Skip to main content
. Author manuscript; available in PMC: 2024 Mar 28.
Published in final edited form as: Proc Mach Learn Res. 2023;225:403–427.

Table A.1:

Training Details and Hyperparamters for Experiments.

Experiment Synthetic Dataset
Main Network
Main Network Layer Size
Prediction Network
Temporal Module
Optimization
2-Layer FCN ReLU Activation
(input-dimension)2→16→3(embedding-space)
Linear Layer with Softmax Activation 3→2
1-Layer LSTM 3→3
Optimizer: Adam, Learning Rate: 1e-4,
Number of Epochs: 20, Batch-Size: 32
Experiment MIMIC
Main Network
Main Network Layer Size
Prediction Network
Temporal Module
Optimization
2-Layer FCN ReLU Activation
(input-dimension)55→32→32(embedding-space)
Linear Layer with Softmax Activation 32→3
1-Layer LSTM 32→32
Optimizer: Adam, Learning Rate: 1e-4,
Number of Epochs: 100, Batch-Size: 128
Experiment ADNI
Main Network
Main Network Layer Size
Prediction Network
Temporal Module
Optimization
2-Layer FCN ReLU Activation
(input-dimension)21→50→16(embedding-space)
Linear Layer with Softmax Activation 16→3
1-Layer LSTM 16→16
Optimizer: Adam, Learning Rate: 1e-4,
Number of Epochs: 100, Batch-Size: 128