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Abstract
Lung cancer is one of the leading causes of death worldwide and early detection is crucial to reduce the mortality. A reliable 
computer-aided diagnosis (CAD) system can help facilitate early detection of malignant nodules. Although existing methods 
provide adequate classification accuracy, there is still room for further improvement. This study is dedicated to investigating 
a new CAD scheme for predicting the malignant likelihood of lung nodules in computed tomography (CT) images in light 
of a deep learning strategy. Conceived from the residual learning and selective kernel, we investigated an efficient residual 
selective kernel (RSK) block to handle the diversity of lung nodules with various shapes and obscure structures. Founded 
on this RSK block, we established a multiview RSK network (MRSKNet), to which three anatomical planes in the axial, 
coronal, and sagittal directions were fed. To reinforce the classification efficiency, seven handcrafted texture features with 
a filter-like computation strategy were explored, among which the homogeneity (HOM) feature maps are combined with 
the corresponding intensity CT images for concatenation input, leading to an improved network architecture. Evaluated on 
the public benchmark Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) challenge 
database with ten-fold cross validation of binary classification, our experimental results indicated high area under receiver 
operating characteristic (AUC) and accuracy scores. A better compromise between recall and specificity was struck using the 
suggested concatenation strategy comparing to many state-of-the-art approaches. The proposed pulmonary nodule classifica-
tion framework exhibited great efficacy and achieved a higher AUC of 0.9711. The association of handcrafted texture features 
with deep learning models is promising in advancing the classification performance. The developed pulmonary nodule CAD 
network architecture is of potential in facilitating the diagnosis of lung cancer for further image processing applications.
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Introduction

Cancer is one of the leading causes of death and a public 
health problem worldwide. In 2020, lung cancer cases were 
the second most and the number of death caused by lung 
cancer was the greatest. There are approximately 2.2 million 
people, which account for 11.4% among all cancers, suffer-
ing from lung cancer with a high mortality rate of 80% [1]. 

Moreover, the 5-year relative survival rate for lung cancer 
is only 21% practically [2]. Nevertheless, the National Lung 
Screening Trial has demonstrated that the mortality of lung 
cancer can be reduced by 20% by earlier diagnoses with low-
dose computed tomography (CT) screening [2, 3]. A lung 
nodule is recognized as a white spot in thoracic CT scans 
[4]. It exhibits a round area and more solid than normal lung 
tissue. If it is larger than 30 mm, it is called a lung mass 
and has a higher probability being cancerous. Lung nodules 
can be divided into benign, indeterminate, and malignancy. 
Benign nodules usually have a smaller size and smoother 
contour, which are noncancerous. Contrarily, malignancies 
are cancerous and mostly have larger sizes and more vari-
able structures.

Clinically, physicians and radiologists read thoracic 
CT scans to classify nodules slice by slice [5]. This rou-
tine is time consuming, labor expensive, and error prone. 
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The professional experience also affects the accuracy of 
differentiating benign from malignant nodules [6]. With 
the advancement of computer technology, computer-aided 
diagnosis (CAD) systems have been widely employed in 
medical image analysis including lung cancer detection 
[7] and identification [8]. Generally, there are four main 
procedures for lung nodule classification in a CAD system 
[9]: (1) data collection, (2) data preprocessing, (3) fea-
ture extraction, and (4) nodule classification. Thanks to 
the assistance of CAD systems, the examination and clas-
sification of pulmonary nodules have been shown more 
accurate and robuster [8, 10].

Depending on how the image features are acquired, 
CAD systems can be broadly divided into two main cat-
egories: handcrafted-based and convolutional neural net-
work (CNN)-based approaches [8, 11]. Handcrafted-based 
CAD systems generally adopt texture features such as the 
local binary pattern (LBP) [12], histogram of oriented gra-
dient (HOG) [13], Gabor [14], gray-level co-occurrence 
matrix (GLCM) [14], scale invariant feature transform 
[15], and speeded-up robust features [16]. On the other 
hand, due to the rapid hardware and software advance-
ment, deep learning strategies particularly CNN models 
have been extensively utilized for image classification. 
CNN-based CAD systems can efficiently perform fea-
ture extraction and nodule classification at the same time 
through automatic feature learning [17]. The success of 
CNN-based CAD methods motivated us the development 
of deep learning neural networks for lung nodule clas-
sification [18].

Specifically, we investigate a new pulmonary nodule 
classification framework based upon a deep learning 
model, which is called the multiview residual selective 
kernel network (MRSKNet). This pulmonary nodule clas-
sification network is constructed with a hardcore RSK 
block, which is conceived from the selective kernel and 
residual learning [19, 20]. Moreover, the input images are 
composed of multiple views of three-dimensional (3-D) 
anatomical nodules associated with their handcrafted 
texture features. Initially, three anatomical planes (axial, 
coronal, and sagittal) of pulmonary nodules are extracted 
from 3-D CT image volumes. Subsequently, seven dif-
ferent texture features are computed for each individual 
plane, from which the most effective feature is incorpo-
rated into the input to boost the nodule classification accu-
racy. We will show that the proposed pulmonary nodule 
classification scheme exhibits robustness across various 
CT images, which provides great advantages over many 
state-of-the-art methods. This new CAD system is poten-
tial in facilitating the burden of physicians and radiologists 
for rigorous pulmonary nodule classification.

The major contributions of the current work are sum-
marized as follows:

1.	 An efficient CAD system for pulmonary nodule benign-
malignant classification in CT images based upon a deep 
learning model, called MRSKNet, is investigated.

2.	 A central processing unit, called RSK block, is developed 
that takes advantage of the selective kernel and residual 
learning for robust decomposition of lung nodules.

3.	 Three anatomical planes of lung nodules in the axial, 
coronal, and sagittal directions along with their hand-
crafted texture features are independently fed in each 
individual branch of the network.

The remainder of this paper is organized as follows. 
After the “Introduction” section, we conduct a brief review 
of existing pulmonary nodule classification methods. We 
then describe the proposed MRSKNet pertinent to feature 
extraction and model architecture. Subsequently, we intro-
duce the acquired image data and demonstrate experimental 
results along with performance analysis. Finally, we discuss 
the characteristics of the developed classification scheme 
and draw the conclusion.

Related Work

A pulmonary nodule (or mass) is a small abnormal area 
that forms in the lung. Different types of nodules are dif-
ficult to differentiate through human’s naked eyes by their 
size, shape, intensity, or texture. Developing a CAD system 
in facilitating the classification of pulmonary nodules is a 
necessity and current tendency. Recently, there has been an 
increasing number of studies that are dedicated to the auto-
matic differentiation between benign and malignant nod-
ules. For feature extraction, there are two major categories. 
While handcrafted-based characters are acquired essentially 
by mathematical image processing techniques [21], CNN-
based features are computed inherently from the convolu-
tional neural network architecture [8, 22]. For the essence of 
classification, existing approaches can be generally divided 
into machine learning and deep CNN methods.

Handcrafted Features with Machine Learning Methods

Traditionally, handcrafted features combined with 
machine learning procedures have been simultaneously 
exploited for pulmonary nodule classification [23]. 
Handcrafted features, which provide insightful infor-
mation for lung nodule analysis, usually include shape, 
intensity, texture, geometry, and morphology character-
istics [24]. An ensemble vector consisting of distinct 
handcrafted features is fed into a machine learning clas-
sifier for identification. For example, Dhara et al. [25] 
distinguished benign from malignant nodules using the 
support vector machine (SVM) associated with several 
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shape-based and texture-based features. Orozco et al. 
[26] employed the wavelet transform to extract nodule 
traits with the SVM for nodule classification. de Sousa 
Costa et al. [27] utilized the mean phylogenetic distance 
and taxonomic diversity index as texture features, which 
were classified by the genetic algorithm (GA) and SVM. 
Firmino et al. [28] computed the HOG for nodule qual-
ity extraction followed by a rule-based classifier and 
the SVM to eliminate false positives. de Carvalho Filho 
et al. [29] adopted the phylogenetic diversity to acquire 
several nodule attributes and applied the GA to select 
the best model.

Alternatively, Sasidhar et al. [30] introduced the GLCM 
to calculate the texture features of nodules and employed 
the SVM for classification. Li et  al. [31] combined 
the Gabor, LBP, and GLCM characters to generate an 
effective feature vector, which was categorized by an 
improved random forest (RF) classifier. Wu et al. [32] 
proposed a pulmonary nodule classification scheme based 
upon the extraction of the shape, gray level, and texture 
features that were classified using the RF. Rodrigues 
et al. [33] presented a structural co-occurrence matrix-
based mechanism to differentiate nodules using three 
well-known classifiers: multilayer perceptron (MLP), 
SVM, and k-nearest neighbor (KNN). Lee et  al. [34] 
introduced a two-step supervised learning system, which 
combined a GA with the random subspace method and 
was tested via leave-one-out validation. Farahani et al. 
[35] computed statistical and morphological features 
from nodule candidates. An ensemble of three classifiers 
comprising MLP, KNN, and SVM was exploited for 
nodule classification.

Deep Learning Models

For the past decade, deep learning approaches have been 
extensively utilized in image processing and computer 
graphics [36]. Especially, using deep CNNs for image 
recognition has shown outstanding achievements, e.g., 
AlexNet [37], VGG [38], GoogLeNet [39], ResNet 
[19], and so forth. Among these network architectures, 
GoogLeNet and ResNet are specifically designed for 
the analysis of large-scale data, whereas the VGG net-
work is regarded as a more general framework. Thanks 
to the success of the abovementioned networks, many 
researchers have exploited deep CNNs for medical 
image processing and analysis [40, 41]. A significant 
advantage of using deep CNNs is that the network archi-
tecture can learn discriminative features from input 
images directly [42]. As such, an end-to-end model is 
able to execute feature extraction and nodule classifica-
tion at the same time.

Methods with 3‑D CNN Models

Using 3-D raw CT images, Dai et al. [43] proposed a unique 
3-D CNN called attribute-lung-nodule classification, which 
was derived from 3-D-DenseNet-40 for pulmonary nodule 
benign-malignant and image attribute categorization. Ren 
et al. [44] developed a manifold regularized classification 
deep neural network, which learned a general deep mapping 
schema from the original image space to a low-dimensional 
manifold, to analyze pulmonary nodules. Zhang et al. [9] 
presented a lung nodule classification framework based 
upon squeeze and excitation network and aggregated resid-
ual transformations, which combines the merits of ResNeXt 
[45] for feature reuse and SENet for feature recalibration. 
Liu et al. [46] introduced a multi-model ensemble learning 
architecture by taking advantage of a 3-D CNN, which con-
sists of VGG [38], ResNet [19], and InceptionNet [47], for 
benign and malignant classification.

Methods with 2‑D CNN Models

While volumetric image data provide 3-D spatial correla-
tion of lung nodules, the network architectures are usu-
ally immense and sophisticated [48]. Accordingly, some 
researchers established more compact classification net-
works based upon two-dimensional (2-D) image data. For 
example, Lyu et al. [49] utilized three-level parallel ResNets 
with different convolution kernel sizes to extract multi-scale 
features of nodules, which resulted in a multi-level cross 
residual CNN. An et al. [50] described a two-stage CNN 
with the first CNN to handle ambiguous CT images followed 
by a simplified GoogLeNet to improve recognition accuracy. 
Su et al. [51] argued that a collection of 3-D views can be 
more informative for 3-D shape recognition and proposed 
a new CNN architecture that combines information from 
multiple views of a 3-D shape into a single and condensed 
shape descriptor, which offered better recognition efficiency.

Additionally, the application of anatomical planes has 
shown beneficial for lung nodule classification. Nibali et al. 
[52] employed three 2-D planar views instead of the full 3-D 
volume as input and adopted the ResNet architecture as the 
basis for exploring the effect of transfer learning, curriculum 
learning, and varying network depths on the classification 
accuracy. Sahu et al. [53] introduced a lightweight multi-
section CNN model, which aggregates information from 
multiple cross-sections via a view pooling layer, for lung 
nodule categorization. Using multiple dilated convolutions 
instead of max-poolings to capture the scale variations, Al-
Shabi et al. [54] described a gated-dilated (GD) network to 
classify nodules as benign or malignant. This GD architec-
ture contains a context-aware sub-network, which inspects 
the input features and maneuvers the features to a suitable 
dilated convolution. The authors also proposed another 
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model called deep local–global network, which makes use 
of residual blocks for local feature extraction and non-local 
blocks for global feature extraction [55].

Handcrafted Features with Deep Learning Methods

There are some works using handcrafted features associ-
ated with deep learning networks for lung nodule investi-
gation. For example, Xie et al. [56] suggested a multiview 
knowledge-based collaborative (KBC) deep model to dis-
tinguish malignant from benign nodules. The model learned 
nodule characteristics by decomposing a 3-D nodule into 
nine fixed views. For each view, a KBC submodel was con-
structed, where three types of appearance patches (overall 
appearance, heterogeneity in voxel intensity, and heteroge-
neity in shape) were designed to fine-tune three pre-trained 
ResNet-50 networks, respectively. By combining multiview 
knowledge-based collaborative learning, a semi-supervised 
adversarial classification model was further presented, 
which was trained with both labeled and unlabeled data to 
improve the accuracy of benign–malignant lung nodule clas-
sification [57]. Wang et al. [58] proposed the use of deep 
feature fusion of non-medical attribute training and hand-
crafted features to reduce the false positive error of pulmo-
nary nodule categorization in chest radiography.

Deep Learning Features with Machine  
Learning Classifiers

Lastly, to analyze pulmonary nodules, several studies com-
bined deep learning features with traditional machine learn-
ing classifiers. For example, Zhu et al. [59] presented a 
fully automated lung CT cancer diagnosis system called 
DeepLung, which involves nodule detection and classifica-
tion. Specifically, a 3-D faster region with CNN (R-CNN) 
was designed for lung nodule detection, which conducts 
pixelwise multiscale learning with a U-Net-like encoder-
decoder structure and 3-D dual path blocks. For nodule 
classification, a gradient boosting machine (GBM) [60] 
with 3-D dual patch network features was proposed. Zhang 
et al. [61] fused LBP-based texture features, HOG-based 
shape features, and 3-D deep dual path network (DPN) [62] 
features to characterize pulmonary nodules. The DPN inte-
grates the advantages of ResNeXt [45] for feature reuse and 
DenseNet [63] for exploring new features. Subsequently, a 
GBM algorithm was employed to differentiate benign from 
malignant nodules.

Handcrafted feature methods usually convert an origi-
nal image to a number of meaningful patterns based on 
mathematical formulas. However, the heterogeneity of the 
computed features is limited comparing with deep feature 
methods. While 3-D deep learning models provide abun-
dant nodule information, they are complicated and require 

excessive resources. Contrarily, 2-D CNN models are rela-
tively efficient but it may acquire less nodule knowledge. As 
such, we investigate a competent 2-D deep learning archi-
tecture with multiple input branches, which strikes a good 
compromise between efficiency and accuracy. Moreover, 
handcrafted texture feature maps are incorporated into the 
network model to generate improved abstract features for 
better discrimination.

Proposed Methodology

The proposed pulmonary nodule classification framework, 
which refers to as MRSKNet, consists of three major phases: 
(1) multiple views, (2) texture features, and (3) model archi-
tecture. The code is publicly accessible through. https://​
github.​com/​yanto​ng0116/​Lung-​Nodule-​Class​ifica​tion.

Multiple Views

To acquire 3-D spatial information while reducing the com-
plexity, Su et al. [51] presented an elegant CNN architec-
ture, which has stimulated us the manipulation of volumetric 
image data for pulmonary nodule classification. Different 
from Su et al. [51], we extract anatomical planes from each 
3-D nodule CT image volume as 2-D multiple views. Com-
monly, there are three frequently used orthogonal planes: 
axial, coronal, and sagittal. The axial plane divides the body 
into upper and lower portions, the coronal plane into front 
and back portions, and the sagittal plane into left and right 
portions. As volumetric CT acquisition has become rou-
tine and accessible, viewing the anatomy and pathology of 
organs in these three planes is beneficial when evaluating 
the disease.

In our approach, a solid set of volumetric CT images 
is constructed by stacking a series of 2-D slices for each 
nodule. Subsequently, we compute the 3-D centroid of the 
nodule in the image volume, from which the axial, coronal, 
and sagittal planes are extracted. Through this preproc-
essing procedure, we not only maintain abundant spatial 
information of the nodule image data but also reduce the 
complexity of the classification model and the correspond-
ing training time.

Texture Features

To understand the importance of handcrafted features and 
to incorporate effective texture features into our classifica-
tion framework, we explore three particular classes of tex-
ture features, which are the GLCM, gray-level run length 
matrix (GLRLM), and Tamura attributes. Suggested by the 
study [64], we investigate seven candidates that provide 
stronger distinction to reflect the characteristics of different 
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anatomical structures, which are entropy (ENT), homoge-
neity (HOM), gray level non-uniformity (GLN), run-length 
non-uniformity (RLN), run percentage (RP), short run 
emphasis (SRE), and coarseness.

GLCM Attributes

GLCM [65] is interpreted as the statistical distribution of 
observed intensity combinations at specified positions rela-
tive to each other in an image. Unlike the original GLCM 
spanning on the entire image, the philosophy underlining 
our perception is a filter-like manner so that the computation 
is restricted to a local window and duplicated through the 
whole image, which results in a feature map. One essential 
characteristic is that with respect to the pixel correlation the 
GLCM attribute varies rapidly in fine-texture regions and 
slowly in coarse texture areas. Mathematically, a GLCM is 
a matrix whose size is equal to the gray level number of the 
image intensity. The value of the matrix C(i, j|x, y) is the rela-
tive frequency of two pixels separated by a distance ( Δx,Δy ), 
which is defined by d and � , in a local window (subimage) 
centered at (x, y) . The co-occurrence is counted based upon 
their intensity relationship: from intensity “ i ” to intensity 
“ j .” Given an Wx ×Wy subimage Is centered at (x, y) in an 
anatomical nodule image In with an intensity range [0, L − 1] , 
the matrix size is L × L . Among the 28 attainable texture 
features, we are particularly interested in ENT,

and HOM,

where P(i, j|x, y) is the normalized matrix of C(i, j|x, y).

GLRLM Attributes

GLRLM is a more objective texture analysis method so 
that the gray level run length is longer in a coarser texture 
region and vice versa [66]. Similar to GLCM, GLRLM 
converts an image into a particular matrix. However, a 
run length matrix is defined as the number of runs with a 
pixel of a specific gray level and its run length in a certain 
direction. In our approach, the GLRLM element p(i, j|x, y) 
indicates the number j of an element with the intensity i 
in a particular direction in a subimage centered at (x, y) . 
Four distinct texture features are computed and exploited 
in this study:

(1)ENT(x, y) =

L−1∑

i=0

L−1∑

j=0

P(i, j|x, y)(−ln(P(i, j|x, y)))

(2)HOM(x, y) =

L−1∑

i=0

L−1∑

j=0

P(i, j|x, y)
1 + (i − j)2

1. GLN

	 
where nr(x, y) is the ensemble sum of p(i, j|x, y) at (x, y) , 
pg(i|x, y) is the gray level run number vector, and R is 
the maximum run length.

2. RLN

	 
where pr(j|x, y) is the run length run number vector.

3. RP

	 
where np(x, y) indicates the number of all elements being 
considered in the subimage centered at (x, y).

4. SRE

Tamura Attributes

Tamura features [67] were developed according to the 
human visual and psychological perception. There are six 
Tamura texture features and the first three features are asso-
ciated with human vision, which are more distinctive than 
the last three attributes. We are particularly interested in the 
coarseness (COA) feature, which is utilized to measure the 
grain size of image attributes. A larger COA value represents 
a ruder image. For more details, please refer to the papers 
[64, 67]. Similar to the GLCM and GLRLM scenarios, a 
local COA computation manner in a subimage is exploited.

Model Architecture

The core block (RSK block) of our proposed network archi-
tecture is first introduced, followed by describing the auto-
matic lung nodule classification model.

RSK Block

Lung nodules generally have different scales and various 
structures. A large filter is too difficult to thoroughly extract 

(3)
GLN(x, y) =

1

nr(x, y)

∑L

i=1

(∑R

j=1
p(i, j|x, y)

)2

=
1

nr(x, y)

∑L

i=1
p2
g
(i|x, y)

(4)
RLN(x, y) =

1

nr(x, y)

∑R

j=1

(∑L

i=1
p(i, j|x, y)

)2

=
1

nr(x, y)

∑R

j=1
p2
r
(j|x, y)

(5)RP(x, y) =
nr(x, y)

np(x, y)

(6)SRE(x, y) =
1

nr(x, y)

∑L

i=1

∑R

j=1

p(i, j|x, y)
j2

=
1

nr(x, y)

∑R

j=1

Pr(j|x, y)
j2
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subtle features for small nodules. On the other hand, a small 
filter’s window is too narrow to capture the overall informa-
tion of large nodules. To handle the extraction of multiscale 
features from diverse nodules, an RSK block with two dif-
ferent scales of filters is proposed.

Our RSK block is derived from the “SK convolution” in 
SKNet [20]. Rather than using a normal 3 × 3 convolution 
filter, the SK convolution has been employed in a bottleneck 
residual block of ResNet [19]. We integrate the design con-
cepts of the residual learning and selective kernel network 
to develop the RSK block, which consists of three major 
operations: split, fuse, and select, as illustrated in Fig. 1. In 
the basic architecture, the split phase contains two parallel 
convolution operations with different kernel sizes. One more 
branch of the identity mapping is added to the network so 
that there are three branches in the beginning of the RSK 
block: (1) Conv3, (2) Conv5, and (3) identity mapping. The 
purpose of including the identity mapping is to provide the 
original information for straightness processing. Accord-
ingly, the architecture can learn the weights of all features 
and adjust the weights by the corresponding features at last. 
It enables neurons to adaptively accommodate their recep-
tive field (RF) sizes based upon multiple scales of input 
information during the inference.

In the first phase of split, the input image (or feature map) 
is denoted as X ∈ RH×W×C , where H , W , and C are the height, 
width, and number of channels in X , respectively. After two 
parallel convolution (Conv3 and Conv5) procedures and one 
identity mapping operation, the input quantity X is trans-
formed into Ui ∈ RH�×W�×C� , where H′ , W ′ , and C′ represent 
the height, width, and number of channels after the trans-
formations, and the subscript i indicates the corresponding 
branch. The convolution is similar to the residual bottle-
neck block, where the Conv3 procedure comprises a 1 × 1 
convolution, a 3 × 3 convolution, and a 1 × 1 convolution, 

interconnected by the ReLU activation function, as demon-
strated in Fig. 2(a). While the first two convolutions are fol-
lowed by the same batch normalization and ReLU function, 
the last convolution is followed by the batch normalization 
only. The channel number in the first 1 × 1 convolution is 
halved to reduce the computational complexity and increased 
to the number of the output channels C′ in the last 1 × 1 con-
volution. Similarly, the Conv5 procedure is constructed by 

Fig. 1   Illustration of the pro-
posed RSK block

Fig. 2   Bottleneck computation of the proposed convolution proce-
dures. a Conv3; b Conv5
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changing the kernel size of the middle convolution to 5 × 5 , 
as shown in Fig. 2(b). For the identity mapping process, if the 
input and output channels are different, a 1 × 1 convolution 
followed by the batch normalization is employed.

Figure 3 depicts the detailed architecture of the second 
phase fuse in the RSK block. The design is to empower neu-
rons to adaptively regulate their RF sizes by using dynamic 
gates to consolidate the information from the three upstream 
branches, which contain different feature maps, into the next 
layer. To achieve this, the ReLU activation function is first 
applied to the feature maps, which are fused via the element-
wise summation with

where N represents the number of branches, which is 3 in 
our scenario. The global average pooling (GAP) is then 
employed to acquire the global information and flatten the 
feature map to generate the channel-wise statistical score:

where S ∈ RC� is the output after the GAP operation. Subse-
quently, a fully connected (FC) layer is executed to produce 
a compact feature vector,

where Z ∈ Rd×1 is the output after the FC1 layer and d 
denotes the adjustable number of channels. A reduction ratio 
r is introduced to determine the value of d with

where C′ is the number of the output channels. A second FC 
layer, FC2, further divides Z into three branches for subse-
quent processing.

The last phase select exploits the soft attention strategy 
across different channels to adaptively choose multiscale 

(7)Ũ(h,w, c) =

N∑

i=0

Ui(h,w, c)

(8)S(c) = GAP
(
Ũ(h,w, c)

)
=

1

H� ×W�

H�∑

h=1

W�∑

w=1

Ũ(h,w, c)

(9)Z(d) = FC(S(c))

(10)d = C�∕r

features. Specifically, the Softmax function is adminis-
tered to the channel-wise digits to acquire the soft atten-
tion weights a , b , and c corresponding to the three feature 
maps using

where As,Bs,Cs ∈ RC�×d are the outputs from the FC2 layer 
and a, b, c ∈ RC�×1 are the soft attention weights for the cor-
responding feature maps Ui , i = 1, 2, 3 . To perform element-
wise multiplication, we reshape the dimension of the soft 
attention weights a, b, c ∈ RH�×W�×C� , which is identical to 
the size of the feature maps Ui . The resultant feature map Y  
is computed using the element-wise summation of the soft 
attention weights multiplied by the three corresponding fea-
ture maps:

where ⊗ is the element-wise multiplication operator and 
Y ∈ RH�×W�×C� is the final product of the RSK block.

MRSKNet

A reliable classifier should recognize different objects based 
upon both semantic and comprehensive features. A small fil-
ter is able to resolve more intricate attributes but it is unable 
to catch semantic information. Contrarily, a large filter is 
capable of capturing semantic knowledge but it would lose 
detailed features. As such, the proposed deep learning archi-
tecture adaptively extracts multiscale features and vigorously 
integrates different RF sizes into a robust classifier to well 
detect the characteristics of pulmonary nodules.

Our MRSKNet is conceived from the integration of the 
multiview CNN [51], residual learning [52], and SKNet 
[20]. The intention is to consider the anatomical planes of 
medical image volumes as the multiple views of 3-D images 
for the categorization of pulmonary nodules. Not only do the 
multiview input preserve the spatial information of volumet-
ric nodule images, but they also decrease the complexity 
of input image data, leading to the acceleration of model 
training. Figure 4 illustrates the network architecture of our 
proposed MRSKNet that exhibits three branches correlat-
ing with the three different anatomical planes as described 
earlier. For each branch, there are one intensity nodule CT 
image and one corresponding handcrafted feature image for 
concatenation input.

(11)a =
eAsZ

eAsZ + eBsZ + eCsZ

(12)b =
eBsZ

eAsZ + eBsZ + eCsZ

(13)c =
eCsZ

eAsZ + eBsZ + eCsZ

(14)Y = U1� + U2� + U3� = a⊗ U1 + b⊗ U2 +⊗U3

Fig. 3   Illustration of the fuse process in the RSK block
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In each branch, the main structure contains four sequen-
tial RSK blocks. Two 2-D dropout layers are deliberately 
included after the second and fourth RSK blocks to avoid 
overfitting. As adjacent pixels within feature maps are 
strongly correlated, the 2-D dropout layers, which randomly 
zero out the entire channels, help to promote independence 
between the feature maps. Afterward, the GMP operation is 
employed to flatten these features followed by the concat-
enation layer to integrate the three branches before entering 
the last FC layer. Through the Sigmoid function, the system 
eventually predicts the likelihood of the malignancy p.

Experimental Results

Data Acquisition

To realize the capability of the proposed pulmonary nod-
ule classification framework, the public benchmark Lung 
Image Database Consortium and Image Database Resource 
Initiative (LIDC-IDRI) dataset [68], which contains 1018 
instances and 1010 patients, was utilized. Specifically, 
the image dataset was acquired from The Cancer Imaging 
Archive (TCIA) [69] and the LIDC nodule size report from 
the Vision and Image Analysis Group of Cornell Univer-
sity [70] was exploited. Each instance provides a series of 
thoracic images and one XML file, which stores annotation 
and related information such as the UID number, nodule 
position, and likelihood of malignancy judged by four radi-
ologists. Those nodules that were found by at least three 
radiologists were adopted for the experiments. The nodules 
were labeled the malignancy level from 1 to 5 by every radi-
ologist and the median of all malignancy levels was regarded 
as the final score for each instance. A nodule with a score 
less than 3 was considered benign, whereas a nodule with a 
score larger than 3 was considered malignant. Nodules with 
a score equal to 3 were discarded as they were undetermined. 

In short, 698 subjects with 1386 nodules, which include 447 
benign nodules, 430 malignant nodules, and 509 indetermi-
nate nodules, were qualified. For binary classification, only 
877 benign and malignant nodules were employed.

Data Preprocessing

In order to extract the nodule from an entire pulmonary 
CT image for the purpose of categorization, the raw image 
data were preprocessed. We first readjusted the intensity 
of the acquired CT images by setting the out-of-scan pix-
els from − 2000 to 0 and rescaling the pixel values to the 
HU so that the converted image Ic was rescaled to a new 
range of [− 1024, 3071]. As the acquired pulmonary images 
exhibited various resolutions, Ic was resampled to a speci-
fied isotropic resolution of 1 × 1 × 1mm3 per voxel with the 
cubic spline interpolation and renormalized to [0, 1] for bet-
ter training and recognition. Subsequently, the normalized 
image was multiplied by the nodule mask, which was gener-
ated according to the nodule locations in the corresponding 
XML file, to extract the nodule image as illustrated in Fig. 5. 
To capture the essence of the nodule, a smaller image with 
32 × 32 was utilized. Lastly, the whole nodule was stored 
in a 32 × 32 × 32 image volume with respect to the maxi-
mum cross-section plane. Three anatomical planes in the 
axial, coronal, and sagittal directions, with each stored in 
a 32 × 32 image, were produced according to the centroid 
of the nodule and denoted as In for feeding the pulmonary 
nodule classification network.

Data Augmentation and Feature Computation

Since deep learning-based networks require abundant data 
for effective training, the diversity and quantity of image 
data plays an important role in achieving excellent perfor-
mance. However, as in our scenario, one major drawback of 
applying deep learning-based networks to medical images is 

Fig. 4   Architecture illustration of the proposed MRSKNet for pulmonary nodule classification
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the limited amount of accessible data. After screening and 
preprocessing of the pulmonary CT images in the LIDC-
IDRI database, there were only 877 nodules for the experi-
ments. To increase the diversity and quantity of the image 
data for training, a series of augmentation processes were 
executed. Each image was first generated rotated images 
in seven angles (i.e., 45◦ , 90◦ , 135◦ , 180◦ , 225◦ , 270◦ , and 
315◦ ), which resulted in eight time the amount of origi-
nal image data. All original images were then horizontally 
flipped followed by the same seven angle rotation opera-
tions. Eventually, the amount of total pulmonary nodules 
was increased by sixteen times. For each nodule image, 
seven corresponding texture feature images of ENT, HOM, 
GLN, RLN, RP, SRE, and COA were computed for concat-
enation input as illustrated in Fig. 6. As they are correlated 
with the nodule CT image according to the mathematical 
formulas, no prior medical knowledge is incorporated into 
the classification model.

Implementation Details

Each branch of the proposed MRSKNet started with a 
32 × 32 × 2 concatenated pulmonary nodule image. While 
the reduction ratio r in Eq. (10) was a constant of 8, the val-
ues of H� ×W� × C� were set to 16 × 16 × 32 and 8 × 8 × 64 
for the first two RSK blocks and last two RSK blocks, 
respectively. Table 1 presents the essential parameter setting 
of the proposed model for pulmonary nodule classification. 
As the input image size was small ( 32 × 32 ), we constructed 
a relatively miniature network, which provides higher effi-
ciency than the classical ResNet and SKNet for our spe-
cific task. Our MRSKNet was implemented with Pytorch, 
which is one of the most popular Python environments for 
deep learning-based development. All experiments were 
executed on an Intel® Core i7-10700F CPU @ 2.90 GHz 
×16 workstation running 64-bit Linux Ubuntu 18.04.5 
LTS with 128 GB RAM. The machine was equipped with 
a NVIDIA GeForce RTX 3090 GPU of 24 GB RAM for 
parallel computation.

For the feature extraction, the values of L in Eq. (1) and 
R in Eq. (3) were all set to 32. The MRSKNet was trained 
with a batch size of 256 for 50 epochs. The initial learning 
rate was set to 1 × 10

−4 for faster gradient descent and 
declined to 1 × 10

−5 after a half of the epochs for preventing 
overshooting. The Adam optimizer was utilized for finding 
the best system parameters with the default hyperparameters 
�1 and �2 equal to 0.9 and 0.999, respectively. All network 
weights were initialized with the Kaiming uniform distribu-
tion �

�
−
√
k,
√
k
�
 with k = 1∕� , where � is the number of 

input channels multiplied by the kernel size in a convolution 
layer or the number of the input channels in a FC layer. The 
employment of the Kaiming function was beneficial for our 
network, which contains the ReLU activation function to 
avoid the gradient vanishing and exploding problems. 
Finally, the binary cross entropy loss function was adopted 
for this pulmonary nodule classification scheme, based upon 
which best model within 50 epochs was acquired.

Evaluation Protocols

Ten-fold cross validation was exploited to evaluate the pro-
posed MRSKNet, i.e., the ratio of the training to valida-
tion images was set to 9:1. Because there were 447 benign 
nodules and 430 malignant nodules, the amount of benign 
nodules accounted for approximately 51% in each fold with 
random selection. Table 2 details the numbers of benign 
and malignant nodules for training and validation after data 
augmentation in each fold. The average evaluation scores of 
the ten-fold experiments were regarded as the ultimate per-
formance of our pulmonary nodule classification framework.

In addition to the assessment of the receiver operating 
characteristic (ROC) and area under ROC (AUC), a num-
ber of popular evaluation metrics including accuracy, recall, 
specificity, and precision were employed, which are defined 
as follows:

(15)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 5   Pulmonary nodule extraction process
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(16)Recall =
TP

TP + FN
(17)Specif icity =

TN

TN + FP

(18)Precision =
TP

TP + FP

Fig. 6   Illustration of handcrafted texture feature images for pulmonary nodule classification. a Benign nodules. b Malignant nodules

Table 1   Essential parameter setting of the proposed MRSKNet

Layer Output Property

RSK block 16 × 16 × 32 Stride = 2,r = 8

RSK block 16 × 16 × 32 Stride = 1,r = 8

Dropout Dropout rate = 0.2

RSK block 8 × 8 × 64 Stride = 2,r = 8

RSK block 8 × 8 × 64 Stride = 1,r = 8

Dropout Dropout rate = 0.2

Ultimate 1 × 1 1 × 1 GMP, 1D FC 
layer, Sigmoid

Table 2   Image numbers for ten-fold cross validation on the LIDC-
IDRI database

* Training with data augmentation

Fold Phase Benign Malignant Total

1–7 *Training 6432 6192 12,624
Validation 45 43 88

8–10  *Training 6448 6192 12,640
Validation 44 43 87
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Fig. 7   ROC curves based upon 
ten-fold cross validation on the 
LIDC-IDRI database. a Input 
with the original CT images 
only. b Input with additional 
HOM texture feature map con-
catenation
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where TP represents true positives, TN represents true nega-
tives, FP represents false positives, and FN represents false 
negatives. Among the described evaluation metrics, AUC, 
accuracy, and recall provides more distinctive judgement for 
our nodule classification experiments.

Performance Evaluation

Three 32 × 32 nodule CT images in the axial, coronal, and 
sagittal directions were delivered to the proposed MRSKNet 
for categorization. To reinforce the performance with diver-
sified input, seven texture feature maps derived from the 
CT images were computed as illustrated in Fig. 6. Each tex-
ture feature map, say HOM, was combined with its original 
intensity image as the intake ( 32 × 32 × 2 ) of the nodule 
classification model as depicted in Fig. 4. For the scenario 
of the sole intensity CT image input, the parameters of the 
MRSKNet were identical to Table 1, except the dropout rate, 
which was set to 0.1 instead of 0.2. All in all, there were 
eight different input variations: one single CT image and 
seven integration images in each branch of the network.

Figure 7(a) depicts the ROC curves of using the origi-
nal nodule CT image planes in three different views for the 
input in light of ten-fold cross validation, where the average 
AUC attained 0.9696. Table 3 summarizes the performance 
measures with respect to five various evaluation metrics for 
the eight different input scenarios. The experiments feeding 
only the intensity CT images produced the highest average 
precision score of 0.9395, whereas the experiments of the 
concatenation scenarios with the ENT texture feature maps 
generated the greatest average specificity score of 0.9365. It 
was the combination of the intensity images and the HOM 
texture feature maps that achieved the best average AUC, 
accuracy, and recall scores, which were 0.9711, 0.9366, 
and 0.9556, respectively. An apparent improvement was the 
2.10% increment of recall using the additional HOM feature 
maps, which reduced FN and increased the identified num-
ber of malignant nodules. Clinically speaking, this is ben-
eficial for early detection of lung cancer. The ROC curves 

of the experiments with the additional HOM feature maps 
based upon ten-fold cross validation are shown in Fig. 7(b).

Ablation Study

To better understand the characteristics of our proposed 
MRSKNet for pulmonary nodule classification, various 
parameter and structure settings were investigated. We first 
diversified the numbers of the RSK block and channels per 
layer while maintaining other parameter settings in Table 1. 
When the quantity of the RSK block was increased, the 
channel number was grown from 32 to 128 as presented in 
Table 4, where the setting of four RSK blocks gained the 
best overall performance. Subsequently, four distinct dropout 
rates were studied to realize their sensitivity to our classi-
fication model. Table 5 reports the performance evaluation 
scores with respect to varied dropout rates, where the left 
values indicate the scenario with the original CT image only 
and the right values with the additional HOM texture feature 
map concatenation.

As presented in Eq. (10), the reduction ratio r plays an 
essential role in determining the output channel number 
after the FC1 layer. The influence of the reduction ratio 
with different values on the classification efficiency was 
also examined as presented in Table 6, where the setting 
with r = 8 accomplished the best performance in both input 
scenarios. Experiments using a reduced model with only 
one single branch were conducted. The nodule classifica-
tion results using the axial plane (AP), coronal plane (CP), 
or sagittal plane (SP) as input are summarized in Table 7, 
which indicated worse performance than the use of three 
branches simultaneously. To further demonstrate the advan-
tage of our MRSKNet, two baseline network models were 

Table 3   Performance evaluation of different input settings based 
upon ten-fold cross validation on the LIDC-IDRI database

Input AUC​ Accuracy Recall Specificity Precision

CT 0.9696 0.9349 0.9346 0.9356 0.9395
 + ENT 0.9669 0.9242 0.9139 0.9365 0.9314
 + HOM 0.9711 0.9366 0.9556 0.9177 0.9222
 + GLN 0.9675 0.9159 0.9209 0.9144 0.9114
 + RLN 0.9691 0.9324 0.9498 0.9150 0.9200
 + RP 0.9661 0.9254 0.9305 0.9187 0.9228
 + SRE 0.9696 0.9349 0.9405 0.9246 0.9253
 + COA 0.9692 0.9323 0.9320 0.9333 0.9320

Table 4   Performance analysis using different RSK block and layer 
channel settings on the LIDC-IDRI database

RSK block 
number

Layer channel AUC​ Accuracy Recall

2 (32, 32) 0.9679 0.9269 0.9297
4 (32, 32), (64, 64) 0.9696 0.9349 0.9346
6 (32, 32), (64, 64),

(128, 128)
0.9602 0.9288 0.9356

Table 5   Sensitivity analysis using different dropout rates on the 
LIDC-IDRI database

CT | CT + HOM

Dropout rate AUC​ Accuracy Recall

0 0.9615 | 0.9657 0.9327 | 0.9242 0.9334 | 0.9523
0.1 0.9696 | 0.9693 0.9349 | 0.9350 0.9346 | 0.9596
0.2 0.9683 | 0.9711 0.9293 | 0.9366 0.9230 | 0.9556
0.3 0.9661 | 0.9701 0.9220 | 0.9396 0.9122 | 0.9292
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exploited for comparison. One model consists of four bot-
tleneck residual blocks [19], which is referred to as Basic 
ResNet. The other comprises four bottleneck blocks with 
the SK convolution [20], which is called Basic SKNet. For 
fair comparison, these two baseline models have the same 
network architecture as the proposed MRSKNet except that 
the RSK block is replaced with the bottleneck residual block 
and the SK block, respectively. Table 7 suggests that our pro-
posed MRSKNet outperformed these two networks with the 
highest scores according to the three achievement measures.

Performance Comparison

For completeness, the proposed pulmonary nodule classifi-
cation framework based upon MRSKNet was compared to a 
number of state-of-the-art methods, which adopted the same 
database for performance validation. Table 8 compares our 
MRSKNet with the contemporary techniques that exploited 
deep learning strategies for pulmonary nodule classification 
on the LIDC-IDRI database. It was obvious that the greatest 
scores of AUC with 0.9711, recall with 0.9556, and precision 
with 0.9222 were achieved by the proposed network model. 
Our accuracy score (0.9366) was the second largest among 
all competitive methods. One of our advantages was the 
high recall rate, which was 3.35% larger than the second best 
method, thanks to the introduction of the HOM feature map 
concatenation. We struck a better compromise between recall 
and specificity than other models. Overall, our MRSKNet pro-
duced more accurate pulmonary nodule classification judge-
ment comparing with the state-of-the-art methods.

Discussion

Stimulated by the success of deep CNN models in medi-
cal image processing applications, we have proposed a 
new pulmonary nodule classification system in CT images, 
which is called MRSKNet. Rather than employing the entire 
image volume for input, the strategy of feeding the network 
with three different views in the axial, coronal, and sagittal 
planes was leveraged in this study to achieve cost-effective 
design. Although volumetric image data can provide more 
contexture information than planar images, more compli-
cated network architectures with larger and deeper layers 
are usually necessitated. Moreover, it is highly possible that 
redundant spatial correlation links appear in the colossal net-
work structure, which hampers the learning efficacy. As can 
be observed from Table 8 that those methods [9, 43, 44, 46] 
with 3-D image input did not present contexture advantages 
over other approaches according to the accuracy measures.

Multiscale resolution has been extensively exploited to 
extract contexture information at various scales to enrich 
the processing mechanism. To take advantage of multiscale 
manipulation, the core network (RSK block) of our MRSKNet 
was designed with three different analytic pathways. In addi-
tion to various tracks of scope resolution, the RSK block com-
prises three distinct phases of split, fuse, and select to integrate 
the multiscale contexture into a collective unit for subsequent 
processing as illustrated in Fig. 1. Since the dimension of most 
nodules was between 3 and 26 mm, our construction with two 
different convolution entities of Conv3 and Conv5 was sufficed 
for capturing the pulmonary nodule characteristics in 32 × 32 
images for categorization. However, if the input image size is 
increased, say 64 × 64 or 128 × 128 , larger convolution win-
dows, e.g., Conv7, with longer bottleneck structures may be 
required to effectively reflect the contexture at different scales.

While deep learning schemes automatically provide a 
wide variety of perceptive features, the majority are beyond 
the common interpretation of the human beings and the 
uniqueness of each individual feature map is deteriorating 
as the network advances deeper. As described earlier, hand-
crafted texture features are capable of extracting the essence 
of image structures for CAD. To understand the impact of 
critical handcrafted texture features associated with deep 
learning processing on pulmonary nodule classification, we 
investigated seven different texture features. Specifically, we 
combined the intensity CT images with the corresponding 
texture feature maps as the input of the MRSKNet in an 
attempt to boost the classification performance. Interest-
ingly, the CT images along with the HOM feature maps 
outperformed other input scenarios as presented in Table 3. 
This may be due to the fact that the HOM map computes the 
nodule homogeneity attribute that exhibits more intensity 
variations and complements the original intensity image for 

Table 6   Sensitivity analysis using different reduction ratio values on 
the LIDC-IDRI database

CT | CT + HOM

Ratio r AUC​ Accuracy Recall

2 0.9694 | 0.9653 0.9247 | 0.9167 0.9119 | 0.8963
4 0.9681 | 0.9695 0.9243 | 0.9299 0.9210 | 0.9338
8 0.9696 | 0.9711 0.9349 | 0.9366 0.9346 | 0.9556
16 0.9686 | 0.9729 0.9259 | 0.9290 0.9266 | 0.9319

Table 7   Performance comparison between different classification net-
works under identical configuration on the LIDC-IDRI database

Model AUC​ Accuracy Recall

AP-MRSKNet 0.9566 0.9223 0.9302
CP-MRSKNet 0.9441 0.9104 0.9289
SP-MRSKNet 0.9357 0.9046 0.9212
Basic ResNet 0.9689 0.9227 0.9276
Basic SKNet 0.9689 0.9317 0.9374
MRSKNet 0.9711 0.9366 0.9556
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better discrimination between benignancy and malignancy, 
as illustrated in Fig. 6. The incorporation of the HOM fea-
ture can also be regarded as perceiving pulmonary nodules 
with a more advanced imaging modality other than CT. Nev-
ertheless, only seven out of possibly hundred texture features 
were studied for this particular classification task. Exhaus-
tive searching of appropriate image texture features regard-
ing the concatenation amount and computation manner, and 
other potential image processing applications is beyond the 
scope of the current work, which is worth investigating in 
the future.

In order to justify the appropriateness of the major com-
ponents in the proposed MRSKNet, we systematically per-
formed ablation studies. As summarized in Table 4, the 
design of two sets of two consecutive RSK blocks followed 
by a dropout layer in each branch achieved the best ensemble 
performance. This implies that deeper network architectures 
are prone to deterioration than network models with a moder-
ate size. In Tables 5 and 6, as the greatest scores in each indi-
vidual evaluation measure were accomplished by different 
settings, the utilized dropout rates and reduction values were 
primarily determined according to the AUC metric, which, in 
our opinion, is the most critical judgement indicator for this 
binary classification task. To demonstrate the effectiveness 
of the proposed RSK block, two competitive networks with 
the same architecture as the MRSKNet but replaced with 
different core blocks are compared in Table 7. It was obvi-
ous that the best evaluation scores were all produced by our 
proposed framework.

One practical issue is that different nodule numbers of 
benignancy and malignancy were adopted by distinct studies 
on the LIDC-IDRI database as presented in Table 8. Diverse 

folds of cross validation were employed and many works gen-
erated inadequate evaluation measures, which hampered more 
perceptive comparison. Nevertheless, not only did we provide 
sufficient assessment scores, but our proposed scheme also 
surpassed the competing methods in overall AUC, accuracy, 
and precision evaluation. Without other available and reliable 
datasets for further cross-dataset improvement and evalua-
tion, our classification ability is restricted on the LIDC-IDRI 
database as many competing methods in Table 8. Lastly, we 
extracted the pulmonary nodule from the original CT image 
in a 32 × 32 subimage for efficient computation, which could 
exclude important perinodular information and reduce the 
benign-malignant classification accuracy.

Conclusions

In summary, we have investigated a new CAD framework, 
which is named MRSKNet, for the task of pulmonary nodule 
classification in distinguishing malignancy from benignancy 
in CT images. We took advantage of the residual learning 
and selective kernel to accommodate the diversity of lung 
nodules with various shapes and obscure characters. The 
strategy of the multiview input with three anatomical planes 
was exploited to reinforce the model efficacy. To improve 
the performance, the intensity CT images along with the 
HOM feature maps was concatenated for feeding the net-
work. Experimental results on the LIDC-IDRI challenge 
database validated the capability of our nodule classifica-
tion scheme, which achieved high-throughput performance 
evaluation. Larger AUC, recall, and precision scores were 
generated by our system in comparison with the competing 

Table 8   Performance 
comparison between MRSKNet 
and contemporary methods 
based upon deep learning 
classification on the LIDC-IDRI 
database

* Adopted 3-D image data as input
-Unavailable

Study Year Nodule number
(benign, malignant)

AUC​ Accuracy Recall Specificity Precision

Nibali et al 2017 831 (421, 410) 0.9459 0.8990 0.9107 0.8864 0.8935
 *Zhu et al 2018 1004 (450, 554) - 0.9044 - - -
 *Dai et al 2018 1011 0.9690 0.9147 0.9126 0.9167 -
Xia et al 2019a 1945 (1301, 644) 0.9570 0.9160 0.8652 0.9400 -
Xia et al 2019b 1945 (1301, 644) 0.9581 0.9253 0.8494 0.9628 -
 *Fu 2019 1186 (650, 536) - 0.8993 0.8334 0.9105 -
Al-Shabi et al 2019b 848 (442, 406) 0.9514 0.9257 0.9221 - 0.9185
Al-Shabi et al 2019a 848 (442, 406) 0.9562 0.8864 0.8866 - 0.8738
Zhang et al 2019 1004 (450, 554) 0.9687 0.9378 - - -
*Zhang et al 2020 1004 (450, 554) 0.9563 0.9167 - - -
 *Ren et al 2020 1226 (795, 431) - 0.9000 0.8100 0.9500 -
 *Liu et al 2020 1268 (863, 405) 0.9390 0.9060 0.8370 0.9390 -
Lyu et al 2020 - 0.9705 0.9219 0.9210 0.9150 -
MRSKNet 2022 877 (447, 430) 0.9711 0.9366 0.9556 0.9177 0.9222
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methods. We believe that the established categorization net-
work architecture is of potential in many lung CT image 
classification applications. Future research directions 
include the use of a larger nodule subimage, more hand-
crafted texture feature incorporation, and the evaluation on 
additional nodule classification image datasets.
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