to clarify the toxicokinetics profile of
this mycotoxin after oral ingestion would be useful to contribute further to better risk
assessment [65].

The TDI of AFs (a total sum of all forms of aflatoxins) is the lowest one, similar to the
maximum permitted levels of AFs in feeds or food commodities (Table 3) because AFB1 is
classified by the IARC as a Group 1 human carcinogen [70,71]. AFs are eliminated via the
feces, milk, and urine, but the same mycotoxins can also be found in animals’ organs, meat,
or chicken eggs and, therefore, represent a real health hazard. Moreover, the contamination
of cereal-based products, in addition to peanut cake, palm kernel, corn gluten meal, pork
products, milk, and eggs, increases the possibility of human exposure to AFs [20,65]. It is a
worrying circumstance that in non-ruminant animals, more than 80% of AFs are absorbed
via the gastrointestinal tract, mostly by using passive transportation, in comparison to the
low rate of absorption of some other dangerous mycotoxins such as OTA or FUMs (from
1% up to 60%) [147].

The TDI of OTA, similar to the TDI of Afs, has the lowest value (0.0002–0.017 µg/kg
b.w.), as the lower dose concerns its carcinogenic effect (Table 3). OTA contamination
mainly occurs in cereals, e.g., barley, wheat, maize, and rye, in addition to some poultry or
animal products such as meat-based products, kidneys, and eggs [7]. The enterohepatic
circulation of OTA contributes to its retention for a longer time in the gastrointestinal
system, which could aggravate the health hazard. The proposed JECFA initial value of
112 ng/kg b.w. PTWI for OTA corresponded to about 16 ng/kg b.w. PTDI [148]. This PTWI
was then decreased to 100 ng/kg b.w., corresponding to 14 ng/kg b.w. PTDI [149], but
after that, it again increased to 120 ng/kg b.w. or nearly 17 ng/kg b.w. PTDI (Table 3).
The PTWI assessment is based on the nephrotoxicity of OTA without consideration of its
carcinogenicity. There is another calculation of TDI made by Kuiper-Goodman and Scott,
which takes into consideration the cancerogenic effect of OTA, and such calculation ranged
between 0,2 and 4,2 ng/kg b.w, depending on the methodology used [150]. Having in mind
both calculations of TDI, the calculated average daily intakes of OTA for people living in
BEN-endemic regions in Bulgaria (26.8 ng/kg b.w. in 1988, 36.4 ng/kg b.w. in 1989, and
34.2 ng/kg b.w. in 1990, respectively) [3,7] are greatly above the TDI of 17 ng/kg b. w. (in
regard to the nephrotoxic effect of OTA), and even more strongly above the TDIs taking
into consideration the cancerogenic property of OTA [150].
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In regard to possible veterinary hygiene control in OTA content in animal products, the
introduced measures in some EU countries, such as Denmark, would not be able to provide
adequate food safety because they are not quite appropriate [3]. The accepted regulation
in Denmark requires the study of all “mottled and/or enlarged kidneys” for OTA content
during the slaughtering of pigs and condemnation of the carcasses if OTA content is more
than 10 µg/kg [151]. Such regulations, however, are not very relevant and satisfactory
because the mottled appearance of kidneys can be provoked only after prolonged OTA
exposure of nearly 1–3 months [85,152]. Therefore, such regulation cannot provide OTA-
free pork and cannot restrict OTA-contaminated pork from moving through commercial
channels, which poses a potential risk to human health [3,153]. A possible and easily
achieved control measure would be to study a few blood samples from pigs or poultry in
farms with nephropathy problems a few weeks (for pigs) or a few days (for poultry) before
the slaughter time. In these cases, the feed supply could be changed with a more relevant
one for a week (in pigs) or for several days (in poultry), if OTA is present in the blood. A
possible approach to prevent OTA contamination of meat and derived products could be
extending the fasting period (feed deprivation) just before slaughter time [153,154]. Such a
measure is easy to perform and very effective due to the short half-life of this mycotoxin
in pigs (72–120 h) and especially in poultry (4 h) [155]. In such cases, the OTA levels in
the blood or tissues of the respective poultry and pigs will be strongly decreased, and
any losses due to the scrapping of pig/chicken meat will be avoided. Such measures
could ensure a more effective control for restricting subsequent OTA intake by humans
via pork products as compared to the toxicological studies of “mottled kidneys” according
to the regulations in Denmark. If the same control measures cannot be performed, the
removal (condemnation) of the kidneys and liver in already-slaughtered poultry and only
the kidneys in already-slaughtered pigs, where the largest quantity of OTA accumulates,
would be enough [154].

It is of crucial importance that the HACCP (Hazard Analysis and Critical Control Point)
system is introduced worldwide to ensure the regular identification and assessment of
possible hazards at different stages of food/feed production. The subsequent undertaking
of adequate measures for ensuring regular control and food/feed safety is also required,
e.g., prevention strategies, good manufacturing practices, and regular control at various
stages of food/feed processing or production from the harvest of raw ingredients up to the
end user [3]. The knowledge of the content of target mycotoxins such as DON, ZEA, and
FUMs in each step of processing maize and cereals is of crucial importance due to the high
contamination levels of these mycotoxins in raw ingredients. Therefore, the enforcement of
regular surveillance control and adequate food safety regulations is also of critical necessity
to provide safe food/feed and to decrease incidences of foodborne ailments. In this regard,
automated sorting and segregation are applied for the separation of AFs-contaminated
peanuts, and cleaning cereals prior to milling is applied to remove spores of fungi, debris,
and broken grains containing high concentrations of mycotoxins [156,157]. The removal
of bran from flour intended for bread might also decrease mycotoxin intake by humans,
and weaker constraints on raw materials should be adopted. Nevertheless, it is debatable
whether the consumer would prefer the bread and pastry prepared from wholemeal with
its known health benefits or white bread and pastry without bran in order to decrease the
risk of mycotoxin content [18].

The monitoring of food/feed quality and application of mycotoxin regulations is
mainly available in developed countries, whereas such standards are not available or are
ineffective in developing countries. The introduction of such regulations in developing
countries is often very complicated because of problems with the food supply. Moreover,
these regulations often promote the export of the best quality crops to comply with the
regulations, which could increase the risk of mycotoxin exposure and health ailments in
local people due to the circumstance that foods/feeds or food ingredients with low quality
usually remain for local consumption.
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Currently, a lot of countries have elaborated their own regulations designed to ensure
effective control of mycotoxin contamination in feeds or food ingredients [2,7]. Nowadays,
introducing worldwide legislation and internationally recognized regulations is of crucial
importance for minimizing the exposure of humans/animals to various mycotoxins when
the risk assessment of such exposure is significant. However, in the process of evaluation
of each particular risk assessment, the toxic effect of each mycotoxin and mycotoxin
combination should be taken into consideration, in addition to the estimated mycotoxin
exposure of animals or humans. Simultaneous intake of several mycotoxins via feedstuffs
or food commodities, although at very low concentrations for a long period (such as
simultaneous ingestion of OTA and PA), is of crucial importance for the appearance of some
foodborne ailments and could be a significant risk for animal/human health. Therefore,
the real toxic and carcinogenic effects of various target mycotoxin combinations, which are
often seen in real practice, should be carefully evaluated, and new limit values must be
introduced in such cases. Unfortunately, the current Maximum Permitted Levels (MPLs)
and TDIs values of mycotoxins (Table 3) as accepted in the EU for animal feed [140,158–160]
or human food [17,140] are not very reliable because the same take into consideration only
the known toxic effect of each particular mycotoxin or a group of similar mycotoxins (such
as the sum of AFs or T-2 + HT-2 + DAS or FB1 + FB2) on different animal species, but
do not address the actual mycotoxin interactions (synergistic or additive) as it happens
in real practice. The United States Department of Agriculture has also accepted similar
limits in the USA, but they also neglected the actual mycotoxin interactions as they occur in
practice [161]. Therefore, additional regulations and control measures should be introduced
in such cases, which are based on the known synergistic or additive interactions of some
mycotoxins and their stronger toxic effects on animals/humans in such cases, e.g., OTA
and PA [85,86,162] or OTA and FB1 [87], in order to provide adequate risk assessment and
food safety. The necessity of international harmonization of such regulations and control
measures should also be undertaken to facilitate global food trade and food safety. The
same regulations and risk assessments should be carefully designed and based on the toxic
effects of multiple mycotoxin exposure as occurs in real practice [10]. Such MPLs and TDIs
should also be based on extensive studies in order to prevent excessive restrictions and
excessive economic loss [1,7].

The elaboration of regulatory measures for mycotoxin content in food and feed that are
internationally recognized is a very difficult task, and, therefore, preliminary elaboration
and introduction of some temporary indicative limits in cases that pose a significant danger
to human health would be a more useful and easy task to achieve.

The development of a suitable networking system for the dissemination of impor-
tant knowledge should also be introduced and sustained at the international level, e.g.,
staff training at regional and international levels. Such international regulations and con-
trol measures should be scientifically based and elaborated using agreement between
all stakeholders, e.g., manufacturers, consumers, policymakers, and traders, to ensure
widespread distribution and compliance with the same rules. In the process of elaboration
of such international regulations and standards, a lot of circumstances should be taken into
consideration, e.g., scientific validity, adequate risk assessment, analytical accuracy, and
establishing the toxicity of mycotoxin combinations, which most often occurs in the field, in
addition to target economic factors, including the commercial interests of the countries and
the need for food delivery in order to avoid unjustified rejections of raw food ingredients
and possible economic difficulties for producers [1,7].

5. Concluding Remarks

It is well known by the scientific community that human/animal exposure to myco-
toxins via food/feed cannot be fully prevented since mycotoxins are natural contaminants
of food/feed ingredients. Some mycotoxins, e.g., aflatoxins, zearalenone, and ochratoxin
A, are much more hazardous due to their passage into the milk of lactating cows (parent
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toxins or their metabolites, e.g., aflatoxin M1, zearalenone, α zearalenol), eggs, and meat
(e.g., ochratoxin A).

The current national rules and regulations for monitoring and control of mycotoxins
in food commodities and feedstuffs are mostly based on the evaluation of the threat of
each individual mycotoxin for each individual country. Now, it is crucial to introduce
carefully designed surveillance control and modern internationally recognized biomonitor-
ing measures to evaluate animal/human exposure to mycotoxins. Such control measures
should be implemented globally for reliable control of factors that compromise the quality
of feed and food ingredients and the commodity system. It is important to highlight that
introducing too many restrictive food safety regulations could lead to unjustified rejections
of some raw food ingredients and the respective commodities, which could have fatal
consequences for some small producers or traders and put unjustified barriers in interna-
tional trade [1]. Therefore, synchronizing existing national regulations and developing
international regulations and standards for acceptable content of mycotoxins or target
mycotoxin combinations in foods/feedstuffs and raw ingredients should be undertaken.
Such international regulations would significantly improve the protection of all consumers
worldwide and facilitate trade at the international level, as well as food safety based on the
latest scientific advances and adequate risk assessment.

The novelty of this review paper is the evaluation of risk assessment of combined
mycotoxin exposure to some target mycotoxin combinations and the proposal for the elabo-
ration of new regulatory measures in such cases, which have to take into account additive
or synergistic interaction between the same mycotoxins as happen in the real practice.
Nowadays, the regulations and standards in the EU and US do not take into consideration
mycotoxin interaction and the combined toxicity or carcinogenicity of mycotoxins, and they
are based only on their individual toxic effects. Therefore, the combined toxicity of some
target combinations of mycotoxins must be deeply examined due to synergistic or additive
interactions between mycotoxins and should be taken into consideration for regulatory
purposes. Some additional experimental studies in animals or humans designed to clarify
relationships between target mycotoxins and the respective health outcomes, e.g., neural
tube defects, idiopathic congestive cardiopathy, or oesophagal cancers in humans, are also
crucial. The mycotoxin exposure of humans/animals in some countries, e.g., in the Balkan
countries, is often seen to be below the TDI for each separate mycotoxin, but the joint toxic
action can often greatly exceed the toxic effects of all the individual mycotoxins [2].

The elaboration of a suitable networking system for the worldwide dissemination of
target knowledge should also be introduced and sustained at the global level. Collaboration
between research teams, consumers, producers, traders, and policymakers is also crucial to
solving food safety issues and to facilitate the wide distribution and compliance with the
same rules and standards in order to avoid unjustified rejections of raw food ingredients
and possible economic difficulties for producers. Some economic and political factors,
e.g., how to ensure sufficient food supplies to the countries concerned, as well as some
commercial issues, should also be taken into consideration in the decision-making process.
Any effort to improve the quality of food commodities must also be reconciled with people
agreeing to bear any associated increase in the price of the feed or food concerned.
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