|
Algorithm 1. The algorithm for the data series interpolation using STK has the following stages |
-
0.
Input: Raw dataset
-
1.
Perform Exploratory Data Analysis (EDA) on raw dataset
Visual inspections: Box plot, Histogram
Performs the K-S and K-W tests
-
2.
Assess EDA Results: IF the dataset passes normality and homoscedasticity tests, THEN GOTO Step 3, ELSE, GOTO Step 6.
-
3.
Perform LOOCV for STK
-
4.
Back-transformation of Predicted Data:
Predict the trend for each data point (if data was detrended in Steps 7 or 8)
Apply the correction factor and reverse any log transformations
-
5.
Calculate Error Metrics: MAE, RMSE, and MAPE
END Algorithm
-
6.
Data Transformation (IF needed after Step 2)
Apply log10 transformation to the data
GOTO Step 1 (Reapply EDA)
-
7.
Simple Linear Detrending (IF Step 6 fails to normalize data)
Detrend data using a simple linear model with the ‘lm()’ function
GOTO Step 1 (Reapply EDA)
-
8.
Complex Model Detrending (IF Step 7 fails to normalize data)
Detrend data using complex models like GAMM and LME
GOTO Step 1 (Reapply EDA)
|