Skip to main content
. Author manuscript; available in PMC: 2024 Mar 28.
Published in final edited form as: Proc Mach Learn Res. 2023;225:403–427.

Table 4.2:

Real data test set accuracy (mean ± std. dev. across 10 experiments).

Model MIMIC dataset
ADNI dataset
AUROC AUPRC AUROC AUPRC
Logistic Regression 0.745±0.003 0.499±0.008 0.845±0.006 0.676±0.009
LSTM 0.767±0.003 0.509±0.005 0.947±0.002 0.823±0.005
RETAIN 0.730±0.010 0.431±0.006 0.884±0.012 0.795±0.016
DIPOLE 0.767±0.004 0.453±0.003 0.958±0.006 0.824±0.009
Transformer:BERT 0.769±0.005 0.509±0.003 0.959±0.002 0.922±0.003
AC-TPC 0.703±0.006 0.432±0.007 0.839±0.013 0.681±0.017
T-Phenotype 0.730±0.005 0.451±0.004 0.926±0.034 0.822±0.068
SMD-SSL + SimCLR (Frozen) 0.692±0.002 0.457±0.005 0.803±0.015 0.658±0.009
SMD-SSL + VICReg (Frozen) 0.673±0.001 0.429±0.005 0.819±0.018 0.653±0.009
SMD-SSL + SimCLR (Fine-tune) 0.770±0.006 0.511±0.010 0.966±0.014 0.929±0.010
SMD-SSL + VICReg (Fine-tune) 0.748±0.008 0.499±0.009 0.867±0.012 0.672±0.011

Simple-SCL / Temporal-SCL (PT:, NN:, TR:) 0.753±0.005 0.498±0.003 0.947±0.001 0.894±0.015
Temporal-SCL (PT:, NN:, TR:) 0.752±0.002 0.498±0.001 0.947±0.001 0.894±0.014
Temporal-SCL (PT:, NN:, TR:) 0.770±0.002 0.516±0.003 0.987±0.001 0.899±0.011
Temporal-SCL (PT:, NN:, TR:) 0.766±0.001 0.508±0.002 0.950±0.002 0.785±0.015
Temporal-SCL (PT:, NN:, TR:) 0.754±0.006 0.499±0.003 0.967±0.002 0.900±0.017
Temporal-SCL (PT:, NN:, TR:) 0.767±0.002 0.511±0.002 0.951±0.002 0.762±0.010
Temporal-SCL (PT:, NN:, TR:) 0.770±0.002 0.518±0.003 0.988±0.001 0.903±0.011
Temporal-SCL (Full) 0.773±0.002 0.520±0.003 0.990±0.004 0.936±0.014

PT: Pre-Training, NN: Nearest Neighbor pairing, TR: Temporal Regularization