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ABSTRACT: Methods for electronic structure computations,
such as density functional theory (DFT), are routinely used for
the calculation of spectroscopic parameters to establish and

PTMA oligomer structure Prediction of g values

validate structure—parameter correlations. DFT calculations, g_pred
however, are computationally expensive for large systems such as IS0
polymers. This work explores the machine learning (ML) of

isotropic g values, g, obtained from electron paramagnetic ~ el =

resonance (EPR) experiments of an organic radical polymer. An
ML model based on regression trees is trained on DFT-calculated g
values of poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate)
(PTMA) polymer structures extracted from different time frames Tree-based ML model
of a molecular dynamics trajectory. The DFT-derived g values, g2,
for different radical densities of PTMA, are compared against
experimentally derived g values obtained from in operando EPR measurements of a PTMA-based organic radical battery. The ML-
predicted g, values, g%, were compared with gZ° to evaluate the performance of the model. Mean deviations of g2"*¢ from g&l° were
found to be on the order of 0.0001. Furthermore, a performance evaluation on test structures from a separate MD trajectory
indicated that the model is sensitive to the radical density and efficiently learns to predict g, values even for radical densities that
were not part of the training data set. Since our trained model can reproduce the changes in g, along the MD trajectory and is
sensitive to the extent of equilibration of the polymer structure, it is a promising alternative to computationally more expensive DET

methods, particularly for large systems that cannot be easily represented by a smaller model system.

B INTRODUCTION chemical sciences.”® ML algorithms can be used to efficiently
learn structure—property correlations and make predictions for
unknown structures with comparable accuracy as DFT at a
fraction of the computational time. Various physical and
chemical properties including chemical shifts,” ground-state
energies,"” or redox potentials'' have been targeted using ML
methods.

A key parameter derived from EPR spectra is the g value,
which describes the interaction of the electron spin with the
applied magnetic field. The observed g value deviates from the
free electron g value (g, = 2.00232) mainly due to spin—orbit
coupling, which is a relativistic effect arising from the
interaction of spin and orbital angular momentum. Spin—
orbit coupling is more pronounced for heavier elements.
Transition metal ions can show large deviations from g, while
organic radicals show smaller deviations in comparison.'”
Therefore, the g-shift is characteristic of the chemical identity
of the system. In the solid state and frozen solutions, the value

Electron paramagnetic resonance (EPR) spectroscopy, a
technique to characterize systems with unpaired electrons, is
highly effective in structure elucidation and mechanistic
investigations when coupled with theoretical modeling."”
While EPR selectively probes unpaired electrons and can be
used to gain insights into the electronic structure of spin
systems, electronic structure methods such as density func-
tional theory (DFT) enable the calculation of EPR
spectroscopic observables and confirm experimental inferences
made by using EPR methods. In the case of small molecules,
DFT techniques are a popular choice for accurate calculations
of physical and chemical properties at moderate computational
costs.”™*

A combination of DFT and molecular dynamics (MD) is
frequently employed for simulating EPR spectra of dynamic
systems, and EPR parameters calculated using DFT methods
often serve as initial values for least-squares fitting of EPR
spectra.” In order to fully capture the evolution of a specific
property along an MD trajectory, a large number of DFT Received: November 13, 2023 JCIC——
calculations are required. For larger systems, DFT calculations Revised:  February 26, 2024
can become considerably more expensive, requiring high- Accepted:  February 26, 2024
performance computing systems to afford such calculations. As Published: March 8, 2024
a viable alternative, machine learning (ML) methods have seen
a recent surge in application, especially in materials’ and
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of g is dependent on the orientation of the molecule with
respect to the externally applied magnetic field, leading to g
anisotropy described by a g tensor with three principal values:
g1, & and g3.">'* In the liquid state, the anisotropy is averaged
out due to fast tumbling of molecules, and an isotropic g value,
gso = (g1 + g + g3)/3, is obtained. As g is related to the
underlying molecular geometry, g values can be used to
investigate electronic distributions in molecules. This is
particularly relevant in the case of transition metal complexes,
where an analysis of the g-tensor components can be used to
study geometrical distortions."> For organic radicals, g values
can be a sensitive probe for the identification of the radical
center and elucidation of structural changes in its environ-
ment.'°""" The magnitude of g value shifts as a result of
environmental changes in organic radicals can be minimal,
usually of the order of 107% and high-field EPR measurements
are used to gain the required spectral resolution.'”"”

In systems with high spin concentration and small interspin
distances, spin—spin interactions such as the Heisenberg spin
exchange or dipole—dipole interactions considerably affect the
EPR spectrum. As a consequence of strong exchange, the
coalescence of spectral features may occur and the EPR
spectrum is mainly characterized by g, and the line width.*’
Prominent examples of such systems include organic radical
polymers (ORPs), where a high radical concentration and
closely spaced radicals are prerequisites for energy storage
applications, leading to an exchange narrowed EPR line. ORPs
are instrumental in the pursuit of more sustainable energy
storage technologies.”’ They consist of pendant radical
moieties as repeat units. These radical centers have unpaired
electrons, which impart electrochemical activity to the polymer
by undergoing redox reactions. The polymer structure used in
this work, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl metha-
crylate) (PTMA), consists of 2,2,6,6-tetramethylpiperidinylox-
yl (TEMPO) radicals as the redox unit with a methacrylate
backbone. Owing to their electrochemical properties, ORPs
find extensive use in emerging battery technologies such as
organic radical batteries (ORBs).”” The redox properties can
be tuned through chemical synthesis, enabling the construction
of all-organic batteries,”> > devoid of toxic metals. As the
radicals cause paramagnetic properties, ORPs constitute a class
of compounds that can be investigated using EPR.

EPR g tensors can be calculated at the DFT level.”*"*° The
g matrix is obtained through the calculation of three main
contributions to the g shift consisting of a relativistic mass
correction term (AgRMC),3O a diamagnetic gauge correction
term (AgDGC),31 and a term related to orbital Zeeman and
spin—orbit coupling interactions (Ag°%/5°€).**** The first two
terms, Ag"™C and AgPSC, can be obtained from the spin
density. At the DFT level, Ag®/S°C can be obtained through a
solution of coupled-perturbed self-consistent field (CP-SCF)
equations, which is also the approach used in the ORCA
software package.”**’

We recently reported the use of the g value as a parameter
for method validation of MD simulations of radical polymers.**
The evolution of g was monitored by calculating g using DFT
for different time frames of the MD trajectory. Since g can be
experimentally verified, characteristics of the simulated
polymer can be tuned to match realistic sample conditions.
For instance, experimental g can be compared with calculated g
to judge the simulation time scales needed to obtain an
equilibrated polymer structure. Furthermore, due to the
sensitivity of g toward the molecular structure, features like
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the minimum chain length of the simulated polymer can be
optimized.

DFT-based geometry optimization and g-tensor calculations
on large disordered systems such as polymers are computa-
tionally demanding. While electronic structure methods that
scale linearly with the number N of atoms in a system have
been reported,’”*® computational costs of most DFT
calculations scale with N° for larger system sizes.”””" In the
case of g-tensor calculations, SCF procedures scale with N2>
Adequate theoretical representations of radical polymers often
require several monomers, which increase the system size (N >
200 for one polymer molecule), making the application of
DFT methods less feasible. Additionally, experimental
investigations of the cycling stability of ORBs indicate the
importance of using cross-linked polymers, and, therefore,
simulation systems need to include and account for additional
cross-linking moieties, increasing the complexity of the
simulated system further.>*

Using in operando EPR techniques, evolution of the active
material as a function of the state of charge can be
studied.””~*" Here, the g value serves as a parameter that
can be theoretically computed and experimentally verified to
substantiate the required complexity of the simulated system
and its similarity to the experimentally investigated states of
charge. While simulation of battery systems with realistic
complexity for various states of charge is attainable using MD,
DFT implementations result in inferior scalability. Therefore, a
computationally cheaper and scalable approach to predict g
values for larger and more complex simulation systems would
be desirable.

ML approaches provide an alternative to bypass the
computational expense of electronic structure methods such
as DFT. For instance, ML methods have been applied to learn
density functionals itself, with the aim of avoiding the
calculation of Kohn—Sham equations.”” Machine learnability
of properties calculated using more accurate and computa-
tionally demanding electronic structure methods such as
coupled cluster has also been reported.*’ Learning algorithms
that utilize neural networks usually require large data sets for
training, and the learning process can be computationally
expensive. In the case of size-limited data sets, ML algorithms
such as regression trees, Gaussian process regression (GPR),
support vector regression (SVR), or kernel ridge regression are
more suitable.”*~*® For instance, applicability of tree-based
algorithms for pK, gredictions in proteins”’ and GPR for
atomistic properties’”** has been successfully demonstrated.

A key advantage of complementing electronic structure
methods with ML techniques is speeding up the computation
of properties and not limiting their calculation to small-sized
systems. Within the field of magnetic resonance, ML is an
emerging tool with similar aims. In particular, applying ML for
nuclear magnetic resonance (NMR) chemical shift predictions
from molecular structures has gained widespread use.”*’ ML
methods also find utility in EPR data analysis, mainly in the
subfield of hyperfine spectroscopy’' and dipolar spectrosco-
py.”> More recently, neighborhood component analysis, an ML
algorithm, was utilized to quantify the importance of structural
parameters in determining electron—nuclear hyperfine inter-
action tensors.>> Although analogous to chemical shifts, to the
best of our knowledge, ML approaches to predict EPR g values
have not been attempted yet.

In this work, an ML model is developed to predict g values
from molecular structures of PTMA. The model is trained on
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Figure 1. (a) Schematic representation of the workflow used for machine learning g,. (b) Ball and stick model of PTMA-1, with six monomer
units out of which one is a radical center (circled with a red dotted line). Oxygen atoms are colored red, nitrogen atoms are colored blue, and
carbon atoms are colored cyan. (c) Schematic representation of the k, term of MBTR for a PTMA-1 molecule. (d) Section of the N—O region of
MBTR showing structural differences in cluster centers obtained using GMM. The distribution centered at an inverse pairwise distance of ~0.8 A~
corresponds to the N—O bond length, and the distribution centered at 0.2 A™' corresponds to long-range N—O interactions. The distributions

are weighted exponentially to give more weight to short-range interactions.

the value to be predicted, g, and the corresponding structural
characteristics of the polymer as the features. The dynamic
evolution of g along the MD trajectory, which is correlated to
the underlying molecular structure, is exploited to train the
model with the aim of reproducing the evolution of g for
unknown radical densities or, alternatively, for different states
of charge of an ORB. The performance of the model is
evaluated on test data sets, and the dependence of model
performance on different molecular descriptors is discussed.
Finally, the trained model is applied to an unknown MD
trajectory to test its ability to completely predict the evolution
of g along the trajectory. The model is also studied with respect
to the quality of interpolation to unknown radical densities.
The importance of specific features that determine the
predictions of the model is evaluated and discussed in
correlation with the molecular structure of the polymer.

B WORKFLOW

The workflow followed in this work is depicted in Figure la.
First, PTMA polymer molecules are dynamically evolved in the
presence of an electrolyte using classical MD (see “MD
Simulations” in the Methods section) to simulate an organic
cathode. For MD simulations, the polymer is represented by
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using a linear polymer structure made of six monomer units.
Structures with different radical densities were generated by
varying the number of monomers that are radicals. The
notation used in this work is PTMA-X, where X denotes the
number of monomers which are radicals. For instance, PTMA-
6 represents 100% radical density, ie., all six monomers are
2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate (TEMPO
methacrylate) radicals, while PTMA-1 corresponds to a
structure where only one out of six monomers is a radical
and the other five monomer units are diamagnetic 2,2,6,6-
tetramethylpiperidin-4-yl methacrylate groups (see Figure 1b).
From separate MD trajectories of PTMA-1, PTMA-3, and
PTMA-6, polymer structures from different time frames (see
“Data Set Generation” in the Methods section) are extracted to
generate the whole structural data set (WSD).

For ML, input data need to be transformed into suitable
features, which can be used to train the ML model. To predict
structure-dependent properties, structural features of the
molecule, such as interatomic distances and bond angles, can
be utilized as features.”* To encode such features and represent
the structure, the input data are transformed using a molecular
descriptor. Molecular descriptors encode either a local atomic
environment or the whole structure, depending on the

https://doi.org/10.1021/acs.jctc.3c01252
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property to be predicted. Local descriptors, such as smooth
overlap of atomic positions (SOAP),*>>® encode local atomic
environments, while global descriptors, such as many-body
tensor representation (MBTR),>**” encode the whole
structure. The representations can be further tuned by user-
defined and system-dependent parameters to capture only
relevant atomistic interactions. In addition to the aforemen-
tioned descriptors, a third set of features, generated from bond
lengths, bond angles, and dihedral angles [distances—angles—
dihedrals (DAD)] extracted from the polymer structure, is also
utilized for representing the molecular structure in this work.
The parameterization and construction of molecular descrip-
tors are described under “Molecular Representation” in the
Methods section.

To ensure structural diversity in the training data set (TR),
an optimum sampling of the configurational space of the
polymer molecule is required. Clustering algorithms such as
the Gaussian mixture model (GMM) clustering can be used to
find clusters in the data set and sample configurationally
diverse PTMA structures.”* ®' GMM assumes that the data to
be clustered originate from a mixture of multivariate Gaussian
distributions with unknown means and covariances. GMM fits
a specified number of distributions, which correspond to
clusters in the data set and optimize the values of mean and
covariance through the expectation—maximization algorithm.*”
The cluster centers, or the mean of Gaussian distributions, are
initialized randomly from structures in the data set itself and
iteratively updated to maximize the likelihood of the data with
respect to the distributions. To generate the TR, the atomic
coordinates of structures in WSD are transformed using a
suitable molecular descriptor. By clustering the structures in
WSD multiple times with random initial clusters and selecting
the structure at the center of each cluster on each run, the TR
is obtained. To illustrate that this approach finds structurally
diverse structures, the N—O distance regions of the MBTR
output corresponding to six cluster centers from a single run of
the clustering algorithm are shown in Figure 1d.

DFT calculations for obtaining g;,, need to be done only for
the structures selected by the clustering algorithm, thereby
reducing the computational cost of the ML workflow. From
the remaining structures of WSD, which are not included in
the TR data set, a subset of structures are randomly selected to
generate a test data set TE-1 for performance evaluation of the
trained model. The structures in TR represented using a
molecular descriptor and the corresponding DFT-derived g,
(gf:éc) are used for training the model.

To select an appropriate learning method, various models
trained using different types of learning algorithms were
evaluated with TR using cross-validated scoring [see Section
Al and Figure SI in the Supporting Information for a
description of cross-validation]. The tested methods are
chosen based on their known applicability to predict
structure-dependent properties or for generating baseline
models that warrant the need for more complex models. For
instance, SVR, GPR, and tree-based ensemble methods have
previously been demonstrated for prediction of properties such
as NMR chemical shifts, which are analogous to g values.”03%*
The performance of each trained model was then evaluated
through cross-validated scoring with the TR data set
represented using SOAP, MBTR, and DAD (see Section A2
in the Supporting Information). The model molecular
descriptor pair with the best and most consistent predictive
accuracy, based on the standard deviation of the error metric,
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is selected as the final model. The final model is then applied
to structures derived from an unknown MD trajectory for
further evaluation.

B METHODS

MD Simulations. For each of the three radical densities
studied, PTMA-1, PTMA-3, and PTMA-6, the following
classical MD simulation® was used. Hereafter, this simulation
is referred to as MD-1. Six monomers were used to represent
each of the PTMA polymers and a total of 24 such polymers
were used to mimic an organic electrode.”* As an electrolyte
solution, 1064 ethylene carbonate (EC), 2100 ethyl methyl
carbonate (EMC), and 300 LiPF¢ molecules were chosen in a
10 X 10 X 10 nm® simulation cell, with periodic boundaries
along all three Cartesian coordinates. Partial charges for EC,
EMC, and PF; were taken from the previous work.”*”® The
initial conﬁ%urations (t 0) were constructed using
PACKMOL,"" which avoids repulsive potentials by keeping a
safe interatomic distance. A two-step NPT ensemble process
was undertaken for all MD simulations using GROMACS
2019.”" Initially, a 2 ns initialization step with a 0.5 fs time step
ensured system stabilization, where the Berendsen thermostat
and barostat maintained the temperature at 298.15 K and
pressure at 100 bar with 1.0 ps time constants.”> Subsequent to
the initialization step, an equilibration step of 20 ns with a
reduced 1 fs time step employed the Nosé—Hoover thermostat
and Parrinello—Rahman barostat to regulate the temperature
and reduce the reference pressure to 1 bar, keeping time
constants constant at 1.0 ps. Throughout both steps,
Coulombic and Lennard—Jones interactions were handled via
a particle—particle-mesh solver with a consistent cutoff of 1.2
nm. The OPLS all-atom force field”” was used for all MD
simulations. The atomic site charges on paramagnetic and
diamagnetic repeating units of PTMA were calculated from the
electrostatic potential (ESP) fit (see Figure SS in the
Supporting Information). Gaussian16”* was used to calculate
the ESP charges using the MP2 theory”* with a pVDZ basis
set.”> The structures from the MD-1 trajectory were used for
training the model (see the “Data Set Generation” section).

For additional model evaluation, separate MD simulations
(MD-2), with only one polymer chain in the simulation box,
were used for generating PTMA-1, PTMA-2, PTMA-3,
PTMA-4, and PTMA-6 structures. Other MD parameters
were kept the same as for MD-1. The structures from MD-2
were solely used for generating test data sets (see the “Data Set
Generation” section).

DFT Calculations. DFT computations of g values were
conducted using ORCAv. 5.0.2°° and PTMA polymer
structures obtained from different time frames of the MD
trajectory. The g-tensor origin was set to the center of spin
density and calculations were done using the unrestricted
Kohn—Sham formalism, with the B3LYP functional and EPR-
11”7 basis set. Automatic generation of auxiliary basis sets was
used for all calculations.”® Typical calculation times ranged
from 1 to 3 h per structure while running in parallel on 12
cores. Optimization of the DFT calculation protocol for
TEMPO methacrylate and PTMA is described elsewhere.**

Data Set Generation. To generate the WSD, a total of
540 structures were sourced from separate MD trajectories of
PTMA-1, PTMA-3, and PTMA-6. From the initialization step
of MD-1, seven logarithmically spaced time frames were
sampled from 0.0005 to SO0 ps. From the equilibration step of
MD-1 ranging from 2000 to 20,000 ps, structures were

https://doi.org/10.1021/acs.jctc.3c01252
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sampled linearly in steps of 2000 ps. As structures from the
same time frame show variation in the DFT-derived g, (gf:;c) §
a total of 10 structures per time frame were extracted. In
addition, 10 structures for each radical density from the start of
the MD trajectory (t = 0) were also added to WSD. The
number of PTMA-1, PTMA-3, and PTMA-6 structures is equal
in WSD. To %enerate the TR, GMM as implemented in scikit-
learn v. 1.2.2"7 was applied to structures in WSD, with each
structure represented using a molecular descriptor (see the
“Molecular Representation” section). For GMM, initialization
of clusters was done randomly from the data set. Upon
convergence of the clustering algorithm, the structure at the
center of each cluster (or the mean of each Gaussian
distribution) was added to the TR. Due to the randomness
in selecting the initial clusters, SO runs of the algorithm were
done to obtain 150 unique structures that form the TR. The
test data set TE-1 was generated by randomly selecting 135
structures from the remaining structures of WSD. Another test
data set TE-2 was generated by sourcing structures from the
MD trajectory of MD-2, consisting of equal numbers of
PTMA-1, PTMA-2, PTMA-3, PTMA-4, and PTMA-6
structures.

Molecular Representation. Chemical structures in the
XYZ file format were read using the Pgthon library atomic
simulation environment (ASE) v. 3.22.1.*” For implementation
of SOAP”® and MBTR,”* the DScribe library56 (v. 1.2.2) was
used. In the SOAP formalism, atomic positions were
represented by using Gaussian functions. This allows for
structural representation in terms of atomic neighbor density
around a central atom given by

1 2
p(t‘) — e_27(;2|r_R‘|
zi: 1)

where r is the position in the space of the central atom, R; is
the position of a neighboring atom, and summation i runs over
all atoms within a specified cutoff distance from the central
atom. The atomic density was calculated for each atom in the
molecular structure and was expanded using a combination of
spherical harmonics and radial basis functions (RBFs).> The
final SOAP output was constructed as a power spectrum of the
expanded atomic density.*

In the MBTR, a geometry function was used to transform a
configuration of k atoms into a single value. Commonly used
geometric functions for k = 1, k = 2, and k = 3 configurations
corresponded to atomic numbers (Z), inverse pairwise
distances IR, — Rzl_l, and angles between three atoms Z(R,;
— R,, R; — R,), respectively. The values obtained from the
geometric functions were then converted into distributions
using the Gaussian kernel density estimation. The final MBTR
output consisted of concatenated Gaussian distributions
corresponding to all possible combinations of k atoms and
was weighted according to the number of occurrences of a
particular combination in the molecular structure.’® As an
example, Figure 1c shows the k, term of the MBTR output for
a molecule of PTMA-1 (see Figure 1b), depicting the inverse
distances between atom pairs of the PTMA oligomer.

In the case of SOAP and MBTR, cutoff distances (see Table
S4) and number of features (see Table S5) were optimized
using the TR data set and cross-validated scoring (see Section
A6 in the Supporting Information). Parameters for feature
vectors used to train the final model are described below. In
the case of SOAP, the cutoff distances were set to 10 A, and
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spherical Gaussian-type orbitals were used as RBFs. The
number of RBFs and maximum degree of spherical harmonics
was set to 8. For MBTR, geometric functions for k;, k,, and k;
terms corresponded to atomic numbers, inverse pairwise
distances in units of A7}, and angles between three atoms in
degrees, respectively. The bounds for the k; term were set to 0
and 10 with the number of discretization points set to 10. For
k,, a distance range of 0.5-25 A (inverse distance range of
0.04—2 A™") was used and the number of discretization points
was set to 50. For the k; term, the number of discretization
points was set to 180. In the case of k, and k;, the distributions
were weighted exponentially as a function of distance to give
more importance to structural properties corresponding to
closely spaced atoms. A distance cutoff of 10 and S A was used
for weighting the k, and k; terms, respectively. The Gaussian
smoothing width (6) was set to 0.01 for the k, term, 0.1 for the
k, term, and 4 for the k; term. The DAD molecular
representation was built using bond lengths (A) between
two atoms, bond angles (°) made by three atoms, and dihedral
angles (°) between two atomic planes. Bond lengths, angles,
and dihedral angles were extracted using ASE. For all structural
features, only bonded atoms within a cutoff distance of 1.5 A
were considered. The values were sorted according to the
respective atomic combinations and concatenated to form the
final DAD feature vector.

Model Building. The ML algorithm for the final model
was selected using cross-validated scoring with the TR data set
(see Section A2 and Figure S2 in the Supporting Information).
The main types of considered methods were SVR,*! GPR,>*®
regression trees,”” ensemble methods, and linear regression. In
the case of ensemble methods, averaging%83 and boosting%85
techniques were tested.

The final model based on regression trees (see Section A3 in
the Supporting Information for a theoretical description),
which is used in this work, was built as follows. A regression
model based on the extremely randomized trees (ERT)
method*® was generated using scikit-learn v. 1227 (Extra-
TreesRegressor in scikit-learn). The model was trained on the
TR data set. Parameters that affect the learning process, known
as hyperparameters, were optimized through a bound con-
strained and exhaustive grid search (GridSearchCV in scikit-
learn). The root mean squared error (RMSE) was minimized
during the optimization. The grid search bounds and
optimized hyperparameters are listed in Table S1 in the
Supporting Information. Hyperparameter optimization was
also attempted using Optuna®® (see Section A4 in the
Supporting Information) and the optimized parameters are
listed in Table S2. For the final model, parameters obtained
from the grid search were used, based on the performance
metrics (see Table S3). The ERT model was always initialized
with a random state of 1 for reproducibility. The performance
of the model on the test data sets TE-1 and TE-2 was
quantified using the coefficient of determination (R?), mean
absolute error (MAE), and RMSE. A mathematical description
of the error metrics is given in Section AS of the Supporting
Information. The training time of the final model using the TR
data set (represented using MBTR) with the optimized
hyperparameters was 4.97 + 16.6 ms while running on a
single core (Apple M1 processor) and 926 + 13.7 ms when
parallelized on 8 cores (Apple M1 processor). The time
required for prediction was 3.58 ms + 67.2 us (single core).
The reported times are mean =+ standard deviation of 7 runs.

https://doi.org/10.1021/acs.jctc.3c01252
J. Chem. Theory Comput. 2024, 20, 25922604


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01252/suppl_file/ct3c01252_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01252?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

B RESULTS AND DISCUSSION

Evolution of Calculated g;s,. Figure 2 shows the DFT-

calculated g values (gZ) for polymer structures extracted from
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Figure 2. Evolution of gi%, along the MD-1 trajectory. Each data point
is the average of g™ for 10 individual structures. Shaded regions
denote the standard deviation. Before the equilibration run starting at
2000 ps, an initialization step was done. Experimental g, for PTMA
(red) and its monomer (magenta) in the solution state equal to

2.0064 and 2.0058, respectively, and are denoted by dashed lines.

different time frames of the MD trajectory. Each data point

calc

8iso
structures for a specific time frame. The structures differ in
their radical density, i.e., the number of monomer units that are
radicals. The experimental analogue for the PTMA-6 (100%
radical density) is a PTMA polymer in a state of high radical
density, such that radical—radical interactions are significant. In

represents the mean (g;:k) of of 10 randomly selected

the case of PTMA-1, gi:zk is compared to the experimental g

value obtained from a dilute solution of TEMPO methacrylate
(PTMA monomer), with negligible radical—radical interac-
tions. As an additional experimental reference, experimental g
values of PTMA for transient states of charge are obtained
from the in operando EPR measurement of an ORB with
PTMA as the active material (see Section A10 in the
Supporting Information). The in operando EPR experiments
show that changes in g are reversible during battery cycling and
are correlated to the radical density (see Figure S6a,b in the
Supporting Information).

Experimental g values (g2P) of the PTMA polymer and
TEMPO-methacrylate solutions were reported to be 2.0064
(dashed red line in Figure 2) and 2.0058 (dashed magenta line
in Figure 2).** For a pristine ORB, g&F of PTMA was found to
be 2.0065 (see Figure S6a in the Supporting Information). For
PTMA-6, ng}“ is in good agreement with both corresponding

experimental references, with Ig™® — g;zlcl being 0.0001 in the

180

case of the polymer solution and 0.0002 in the case of PTMA
with high radical density in the ORB. At an intermediate
radical density of PTMA in the ORB, gi¢ already approaches
values which are predicted by DFT for PTMA-1, a simulated

structure with low radical density. The comparison of g
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exp

corresponding to PTMA-1 with gii¥ of a dilute solution of
TEMPO methacrylate shows a difference of 0.0003.

For both experimental references, a better agreement
between gZF and g€ is observed at high radical density in
comparison to that at low radical density. The larger deviation
between g% at lower radical density and g of PTMA-1 may
be explained by considering the structural and conformational
differences between the experimental and simulated structures.
A dilute solution of nitroxide radicals does not include the
structural effects of the extended oligomer chain. In the
simulated structure of PTMA-1, the radical species is restricted
to the oligomer backbone, while in a dilute solution of
TEMPO methacrylate, the radical undergoes isotropic motion.
In the case of PTMA in an ORB, the disagreement between
gf;ﬂc of PTMA-1 and g¥ for a state of low radical density of the
ORB may stem from interactions between PTMA and other
battery constituents, which are more effective when intra-
molecular radical—radical interactions are negligible. It is
known that conductive additives used in organic cathodes
affect experimental EPR parameters and battery perform-
ance.”” However, the current complexity of the simulated
system does not account for such interactions. Another reason
could be long-range radical—radical interactions which are not
captured in the DFT calculations with individual polymer
chains but are expected to be present even at low and
intermediate radical densities as the polymer prefers to
maximize radical-radical interactions.*****” On the other
hand, the better agreement at higher radical densities also
indicates that at high radical density, for any particular redox
unit, radical—radical interactions are adequately represented by
the simulated structure consisting of only radicals. Inclusion of
multiple, longer polymer chains and modeling of conductive
additives in the simulated system may improve the agreement
also for low and intermediate radical densities. However, EPR
parameters of such complex systems at transient states of
charge might not be accessible by DFT methods due to the
high computational cost.

The PTMA structure at time t = O for each radical density
corresponds to the structure before equilibrium and shows a
large deviation from gi¢. However, the extent of deviation
seems to be dependent on the radical density, providing a
measurable g value difference between the structures before
equilibrium for each radical density. Furthermore, the structure
at t = 0 serves as an important evaluation criterion for the ML
model to assess its ability to differentiate between radical

densities. Timeframes up to 2000 ps correspond to the
—calc

g iso

observed as the simulated system stabilizes. Changes in

initialization step. A rapid convergence of to g is

—calc
giso
are minimal beyond S0 ps, indicating an equilibrated system.

DFT-derived gf:;c values allow for a differentiation of the
polymer structures through two aspects. First, structures before
equilibrium and structures after equilibrium show significant
differences in g, and second, g° changes with respect to the
radical density. For an ML model to be a viable alternative, the
model should also learn to differentiate polymer structures
based on the two aforementioned aspects. Additionally, the
evolution of g& along the MD trajectory can only be
reproduced if the model learns to correlate the magnitude of
change in gf:gc to the extent of structural changes. Despite
structural differences, PTMA-3 and PTMA-6 showed small

_calc

giso
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is obtained when PTMA-1 is compared to PTMA-3 and
PTMA-6.

By including PTMA-3 in the TR, the trained model can be
expected to learn smaller g, changes or equivalently subtle
structural deviations, which occur as a result of a change in the
radical density. This should allow for more precise g,
interpolations for radical densities that lie within the limits of
TR but are not included in the TR.

Performance Evaluation and the Analysis of Regres-
sion Tree Models. Among the tested ML methods, ensemble
methods which use a combination of multiple models showed
the best performance with mean deviations of g& from
predicted g, (g2?) ranging from 0.0001 to 0.0004 (see Figure
S2 in the Supporting Information). In comparison, kernel-
based methods, GPR and SVR, showed larger mean deviations
ranging from 0.0002 to 0.0006. Overall, models trained on
MBTR feature vectors showed better predictive accuracy in
comparison to SOAP and DAD feature vectors. Through
cross-validation, the spread of MAE and RMSE scores also
suggests that the models trained on MBTR perform
consistently better on different folds of the TR data set.
With MBTR feature vectors, even simpler models such as
linear regression show RMSE values of the order of 0.0004,
while the model performs considerably worse in the case of
DAD. This is likely due to the nonlinear mapping of structural
properties in the case of MBTR, which was also observed
previouslzf for ML-based predictions of exchange spin
coupling.”” In DAD, the values of angles and distances are
used without further transformation, and a linear relationship
between the structural properties and g, may not be present.
However, in the case of kernel-based methods and ensemble
methods, which can handle nonlinear data, models trained on
DAD show improved performance. A combination of ERT and
MBTR showed the best performance with the lowest MAE and
RMSE values (see Section A2 in the Supporting Information).

Table 1 compares the cross-validated error metrics for the
ERT model in the case of three different molecular descriptors

Table 1. Cross-Validated Performance Metrics Obtained for
Different Molecular Descriptors Using the TR Data Set

molecular descriptor R* MAE [x107*] RMSE [x107*]
SOAP 087 (0.085)  1.91 (0.37) 2.59 (0.68)
MBTR 095 (0.019) 125 (0.14) 1.58 (0.20)
DAD 092 (0.034)  1.53 (0.25) 2,07 (0.45)

investigated in this work. ERT models trained on global
descriptors perform considerably better than in the case of the
ERT model trained on SOAP feature vectors. This indicates
that in the case of the polymer structure, the property to be
learned, g, is affected by the structural features of the whole
structure rather than a localized region. This observation is in
agreement with CW-EPR experiments using PTMA, where
polymer and monomer samples show variations in the
observed g value. Furthermore, as shown in the previous
section, DFT calculations using polymer structures with
different radical densities also show structure-dependent
changes in g In operando EPR results (see Section A10 in
the Supporting Information) further confirm that the g, value
of the active material, PTMA, is influenced by the change in
the radical density (see Figure S6). As changes in the radical
density can be accompanied by changes in polymer
conformation,>*%%%° descriptors which encode the global
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polymer structure, such as MBTR and DAD, fare better in g
value predictions. The performance of the ERT model was also
studied with respect to the cutoff distance used for SOAP and
MBTR. For SOAP, a cutoff distance of 10 A was found to be
optimal. In the case of MBTR, slight improvements in RMSE
were observed with larger cutoff distances (see Section A6 in
the Supporting Information). A cutoff distance of 10 A was
used for both SOAP and MBTR based on the RMSE (see
Table S4). As the distance between two adjacent monomer
units on the oligomer chain lies in the range of 7—10 A a
cutoff distance of 10 A should capture most of the
intramolecular interactions between the monomer units.

Among the two global descriptors, the performance was
better for the model trained on MBTR feature vectors. While
DAD also encodes the whole structure in the form of bond
lengths, bond angles, and dihedral angles, MBTR likely
captures long-range interactions of adjacent radical units better
due to the larger cutoff distance. This aspect becomes
especially important when interpolating predictions for differ-
ent radical densities, where the presence or absence of a
neighboring radical moiety affects g, However, prompted by
similar performance metrics, ERT models trained on both
MBTR and DAD were evaluated using the TE-1 test data set.

Figure 3a—d summarizes the dependence of model perform-
ance on MBTR and DAD. Hereafter, the ERT models trained
on MBTR and DAD features are referred to as ERT-MBTR
and ERT-DAD, respectively. The error metrics given in Table
2 indicate 27% (based on MAE) better performance for ERT-
MBTR. In comparison to ERT-DAD, a narrower spread (see
Figure 3b) of gl — gfd and a lower RMSE for ERT-MBTR
suggest that the predictions do not deviate heavily from g,
ERT-MBTR shows superior prediction accuracy especially in
the g value range of 2.0090—2.0100 (see Figure 3a) when
compared to ERT-DAD (see Figure 3c). The structures in this
range, which show a significant deviation from the
experimental g values, are obtained from the initialization
step before the start of the equilibration step (¢t = 2000 ps).
The ability of the model to differentiate between structures
before equilibrium and equilibrated structures is essential for
application to new MD trajectories. For equilibrated structures
in the case of PTMA-6 and PTMA-3, g2 lies in the range of
2.0060—2.0066. As differences between structures are minimal
in this regime, predictions in agreement with gf:;c require the
model to be sensitive to minor changes in the structural
teatures. ERT-MBTR seems be more sensitive to such changes,
evident from the better performance compared to ERT-DAD
in the corresponding g value range. Model performance of
ERT-MBTR remained similar toward all radical densities in
TE-1. Similar R* scores of 0.990, 0.986, and 0.982 were
obtained for evaluation using PTMA-1, PTMA-3, and PTMA-
6 structures, respectively, indicating that the model was not
overfitting features from a specific radical density.

To interpret ERT models further, feature importance scores
were analyzed. For simplicity, the importance of each structural
feature was summed over all discretization steps for the feature
under consideration. For ERT-MBTR, among features which
encode pairwise distances, N—O and H—H were found to be
important (see Figure 4a).

Dependence on N—O can be rationalized, as PTMA-1,
PTMA-3, and PTMA-6 directly differ in the number of N—O
bonds. Since MBTR feature vectors employ Gaussian
distributions weighted according to the number of occurrences
of a particular feature, PTMA-1, PTMA-3, and PTMA-6 with
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Figure 3. Performance evaluation of the model trained on MBTR and DAD structures using the TE-1 data set. Correlation plot showing g, vs
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Pred for TE-1 structures represented using (a) MBTR and (c) DAD descriptors. Histograms showing g

using (b) MBTR and (d) DAD descriptors.

cale _ gbred for TE-1 structures represented

Table 2. Error Metrics Obtained for Different Molecular
Descriptors Using the TE-1 Data Set

molecular descriptor R* MAE [x107%] RMSE [x107%]
MBTR 0.989 0.97 1.27
DAD 0.979 1.28 1.72

1, 3, and 6 N—O bonds can be differentiated. However, a
similar importance toward the N—H bond, which serves as an
equivalent feature to differentiate between PTMA-1, PTMA-3,
and PTMA-6, was not found. Note that further dependence on
the N—O feature may arise from through-space interactions
within the cutoff distance used for MBTR, for instance,
between the nitrogen atom and oxygen atoms of the

methacrylate backbone (see Figure 1b). An inspection of the
MBTR output for the N—O feature in PTMA-1 (see Figure
1d) shows two distributions centered at ~1.3 A (0.8 A™") and
~5 A (0.2 A™"). The shorter distance corresponds to the N—O
bond length of TEMPO methacrylate radicals. The longer
distance corresponds to the distance between the N atom and
the carbonyl O atom of the methacrylate branch. For PTMA-6
and PTMA-3, interactions between N atoms and O atoms on
adjacent monomer units may also contribute to the importance
of the N—O feature. The N—O distance was also found to be
an important distance feature in the case of ERT-DAD, along
with N—H (see Section A7 and Figure S3a in the Supporting
Information). There are significantly more H—H interaction
pairs within the cutoff distance than N—O interactions;
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therefore, pinpointing specific interactions in the case of H—H
is challenging. Among features which encode angles formed by
three atoms, H-C—C and N—C—O angles were found to be
important for ERT-MBTR (see Figure S4b in the Supporting
Information). The importance of H-C—C and N-C-0O
features is possibly related to the conformational changes in
the six-membered ring of the radical moiety. This suggestion is
also supported by the observation that C—N—O angles as well
as C—C—C—C and C—N—-C-C dihedral angles are important
features in the case of ERT-DAD (see Figure S3b,c in the
Supporting Information). Features in the k, dimension of
MBTHR, i.e,, atomic numbers, were not found to be important
in comparison to k, and k; features, possibly due to the TR
containing molecular structures made up of the same type of
atoms. However, these features might become important if a
model is trained on data containing different radical moieties,
differing in their type of atomic species. For both ERT models,
while the most important features remained the same, their
relative importance was found to change with the shuffling of
TR and initializing the learning algorithm with different
random states. Moreover, feature importance scores may be
biased toward features with high cardinality or a higher
number of unique values in comparison to other feature types
(see Section A3 in the Supporting Information).***>*° For
instance, as element H has the highest number of atoms in
PTMA and long-range interactions are included in MBTR,
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possible values of H—H distances as a feature can take
multiple, unique values, leading to a larger possibility of splits
using this feature and a biased importance score. Therefore,
only a qualitative discussion of features with consistently high
importance scores was done, and a quantitative comparison of
different features based on feature importance scores was not
attempted.

To summarize this section, the ERT model trained on
MBTR feature vectors affords predictions of g, with mean
deviations from gfsaolc of the order of 0.0001 which is
comparable to the magnitude of variation in g&° per time
frame. The obtained errors are also comparable to
experimentally accessible g shifts, which are usually of the
order of 107 Furthermore, the model was found to be
sensitive to the radical density, as well as to the extent of
equilibration.

Application to MD-2. The final ERT-MBTR model was
applied to structures from MD-2 to evaluate its ability to
reproduce the evolution of g;,, along unknown MD trajectories.
MD-2 differs from MD-1 in terms of the number of oligomer
molecules used in the simulation. MD-2 with each PTMA-X
(X =1,2,3,4, and 6) consists of only one oligomer molecule
in the simulation cell instead of 24 in the case of MD-1.
Therefore, the oligomer evolves under the influence of only
intramolecular interactions and its interactions with the
electrolyte. Furthermore, the model is evaluated on oligomer
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molecules that are structurally dissimilar from structures in TR
in terms of the number of monomer units that are radicals. For
this purpose, two unknown radical densities, PTMA-2 and
PTMA-4, with one less and one more radical unit, respectively,
in comparison to PTMA-3 were selected. For TE-2, the
structures are extracted only from the initialization step of each
PTMA-X MD trajectory, as larger g deviations occur onl
during the initial time frames of the MD trajectory, and g%
was found to converge already during the initialization step.
Figure 5 summarizes the predictive ability of the model for
structures in TE-2. For PTMA-1, PTMA-3, and PTMA-6, the
evolution of g% is in excellent agreement with g&° (see Figure
Sa,c,e). While comparatively larger mean deviations were
observed for PTMA-2 and PTMA-4 (see Figure Sb,d), the
evolution of g, is fairly well reproduced and MAE/RMSE

values did not exceed 0.0002 (see Table 3) for any radical

Table 3. Error Metrics Obtained for the ERT-MBTR Model
in the Case of the TE-2 Data Set and Individual Radical
Densities

data set R* MAE [x1074] RMSE [x107%]
TE-2 0.989 115 1.38
PTMA-1 0.992 0.95 1.14
PTMA-2 0.981 1.54 1.65
PTMA-3 0.993 0.95 1.02
PTMA-4 0.982 1.31 1.73
PTMA-6 0.991 1.02 1.23

density present in TE-2. For the whole TE-2 data set, the
order of deviation of g"*® from gZ° (see Figure 5f) is similar to
the deviations observed for TE-1 with both MAE and RMSE
values of the order of 0.0001 (see Figure 3b,d). This indicates
that the ERT-MBTR model generalizes well toward unknown
MD trajectories. Additionally, for each radical density in TE-2,
the model effectively differentiates between the structures at
the beginning of the simulation and the equilibrated structures
once the convergence of gfsﬂc is achieved.

Better predictive performance toward PTMA-1, PTMA-3,
and PTMA-6 is expected due to the composition of the TR
data set used for training, which consists of these radical
densities. However, the ability of the model to interpolate to
other radical densities that are not included in the TR data set
is found to be sufficient for the application. The largest MAE
was obtained for PTMA-2, which did not exceed 2 X 107 (see
Table 3). In comparison, MAE values are slightly lower for
PTMA-4 but RMSE indicates deviations that are larger in
magnitude. In both cases, deviations seem to be more
prominent after the convergence of g& occurs, or equivalently,
after the system reaches equilibrium and only minor variations
in structural features occur. A comparison of MBTR outputs of
structures from different time frames reveals that while
structures before equilibrium are considerably different from
equilibrated structures, only minor differences in the structural
features are observed after g&° converges (see Figure S4 in the
Supporting Information). Nevertheless, the errors are smaller
than the experimental g shifts observed for PTMA and
comparable to environment-dependent g shifts measurable by
high-field EPR in the case of organic radicals. The ability of the
model to differentiate between equilibrated structures indicates
that subtle structural changes are identified by the model, and
consequently, minor differences in gf:gc after convergence is
reached are also reproduced well. Therefore, in addition to
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predictive accuracy with respect to absolute g, values, g shifts
occurring for smaller changes in the state of charge can also be
targeted. More fine-grained states of charge are still feasible
through MD, and in this case, the ML approach serves as a
more scalable method than DFT to predict g shifts for a larger
set of structures.

Bl CONCLUSIONS

The applicability of ML methods to predict g, an EPR
observable, from the structural features of PTMA, an organic
radical polymer, was examined. PTMA molecules were
dynamically evolved in an electrolyte using classical MD
simulations, and oligomer structures were derived from the
MD trajectory. Molecular descriptors, which encode either
local or global structural features, were used to represent the
molecular structure. A model based on regression trees was
trained and the dependence of model performance on the
encoding of structural features was studied. In the case of
PTMA, global molecular descriptors such as MBTR, which
encode the whole structure, were found to be more suitable.
Mean deviations of ML-predicted g values (g2"*?) from DFT-
calculated g values (gfsﬂc) were of the order of 1 X 107* which
is accurate enough to detect structure- and environment-
dependent g shifts in the case of PTMA. Furthermore, the
evolution of g along an unknown MD trajectory showed
remarkable agreement with the evolution of gfsﬂc, thereby
making the proposed ML-based approach a viable method to
predict g and validate MD protocols for PTMA and similar
systems. As the total computational cost of training and
prediction using the ML model is lower than DFT, the
approach offers a method with better scalability to predict gi,.
Consequently, g, shifts between transient states of the radical
polymer observed experimentally using EPR and simulated
using MD can be compared. Since the agreement between g
and experimental g values is tied to the data used for training,
MD simulations of the ORB system need to account for
complex active material environments. As polymer conforma-
tions may be affected by interactions with other polymer
chains, g value variations may also be influenced by interchain
effects. A better representation of the experimental system may
be achieved by the inclusion of multiple polymer chains and
other electrode constituents such as conductive additives. In
this aspect, the presented protocol can be utilized to compare
MD protocols and test for agreement with an experimental
system by using g as an experimental observable. A further
refinement of the simulated system based on insights from
EPR experiments can improve the agreement between gf:;c and
experimental g values also for low radical densities, which, in
turn, should afford g"*? consistent with experimental g values.
As the variation in g, with the radical density is larger than the
error of the ML model, experimental g values can be used to
benchmark such a combination of MD and ML. The protocol
used in this work can be extended to larger simulation systems
by conducting predictions on smaller subsystems and
obtaining a distribution of g values for further statistical
analysis and validation of large-scale MD simulations.
Furthermore, the workflow can be transferred to other
paramagnetic species provided that the g values can be
experimentally verified and theoretically computed with
sufficient accuracy. While isotropic parameters and their
distributions can be targeted using the current protocol,
transferability to tensorial properties may need to be
investigated separately.
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The ML workflow utilized in this work prioritizes low
computational costs and uses a limited number of structures
for training. While further gains in prediction accuracy may be
achieved by increasing the size of the TR, the obtained
accuracy is in line with the aims of the work. Upon application
to unknown structures, the predictive accuracy was found to be
higher for radical densities included in the TRs. Therefore,
performance gains may be achieved by including additional
radical densities in the TR. In order to extend the scope of the
model, data-efficient protocols must be developed. Through an
optimization of the TR, the approach can be extended to MD
simulations which may vary from the simulations shown in the
current work, in terms of simulation parameters such as
temperature, chain length of the polymer chain, or radical
moieties. To realize such functional extensibility, the ML
workflow demonstrated in this work can be adapted into an
active-learning ML workflow in which structures sourced from
MD trajectories are continuously screened with respect to their
dissimilarity from the current TR so that dissimilar structures
can be added to a modified TR and used to retrain the model.
Notably, we envision that the workflow can be adapted to
other redox-active organic materials and that other properties
relevant to organic radical polymer batteries, such as electron
coupling parameters, may be targeted. As the predicted g
values remain sensitive to the radical density and structural
changes, the state of charge-dependent g shifts for ORB setups
may become computationally accessible and may be applied to
even larger simulation systems.
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