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Abstract

Machine learning in medical imaging often faces a fundamental dilemma, namely, the small 

sample size problem. Many recent studies suggest using multi-domain data pooled from different 

acquisition sites/centers to improve statistical power. However, medical images from different 

sites cannot be easily shared to build large datasets for model training due to privacy protection 

reasons. As a promising solution, federated learning, which enables collaborative training of 

machine learning models based on data from different sites without cross-site data sharing, 

has attracted considerable attention recently. In this paper, we conduct a comprehensive survey 

of the recent development of federated learning methods in medical image analysis. We have 

systematically gathered research papers on federated learning and its applications in medical 

image analysis published between 2017 and 2023. Our search and compilation were conducted 

using databases from IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, Web 

of Science, Google Scholar, and PubMed. In this survey, we first introduce the background of 

federated learning for dealing with privacy protection and collaborative learning issues. We then 

present a comprehensive review of recent advances in federated learning methods for medical 

image analysis. Specifically, existing methods are categorized based on three critical aspects of 

a federated learning system, including client end, server end, and communication techniques. 

In each category, we summarize the existing federated learning methods according to specific 

research problems in medical image analysis and also provide insights into the motivations of 

different approaches. In addition, we provide a review of existing benchmark medical imaging 

datasets and software platforms for current federated learning research. We also conduct an 

experimental study to empirically evaluate typical federated learning methods for medical image 

analysis. This survey can help to better understand the current research status, challenges, and 

potential research opportunities in this promising research field.

*Corresponding author: mingxia_liu@med.unc.edu (M. Liu). 

CRediT authorship contribution statement
Hao Guan: Writing – original draft, Visualization, Software, Data curation. Pew-Thian Yap: Writing – review & editing. Andrea 
Bozoki: Writing – review & editing. Mingxia Liu: Writing – review & editing, Supervision, Project administration, Investigation, 
Funding acquisition, Conceptualization.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

HHS Public Access
Author manuscript
Pattern Recognit. Author manuscript; available in PMC 2024 July 01.

Published in final edited form as:
Pattern Recognit. 2024 July ; 151: . doi:10.1016/j.patcog.2024.110424.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Federated learning; Machine learning; Medical image analysis; Data privacy

1. Introduction

Medical image analysis has been greatly pushed forward by computer vision and machine 

learning [1–4]. The remarkable success of modern machine learning methods, e.g., deep 

learning [5], can be attributed to the building and release of grand-scale natural image 

databases, such as ImageNet [6] and Microsoft Common Objects in Context (MS COCO) 

[7]. Unlike natural image analysis, the field of medical image analysis still faces the 

fundamental challenge of the “small-sample-size” problem [8,9].

Based on small sample data, it is difficult for us to estimate real data distributions, greatly 

hindering the building of robust and reliable machine learning models for medical image 

analysis. An intuitive and direct solution to this small sample size problem is to pool 

images from multiple sites together and build larger datasets to train high-quality machine 

learning models. However, sharing medical imaging data between different sites/centers is 

intractable due to strict privacy protection policies such as Health Insurance Portability and 

Accountability Act (HIPAA) [10] and General Data Protection Regulation (GDPR) [11]. For 

example, the United States HIPAA has rigidly restricted the exchange of personal health 

data and images [10]. Thus, directly sharing and pooling medical images across different 

sites/centers is typically infeasible in real-world practice.

As a promising solution for dealing with the small-sample-size problem and protecting 

individual privacy, federated learning [12–14] has become a spotlight research topic in 

recent years, which aims to train machine learning models in a collaborative manner without 

exchanging/sharing data among different sites. As an emerging machine learning paradigm, 

federated learning deliberately avoids demand for all the medical data residing in one single 

site. Instead, as shown in Fig. 1, federated learning depends on model aggregation/fusion 

techniques to jointly train a global model which is then sent/broadcast to each site for 

fine-tuning and deployment.

1.1. Related surveys

There have been several survey papers on federated learning [15–20], but further technical 

details about facilitating federated learning in medicine and healthcare are not yet covered. 

Several recent surveys introduce the applications of federated learning in medicine and 

healthcare areas [21–25]. However, some of them focus on electronic health records [21,22] 

or internet of medical things [26], without paying attention to medical imaging. And some 

survey papers cover very broad areas in medicine and healthcare applications [23,24], 

without detailed introduction on federated learning in medical image analysis. A recent 

survey also reviews the application of federated learning on medical image analysis [27]. 

Our survey paper reviews and discusses the most recent advances in federated learning 

for medical image analysis and has significant differences from the previous one in the 

following aspects.
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• Different Coverage. The previous review was limited over the time period 

before December 2022. Our paper covers the papers from 1 January 2017 to 

31 October 2023. With a broader coverage, most recent advances of the state-of-

the-art models or methods in federated learning in medical image analysis (e.g., 

transformer) have been included in our paper.

• Software Platforms. The previous survey does not include federated learning 

software platforms that have been applied to medical image analysis. Our paper 

emphasizes the implementation of federated learning techniques for medical 

image analysis. Specifically, we introduce some new and influential FL software 

platforms and benchmark medical imaging datasets for federated learning 

research in medical imaging.

• Experimental Study. The previous survey only conducts a survey and summary 

of published papers. As for our work, besides a summary of existing work, 

we also conduct an experimental study to evaluate typical federated learning 

methods for medical image analysis empirically. This could offer the readers a 

more intuitive understanding of this research topic.

• Future Direction and New Arisen Problems. Due to the inclusion of the most 

recent papers, our survey paper offers a more comprehensive summary of newly 

arisen research problems (e.g., model generalizability for unseen clients, and FL 

for medical video analysis) and points out a broader range of future directions of 

federated learning for medical image analysis.

• Different Perspective and Organization. Different from previous surveys that 

are based on multiple research issues in federated learning, we summarize 

the existing methods from a system perspective. Specifically, we categorize 

different approaches into three groups: (1) client-end learning methods, (2) 

server-end learning methods, and (3) server–client communication methods. This 

categorization can be more intuitive and clear to picture federated learning. 

When elaborating on the methods in each group, we have designed a novel 

“question–answer” paradigm to introduce the motivation and mechanism of 

each method. We deliberately extract the common questions behind different 

methods and pose them first in each subsection. These questions stem from 

the characteristics of medical imaging, thus it helps provide more insights into 

different methods.

1.2. Searching and analysis process

The first paper on federated learning was released in the year of 2016, thus the searching 

process for this survey ranges from 1st January 2017 to 31st October 2023 (see Fig. 2). 

There are three steps in conducting this survey paper. First, we performed a literature search 

using the academic databases and engines, including (1) IEEE Xplore, (2) ACM Digital 

Library, (3) Science Direct, (4) Springer Link, (5) Web of Science, (6) Google Scholar and 

(7) PubMed. Second, we refined the initial result from the digital libraries by removing 

duplicated papers and papers that do not have close relationship with medical imaging (e.g., 
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non-imaging healthcare data). Third, we analyzed the refined papers, extracted the common 

research questions and technical solutions, and constructed this survey paper.

The remainder of this paper is organized as follows. In Section 2, we introduce the 

background and motivation of federated learning. We summarize existing federated learning 

studies for medical image analysis in Section 3. In Section 4, software platforms that support 

federated learning system development are presented. In Section 5, we introduce medical 

image datasets that have been widely used in federated learning research. We conduct an 

experimental study in Section 6 to compare several federated learning methods. Challenges 

and potential research opportunities are discussed in Section 7. Finally, we conclude this 

survey paper in Section 8.

2. Background

2.1. Motivation

2.1.1. Privacy protection in medical image analysis—Patient data protection has 

become an important issue in the digital era. Using and selling patient data has many 

negative implications [28]. Thus, many governments have introduced tough new laws and 

regulations on privacy data protection, such as the CCPA in the United States [29] and 

GDPR in Europe [11]. Collecting, sharing, and processing of personal data are strictly 

constrained, and violating these laws and regulations may face high-cost penalties [30]. 

With these strict restrictions from laws, medical images, one of the most important privacy 

information, cannot be easily shared among different sites/centers. To this end, federated 

learning, a distribution-oriented machine learning paradigm without cross-site data sharing, 

has emerged as a promising technique for developing privacy-preservation machine learning 

models, thus paving the way for the applications of medical artificial intelligence in real-

world practice.

2.1.2. Challenges of medical image analysis—The conventional approach to 

training machine learning models in medical image analysis involves utilizing data from 

a single site or center. However, this method is usually subject to limited sample size. It is 

common that there are very limited number of images in local datasets. This situation often 

arises due to the high costs associated with imaging and labeling procedures. Consequently, 

the datasets suffer from the “small-sample-size” problem [8,9]. This issue can severely 

impact the learning performance of machine learning models, leading to suboptimal results 

that lack statistical significance. Another significant concern is the inherent bias in the 

distribution of data collected from a specific site or center. These datasets may not accurately 

represent the true data distribution, thereby introducing bias into machine learning models. 

For instance, it is common to encounter unbalanced data in medical sites, where the number 

of healthy subjects significantly outweighs that of patients. Such imbalances can skew the 

model’s predictions and compromise its effectiveness in real-world applications. In addition, 

medical image datasets collected from a specific site often reflect the characteristics and 

demographics of the local patient population. Consequently, models trained solely on such 

data may fail to capture the variability present in broader patient cohorts or diverse clinical 

settings. Federated learning helps address these limitations, aiming to “pool” medical images 
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together in a distributed way, thereby greatly increasing the sample size. This can effectively 

take advantage of available data from multiple sites to enhance statistical power of machine 

learning models.

2.2. Problem formulation of federated learning—Suppose there are N independent 

clients (sites) with their own datasets { 1, 2, …, N}, respectively. Each of the clients 

(sites) cannot get access to others’ datasets. Federated learning (FL) aims to collaboratively 

train a machine learning model ℳ* by gathering information from those N clients (sites) 

without exchanging/sharing their raw data. The ultimate output of FL is the learned model 

ℳ* which is broadcast to each client for deployment, and the generalizability of ℳ* by FL 

should outperform each local model ℳi (typically with the same model architecture as ℳ*) 

learned through local training.

2.3. Typical process of federated learning

In Fig. 1, we illustrate the typical process of federated learning that is embodied in a “client–

server” architecture. This process encompasses the Federated Averaging (FedAvg) algorithm 

proposed by McMahan et al. [12]. It serves as the foundation of most popular algorithms 

for federated learning. A server in a federation triggers and orchestrates the entire training 

process (without accessing clients’ private data) until a certain stop criterion is met. We 

summarize a typical workflow of federated learning as follows.

1. Client Selection and Initialization. The server selects a set of clients that meet 

certain requirements. For example, a medical site/center might only check in to 

the server when it can correctly get access to the intranet of a federation with 

relatively good bandwidth. Some recent FL models dynamically select clients 

that meet certain requirements such as training efficiency [31] or anomaly score 

[32]. A global model is initialized on the central server. This model serves as the 

starting point for training across different medical sites/centers (i.e., clients).

2. Local Training. The global model is sent to all the participating medical 

sites/centers. Each site/center trains a machine learning model (e.g., U-Net) 

on its local medical imaging data using certain optimization methods (e.g., 

stochastic gradient descent). With the development of artificial intelligence, some 

recent work introduced more advanced models for client training such as vision 

transformer [33]. Since the data never leaves its original location, this process 

can enhance privacy and security.

3. Model Upload. After local training, each medical site/center calculates the 

updates to the model (e.g., gradients or model changes) and sends/uploads these 

updates back to the central server. Importantly, only model updates are shared, 

not the data itself.

4. Aggregation. The central server aggregates all the updates uploaded by the 

clients, typically using certain algorithms that ensure a fair and effective 

combination of the different contributions. This aggregation results in an updated 

global model. While classic FL systems use equal weights for aggression, some 
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recent models explore using more adaptive weighting strategies [34] to enhance 

training efficiency.

5. Broadcast. During the broadcasting step, the server sends the updated 

model parameters or gradients to the clients, enabling them to perform 

local computations and contribute to the collaborative model training process. 

By efficiently distributing model updates, the broadcasting step facilitates 

synchronized model updates across the federated network while minimizing 

communication overhead. Research on this topic has focused on optimizing 

communication protocols and minimizing communication overhead [31,35] 

while ensuring efficient dissemination of model updates.

6. Iteration and Convergence. The above steps are repeated for several iterations. 

With each round, the global model becomes more refined and accurate, as it 

learns from a diverse set of data sources. This process continues until the model 

reaches a satisfactory level of accuracy or a predefined number of iterations 

are completed. Recent research work focuses on improving the overall training 

efficiency and accelerate the convergence [36].

7. Deployment. The final global model is then deployed for use in applications, 

maintaining the benefits of having learned from a wide and diverse set of 

data sources. In real-world practice, several factors or challenges need to be 

considered such as compatibility with existing hospital systems, integration 

challenges, and user adoption hurdles.

2.4. Types of federated learning

2.4.1. Horizontal federated learning—Horizontal federated learning [17], also known 

as homogeneous federated learning, is characterized by data distribution across different 

entities that share the same feature space but have different samples. In the context of 

medical image analysis, this can be thought of as different medical institutions holding 

medical imaging data (e.g., MRIs, X-rays) of different patients.

Examples in Medical Image Analysis.: Consider multiple hospitals across different regions 

participating in a study to improve the diagnosis of lung diseases using chest X-rays. Each 

hospital has its own set of patient data (images), but the features extracted from these images 

(e.g., lung size, shape, and texture) are similar across all datasets. Horizontal FL allows these 

hospitals to collaboratively train a model to diagnose lung diseases more accurately without 

sharing the actual patient data.

2.4.2. Vertical federated learning—Vertical federated learning [17], or heterogeneous 

federated learning, occurs when different entities possess different feature sets for the same 

samples. In medical imaging, this translates to different institutions having different types 

of data (e.g., omics data, demographic information, and imaging data) for the same set of 

patients.

Examples in Medical Image Analysis.: Vertical FL is increasingly prevalent in medical 

imaging studies due to the multidisciplinary nature of healthcare data. For instance, a 
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hospital might have imaging data, while a research lab could hold genomic data for the same 

set of patients. Through vertical FL, these diverse datasets can be utilized to create more 

comprehensive models for disease diagnosis and prognosis, without compromising patient 

privacy.

3. Federated learning for medical image analysis

3.1. Methods overview: A system perspective

Federated learning (FL) provides a generic framework for distributed learning with privacy 

preservation. Most existing machine/deep learning methods can be plugged and integrated 

into an FL framework. For example, a U-Net [37] can be used in each client for medical 

image segmentation and is trained in a federated manner. Federated learning is concerned 

with multiple issues such as data, machine learning models, privacy protection mechanisms, 

and communication architecture. As shown in Fig. 3, from a system perspective, we 

categorize existing FL approaches for medical image analysis into three groups: (1) client-

end methods, (2) server-end methods, and (3) communication methods. In each group, 

different methods are clustered according to the specific research problems they aim to 

address which will be elaborated in the following sections.

3.2. Client-end learning

3.2.1. Client end: Domain shift among clients

Problem.: This research addresses the challenge of significant cross-site data distribution 

variance in medical imaging, often resulting from varying scanning settings and diverse 

subject populations across different sites. The focus is on developing strategies to mitigate 

this variance’s adverse impact on the accuracy and reliability of FL model training.

In practice, multi-site medical images may have significantly different data distributions, 

which is the well-known “domain shift” problem [3] (also referred to as “client shift” in 

an FL system). As shown in Fig. 4, images from different imaging sites have significantly 

different intensity distributions. When projected in the feature space, the domain shift may 

negatively influence machine learning performance. Thus certain techniques, e.g., domain 

adaptation, are adopted to alleviate this issue by making the distribution differences smaller. 

In an FL system, domain shifts may cause difficult convergence of the global model and 

performance degradation of some clients. In the following, we present the relevant studies 

that focus on reducing domain shift among clients for FL research.

(1) Domain-Specific Learning.: This method uses client data to locally fine-tune the 

global model and alleviate negative influence of client shift. This method is also known as 

customized/personalized FL [39,40]. Feng et al. [41] propose an encoder–decoder structure 

within an FL framework for magnetic resonance (MR) image reconstruction. A shared 

encoder is maintained on the server end to learn domain-invariant representations, while 

a client-specific decoder is trained with local data to take advantage of domain-specific 

properties of each client. Similar strategies can also be found in [39,42]. Chakravarty et 

al. [43] propose a framework that combines a Convolutional Neural Network (CNN) and a 

Graph Neural Network (GNN) to tackle the domain shift problem among clients and apply 
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it to chest X-ray image classification. Specifically, model weights of the CNN are shared 

across clients to learn site-independent features. To address site-specific data variations, a 

local GNN is built and fine-tuned with local data in each client for disease classification. 

In this way, both site-independent and site-specific features can be learned. Xu et al. [44] 

propose an ensemble-based framework to deal with the client shift for medical image 

segmentation. Their framework is composed of a global model, personalized models, and a 

model selector. Instead of only using the global model to fit all the client data, they propose 

to leverage all the produced personalized models to fit different client data distributions 

through a model selector. Jiang et al. [45] propose to train a locally adapted model that 

accumulates both global gradients (aggregated from all clients) and local gradients (learned 

from local data) to optimize the model performance on each client. This helps effectively 

avoid biased performance of the global model on different clients caused by client domain 

shift. Ke et al. [46] build an FL framework based on a Generative Adversarial Network 

(GAN) to facilitate harmonization (color normalization) of histopathological images. In this 

method, each client trains a local discriminator to capture client-specific image style, while 

the server maintains and updates a global generator model to generate domain-invariant 

images, thus achieving histopathological image harmonization. Similarly, Wagner et al. 

[47] propose a GAN model for histopathological image harmonization. In their method, a 

reference dataset is assumed to be accessible for all clients, which can help the training of all 

the local GANs at each client.

(2) Domain Adaptation.: This method uses domain adaptation to reduce medical data 

distribution differences of clients. Domain adaptation is a sound machine learning technique 

that has been widely used in medical image analysis [3]. It aims to reduce domain shift 

(in terms of certain distances) among different medical image datasets and enhance the 

generalizability of a machine learning model. Many medical-related FL studies resort to 

domain adaptation for improved performance. Li et al. [48] use domain adaptation to align 

distribution differences of functional MRI data among clients. In their method, data in each 

client are added with noise to enhance privacy protection. A domain discriminator/classifier 

is trained on these data with noises to reduce domain shift. Dinsdale et al. [49] propose 

a domain adaptation-based FL framework to remove domain shift among clients caused 

by different scanners. In their framework, medical image features are assumed to follow 

Gaussian distributions, and the mean and standard deviation of the learned features can 

be shared among clients. During the training of each client model, a label classifier and 

a domain discriminator are jointly trained to learn features that are domain-invariant, i.e., 

removing domain shift. Andreux et al. [50] leverages batch normalization (BN) in a deep 

neural network to handle client (histopathology datasets) shift. Guo et al. [51] propose a 

federated learning method for MRI reconstruction, where the learned intermediate latent 

features among different clients are aligned with the distribution of latent features of a 

reference site.

(3) Image Harmonization.: This method typically uses image-to-image translation 

models to harmonize the medical images of different clients. After harmonization, all the 

medical images are expected to have similar styles, thus reducing domain shift. Qu et 

al. [52] propose a generative replay strategy to handle data heterogeneity among clients. 
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They first train an auxiliary variational autoencoder (VAE) to generate medical images that 

resemble the input images. Then each client can optimize their local classifier using both 

the real local data and synthesized data with similar data distribution of other clients. In 

this way, domain shift can be reduced. Yan et al. [53] employ cycleGAN [54] to minimize 

the variations of medical images among clients. One client/site with low data complexity 

is selected as a reference, and then cycleGAN is used to harmonize medical images from 

other clients to the reference site. Jiang et al. [55] propose a frequency-based harmonization 

method to reduce client shift in medical images. Medical images are firstly transformed 

into frequency domain and phase components are kept locally, while the average amplitudes 

from each client are shared and then normalized to harmonize all the client medical images.

3.2.2. Client end: Limited data and labels

Problem.: This research tackles the prevalent issue in medical imaging where datasets 

are frequently small-sized and deficient in label information. The focus is on developing 

strategies to mitigate their negative impact on FL model training and prevent biased results.

In real-world practice, there are often limited medical images in one client/site, and labeled 

medical images are even fewer due to the high cost of image annotation/labeling. A client 

model may be badly trained with limited labeled data, which can cause negative influences 

on the entire federation. Therefore, how to alleviate the small-sample-size problem is an 

important topic of FL in medical image analysis.

(1) Contrast Learning.: Contrastive learning [56–58] is a self-supervised learning method 

where models learn to distinguish between similar and dissimilar data points. A model 

trained with contrast learning can provide good initialization for further fine-tuning (with a 

few labeled data) on downstream tasks. [59,60] use contrast learning to pretrain the encoder 

of a U-Net in each client, then the global U-Net is fine-tuned with limited labeled medical 

images. In this way, the negative influence caused by the shortage of labeled medical images 

can be largely reduced. Similar strategies can be found in [61].

(2) Multi-Task Learning.: Multi-task learning [62] is an effective learning paradigm for 

data augmentation. Smith et al. [63] propose a novel optimization framework, i.e., MOCHA, 

which extends classic multi-task learning in the federated environment. Huang et al. [64] 

build a federated multi-task framework in which several related tasks, i.e., attention-deficit/

hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and schizophrenia (SCZ), 

are jointly trained. In this method, encoders for each task in clients are federated to derive a 

global encoder that can learn common knowledge among related mental disorders.

(3) Weakly-Supervised Learning.: Weakly-supervised learning [65] is an extensive group 

of methods that train a model under weak supervision, including (1) Incomplete supervision 

[66,67]; (2) Inexact supervision [68,69]; and (3) Inaccurate supervision [70,71]. Yang et 

al. [72] introduce semi-supervised learning into FL for chest CT segmentation. In their 

method, unlabeled CT images are leveraged to assist the federated training. For unlabeled 

CT images in a client, the global model assigns them pseudo labels. Meanwhile, it also 

outputs predictions on augmented data of the original unlabeled images. A consistency 
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loss is utilized on these predictions to further adjust the global model weights. Lu et al. 

[73] use multiple-instance learning for local model training on the task of pathology image 

classification. Whole slide images (WSIs) and weak annotation (e.g., patient or not) are used 

as the input, with no region-based labels provided. And multiple patches (instances) of a 

WSI are fed into a network for training. Kassem et al. [74] build a semi-supervised FL 

system for surgical phase recognition based on laparoscopic cholecystectomy videos. The 

key idea is to leverage the temporal information in labeled videos to guide unsupervised 

learning on unlabeled videos.

(4) Knowledge Distillation.: Knowledge distillation [75] is a process where a smaller, 

more efficient model (the “student”) is trained to replicate the behavior of a larger, more 

complex model (the “teacher”). This is achieved by using the outputs of the teacher 

model as a guide for training the student model, effectively transferring the knowledge. 

Kumar et al. [76] leverage knowledge distillation for COVID-19 detection in chest X-ray 

images. The network trained on similar data (other chest X-ray image datasets) is used 

as a “teacher”, while the client model is a “student”. By matching the softmax activation 

output of the teacher, the student (client model) can learn useful knowledge for the task. 

In this way, it alleviates the demand for large data during the FL training process. He et 

al. [77] use knowledge distillation to address the problem of weakly-supervised learning in 

heterogeneous 3D MR knee images. Unlabeled data in the client is used to distill knowledge 

from the large-scale national data repository to improve the performance of the collaborative 

model.

(5) Data Synthesis.: This method typically uses generative models (e.g., GAN) to create 

synthesized medical images as data enhancement for federated learning. Zhu et al. [78] 

propose an FL framework with virtual sample synthesis for medical image analysis. Given 

an image x in the client, the authors first use Virtual Adversarial Training [79] to generate 

synthetic images that are similar to x, and then use all the synthesized images for local 

model training. Chang et al. [80] present a novel GAN-based synthetic learning approach 

for extracting information from each client to generate a homogeneous dataset with entirely 

synthetic medical images for downstream applications. Peng et al. [81] propose a federated 

graph learning framework for brain disease prediction, where a Graph Convolutional 

Network (GCN) is used as the learning model in each client. Considering the missing nodes 

and edges when separating the global graph into local graphs, the authors leverage network 

inpainting to predict the missing nodes and their associated edges. This helps complete the 

graphs for GCN training in each client, with results suggesting its effectiveness in graph data 

synthesis and augmentation.

3.2.3. Client end: Heterogeneous environments (computation resource & 
data scale)

Problem.: This research addresses the disparity in data volumes and computational 

resources, such as GPU availability, across various medical imaging sites/centers. The focus 

is on developing strategies to minimize its impact on federated training effectiveness.
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In the standard FL algorithm (i.e., FegAvg), each client model conducts a predefined number 

of training epochs (with equal batches or learning rates) before reaching a synchronization 

time point when it shares its model with the federation. Different medical sites, however, 

often have significantly different computation resources and amounts of data (images), 

which may lead to slow convergence of FL model optimization. For example, each medical 

site (client) is supposed to conduct 50 epochs’ updates before model uploading. A site with 

advanced GPUs may take 1 s, while a site with weak computation utility may take 100 s. 

Thus, the stronger client will have to spend 99 s waiting for weight sharing. This will slow 

down the convergence of the overall federation. Aiming at handling this issue in medical 

imaging analysis tasks, Stripelis et al. [36] propose a Semi-Synchronous Training strategy 

in federated learning and apply it to brain age prediction. As shown in Fig. 5, each client 

conducts a variable number of updates (epochs) between synchronization time points which 

depend on its computational power and data scale. Higher computation power or fewer local 

data will lead to more local updates (epochs).

3.3. Sever-end learning

3.3.1. Sever end: Weight aggregation

Problem.: This research seeks effective strategies for aggregating client weights in a 

federated learning system, aiming to ensure consistent performance and avoid performance 

degradation following each client–server communication.

Weight aggregation in federated learning plays a crucial role by combining the model 

updates from multiple decentralized clients to form a single, improved global model. 

Chen et al. [82] propose a Progressive Fourier Aggregation strategy at the server end. 

Based on previous studies that low-frequency components of parameters form the basis of 

deep network capability [83], only the low-frequency components are aggregated to share 

knowledge learned from different clients, while the high-frequency parts are disregarded. 

Li et al. [34] consider the training loss of each client as the impact factor of the weight 

aggregation in FL for COVID-19 detection. The client with relatively bad performance 

caused by uneven image data will get a smaller weight for the global weight aggregation.

3.3.2. Sever end: Domain shift among clients

Problem.: This research addresses the issue of domain shift among clients which can lead 

to non-convergence of federated models. The focus is on developing server-side solutions 

that effectively tackle these domain discrepancies, ensuring convergence and stability of the 

federated models.

The client shift can be handled on the server side during the global model optimization 

process. Hosseini et al. [84] argue that the image heterogeneity between different medical 

centers (clients) may lead to a biased global model, i.e., a machine learning model that has 

good performance for some clients while exhibiting inferior performance for other clients. 

Thus, they propose a revised optimization objective (motivated by fair resource allocation 

approaches in wireless network research), to facilitate uniform model performance in 

histopathology image analysis across all the clients. In their method, the clients for which 

the global model has inferior performance will contribute more to the total loss function. 

Guan et al. Page 11

Pattern Recognit. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fan et al. [85] leverage the guided-gradient to optimize the global model. After aggregating 

all the local weights of the clients, only positive values of the aggregated weights are used 

to update the global. The authors argue that this is helpful for the global gradient descent 

to go towards the optimal direction, and the guided-gradient can reflect the most influential 

regions of the medical images. Luo et al. [86] propose a method called federated learning 

with shared label distribution (FedSLD) for medical image classification by mitigating label 

distribution differences among clients. In their method, it is assumed that the amount of 

samples of each category (label distribution) is known for the entire federation. During local 

model training in each client, a weighted cross-entropy loss is designed as the batch loss. 

The weight is computed based on the label distributions in each batch, concerning their label 

distributions across the entire federation.

3.3.3. Sever end: Client corruption/anomaly detection

Problem.: This research investigates how to shield a federated learning system from the 

impact of clients corrupted by noisy image labels or malicious attacks. The focus is on 

developing robust mechanisms that identify and avoid those adverse influences, maintaining 

the performance of the overall system.

Classic FL framework holds the assumption that all the clients work normally. In this 

context, the term “normal” means that a client is trained with correctly labeled images or 

the client is honest without malicious attack. In real-world practice (as shown in Fig. 6), 

however, a client may be trained with “dirty” medical images that have noisy labels, poor 

scanning qualities, or suffer from poisoning attacks from malicious parties. How to deal 

with this issue is critical for ensuring the safety of a medical federated learning system. 

Alkhunaizi et al. [32] propose a sever-end outlier detection method for medical images, 

called Distance-based Outlier Suppression (DOS), which is robust to client corruption/

failure. In this method, the weight of each client is calculated based on an anomaly score for 

the client using Copula-based outlier detection. A client with a high outlier score will get 

a tiny weight during model aggregation, thus reducing the negative influence of corrupted 

clients. Experimental results on clients with noisy labels demonstrate the its effectiveness.

3.4. Client–server communication

3.4.1. Data leakage and attack

Problem.: This research focuses on developing effective methods to prevent medical image 

data leakage and privacy violations during server-client interactions in federated learning.

Protection of privacy, i.e., ensuring the medical image data of each client are not seen 

and accessed by other clients/sever, is the main concern of FL systems. Prior studies have 

shown that, even without inter-site data sharing, pixel-level images can be reconstructed 

or recovered by the leaked gradients of a machine learning model [87–89]. Therefore, 

it is critical to study advanced techniques to proactively avoid data leakage during 

communication between the server and multiple clients. Many studies have focused on this 

topic in recent years.
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(1) Partial Weights Sharing.: Yang et al. [35] argue that sharing an entire model 

(network) may not fully protect privacy, and thus propose sharing a partial model for 

federated learning on medical datasets. Specifically, clients only share the feature-learning 

part of a model for aggregation on the server while keeping the last several layers private. 

Similar strategies can also be found in [90].

(2) Differential Privacy.: Gradient information of a deep neural work may contain 

individual privacy that can be reconstructed by malicious parties. Differential privacy [91] 

could limit the certainty in inferring an individual’s presence in the training dataset. And 

several recent studies [48,73,92] propose to add Gaussian random noise to the computed 

gradients on the patients’ imaging data in each client/site, thus protecting privacy from the 

server and other clients.

(3) Attack and Defense.: Kaissis et al. [93] apply gradients attack [87] to a medical image 

classification system, and conduct an empirical study on its capability of reconstructing 

training images from clients in an FL system. Hatamizadeh et al. [94] design a gradient 

inversion algorithm to estimate the running statistics (i.e., mean and variance) of batch 

normalization layers to match the gradients from real images and the synthesized ones, 

thus generating synthesized images that are very similar to the original ones. They further 

propose a method to measure and visualize the potential data leakage.

3.4.2. Communication efficiency

Problem.: This research is dedicated to formulating strategies that optimize client–server 

communication, aiming to accelerate the convergence process and ensure more effective 

model training.

To improve the communication efficiency during FL training, Zhang et al. [31] propose a 

dynamic fusion-based FL approach for COVID-19 diagnosis. Their framework dynamically 

selects the participating clients for weight fusion according to the performance of local client 

models, and conducts model aggregation based on participating clients’ training time. If a 

client does not upload its updated model within a certain waiting time, it will be excluded by 

the central server for this aggregation round.

4. Software platforms and tools

In this section, we review several popular and influential federated learning platforms for 

medical image analysis. These software platforms provide application interfaces (APIs) for 

the development of FL systems, which can boost the efficiency and robustness of building 

large FL systems.

4.1. PySyft

PySyft [95]1 is an open-source FL library enabling secure and private machine learning by 

wrapping popular deep learning frameworks. It is implemented by Python and can run on 

1https://github.com/OpenMined/PySyft.
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Linux, MacOS, and Windows systems. PySyft has attracted more than 8000 stars and 1900 

forks on GitHub,2 which shows its popularity. Budrionis et al. [96] carry out an empirical 

study using PySyft on a medical dataset. Their experimental results demonstrate that the 

performance of machine learning models trained with federated learning is comparable to 

those trained on centralized data.

4.2. OpenFL

The Open Federated Learning (OpenFL)3 is an open-source FL framework initially 

developed for use in medical imaging. The OpenFL is built through a collaboration 

between Intel and the University of Pennsylvania (UPenn) to develop the Federated 

Tumor Segmentation (FeTS) platform.4 OpenFL supports model training with PyTorch and 

TensorFlow. Foley et al. [97] provide several use cases of OpenFL in medicine, such as 

tumor segmentation and respiratory distress syndrome prediction.

4.3. PriMIA

The Privacy-preserving Medical Image Analysis (PriMIA) [93] is an open-source framework 

for privacy-preserving decentralized deep learning with medical images. PriMIA is built 

upon the PySyft ecosystem which supports Python and PyTorch for deep learning 

development. It is compatible with a wide range of medical imaging data formats. The 

source code, documentation as well as publicly available data can be found online (https://

zenodo.org/record/4545599). For example, Kaissis et al. [93] use PriMIA to perform 

classification on pediatric chest X-rays and achieve good results.

4.4. Fed-BioMed

Fed-BioMed5 is an open-source federated learning software for real-world medical 

applications. It is developed by Python and supports multiple machine learning toolkits such 

as PyTorch, Scikit-Learn, and NumPy. It can also be used in cooperation with PySyft. Silva 

et al. [98] use Fed-BioMed to conduct multi-center analysis for structural brain imaging data 

(MRI) across different datasets and verify its effectiveness.

Due to the increasing and extensive influence of federated learning, many software 

platforms and frameworks have been proposed to date. More comparative reviews and 

evaluations can be found in [15,99].

5. Medical image datasets for federated learning

In this section, we introduce the benchmark datasets that have been commonly used in 

federated learning for medical image analysis. For clarity, these datasets are presented in 

terms of different research objects/organs, as shown in Table 1.

2https://github.com.
3https://github.com/securefederatedai/openfl.
4https://www.fets.ai.
5https://fedbiomed.gitlabpages.inria.fr.
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5.1. Medical image data usage overview

For most existing FL research in medical image analysis, there are typically two ways of 

using different imaging datasets for simulation and experiment. The first way is to directly 

use databases from different medical sites/centers [48,100]. These databases are typically 

research projects that are built through multi-center cooperation. Thus, they are ideal choices 

to set up a FL simulation environment. Another popular way to build an FL experiment 

platform is to split a very large-scale medical image dataset into several subsets [32,43], 

where each subset is treated as a client dataset.

5.2. Brain images

5.2.1. ADNI—The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [101,102] is 

the largest and most influential benchmark for the research of Alzheimer’s Disease (AD), 

including ADNI-1, ADNI-2, ADNI-GO and ADNI-3. Structural brain MRI, functional MRI, 

and positron emission tomography (PET) from 1900+ subjects and 59 centers are provided 

for analysis and research.

5.2.2. ABIDE—Autism Brain Imaging Data Exchange (ABIDE) initiative [103] is a 

benchmark database for research on Autism spectrum disorder. ABIDE contains both 

structural and functional brain images independently collected from more than 24 imaging 

laboratories/sites around the world.

5.2.3. BraTS—Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) [104] 

is a benchmark dataset for brain tumor segmentation. BraTS is updated regularly for the 

Brain Tumor Segmentation Challenge.6 It contains brain MRIs acquired by various scanners 

from around 19 independent institutions.

5.2.4. RSNA brain CT—Radiological Society of North America (RSNA) [105] 

is a large-scale multi-institutional CT dataset for intracranial hemorrhage detection. 

RSNA contains 874,035 images which are compiled and archived from three different 

institutions, i.e., Stanford University (Palo Alto, USA), Thomas Jefferson University 

Hospital (Philadelphia, USA), and Universidade Federal de São Paulo (São Paulo, Brazil).

5.2.5. UK Biobank—UK Biobank [106] is a large-scale, influential biomedical database 

and research resource containing genetic and health data from half a million participants. As 

for imaging data, it has four imaging centers and contains valuable brain scans and cardiac 

MRI information. As a large-scale database with multiple imaging centers, UK Biobank can 

contribute to varied research areas in medical image analysis, such as federated learning and 

domain adaptation.

5.2.6. IXI—IXI Dataset7 consists of around 600 MR images from healthy subjects. All 

the images are acquired from three different hospitals (using different scanners or scanning 

parameters) in London.

6https://www.med.upenn.edu/cbica/brats.
7https://brain-development.org/ixi-dataset.
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5.3. Chest/lung/heart images

5.3.1. CheXpert—CheXpert [107] is a large-scale dataset including 224,316 chest 

radiographs of 65,240 patients. These images are acquired from Stanford University Medical 

Center.

5.3.2. ChestX-ray—The ChestX-ray (also known as ChestX-ray14)8 is a large and 

publicly-available medical image dataset that contains 112,120 X-ray images (in frontal-

view) of 30,805 patients with 14 disease labels. It is expanded from the ChestX-ray8 

dataset [108] by adding six thorax diseases, including Edema, Emphysema, Fibrosis, Hernia, 

Pleural, and Thickening.

5.3.3. COVID-19 Chest X-ray—The COVID-19 Chest X-ray (also known as COVID-19 

CXR) [109]9 is a publicly-available database of chest X-ray images, containing 3616 

COVID-19 positive cases, 10,192 normal controls, 6012 lung opacity (non-COVID 

infection), and 1345 viral pneumonia cases.

5.3.4. COVIDx—The COVIDx dataset [110] is a large-scale and fully accessible database 

comprising 13,975 chest X-ray images of 13,870 patients. COVIDx includes 358 chest X-

ray images from 266 COVID-19 patient cases, 8066 normal cases, and 5538 non-COVID-19 

pneumonia cases.

5.3.5. ACDC—Automatic Cardiac Diagnosis Challenge (ACDC) [111] is a large publicly 

available and fully annotated dataset for cardiac MRI assessment. This dataset consists of 

150 patients who are divided into 5 categories in terms of well-defined characteristics based 

on physiological parameters.

5.3.6. M&M—Multi-Center, Multi-Vendor, and Multi-Disease Cardiac Segmentation 

(M&Ms) Challenge [112]10 is a publicly available cardiac MRI dataset. This dataset 

contains 375 participants from 6 different hospitals in Spain, Canada, and Germany. All the 

cardiac MRIs are acquired by 4 different scanners (i.e., GE, Siemens, Philips, and Canon).

5.4. Skin images

5.4.1. HAM10000—The “Human Against Machine with 10000 training images” 

(HAM10000) [113]11 is a popular large-scale dataset for diagnosis of pigmented skin 

lesions. It consists of 10,015 dermatoscopic images from different sources. Cases in this 

dataset include a collection of all representative diagnostic categories of pigmented lesions.

5.4.2. ISIC—The International Skin Imaging Collaboration (ISIC) challenge dataset 

[114]12 is a large-scale database, containing a series of challenges for skin lesion image 

analysis. ISIC has become a standard benchmark dataset for dermatoscopic image analysis.

8https://www.kaggle.com/datasets/nih-chest-xrays/data.
9https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database.
10https://www.ub.edu/mnms.
11https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000.
12https://challenge.isic-archive.com/data.
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5.5. Others

5.5.1. Eye: Kaggle Diabetic Retinopathy (Retina)—The Kaggle Diabetic 

Retinopathy (Retina)13 is a large-scale dataset of color digital retinal fundus images for 

diabetic retinopathy detection. It includes 17,563 pairs of color digital retinal fundus images. 

Each image in this dataset is provided a label (a rated scale from 0 to 4) in terms of the 

presence of diabetic retinopathy, where 0 to 4 represents no, mild, moderate, severe, and 

proliferative diabetic retinopathy, respectively.

5.5.2. Abdomen: PROMISE12—The MICCAI 2012 Prostate MR Image Segmentation 

challenge dataset (PROMISE12) [115] is a publicly available dataset for the evaluation of 

prostate MRI segmentation methods. It consists of 100 prostate MRIs acquired by different 

scanners from 4 independent medical centers, including University College London in 

the United Kingdom, Haukeland University Hospital in Norway, the Radboud University 

Nijmegen Medical Centre in the Netherlands, and the Beth Israel Deaconess Medical Center 

in the USA.

5.5.3. Histology: TCGA—The Cancer Genome Atlas (TCGA) [116]14 is a large-scale 

landmark cancer genomics database. Whole-slide images for normal controls and cancers 

are provided for histology and microscopy research.

5.5.4. Knee: fastMRI—The fastMRI [117,118]15 is a large-scale dataset for medical 

image reconstruction using machine learning approaches. This dataset contains more than 

1500 knee MRIs (1.5 and 3 T) and DICOM images from 10,000 clinical knee MRIs (1.5 and 

3 T).

5.5.5. MedMNIST—MedMNIST [119] is a dataset for medical image classification. 

Similar to the MNIST dataset,16 all the images in the MedMNIST are stored as the 

size of 28 × 28. The MedMNIST includes 10 pre-processed subsets, covering primary 

modalities (e.g., MR, CT, X-ray, Ultrasound, OCT). As a lightweight dataset with diversity, 

MedMNIST is good for rapid prototyping machine learning algorithms (see Table 1).

6. Experiment

To evaluate federated learning (FL) performance in medical image analysis, we compared 

various FL approaches using the ADNI dataset [101,102]. This dataset comprises 

two subsets: ADNI-1, featuring 1.5T T1-weighted MRIs from 428 subjects (199 with 

Alzheimer’s Disease (AD) and 229 normal controls (NCs)), and ADNI-2, with 3.0T T1-

weighted MRIs from 360 subjects (159 AD patients and 201 NCs). Duplicate subjects 

across ADNI-1 and ADNI-2 were excluded for independence. Analysis focused on 90 brain 

regions-of-interest (ROIs) based on the AAL atlas [162], using mean gray matter volumes as 

features. For each experiment, 80% of the data was used for training and 20% for testing, 

13https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data.
14.https://www.cancer.gov/ccg/research/genome-sequencing/tcga.
15https://fastmri.med.nyu.edu.
16http://yann.lecun.com/exdb/mnist.
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with this split performed five times to ensure reliability. Results include mean and standard 

deviation values to account for variability.

6.1. Experimental setup

The task here is AD vs. NC classification. We use four metrics for performance evaluation, 

including classification accuracy (ACC), sensitivity (SEN), specificity (SPE), and area under 

the ROC curve (AUC). Logistic Regression is used as the machine learning model for each 

FL setting, which has been widely used in medical imaging analysis [163–166]. We compare 

3 conventional machine learning and 3 popular FL methods in our study, with details given 

below.

(1) Cross.—Training is conducted on one client dataset and then the trained model is 

directly tested on the data of the other client, as shown in Fig. 7(a). Specifically, ADNI-1 

is used as the training set (denoted as ADNI1-tr), then the trained model is tested on 

ADNI-2. ADNI-2 is used as the training set (denoted as ADNI2-tr), then the trained model is 

evaluated on ADNI-1.

(2) Single.—Training and testing are conducted within each client dataset separately, as 

shown in Fig. 7(b). In each client, 80% of the data is used for training while the other is used 

for testing.

(3) Mix.—All the training data in each client are pooled together for training a model, then 

the trained model is evaluated on the test data of all the clients, as shown in Fig. 7(c). Note 

this strategy needs to share data, and thus, could not preserve privacy.

(4) FedAVG [12,167].—Each client trains its own model, then their model weights (e.g., 

the weight w of logistic regression) are aggregated to calculate a global model. The final 

trained global model is tested on all the test data in each client, as shown in Fig. 7(d). The 

number of iterations for local model training is set to 10.

(5) FedSGD [12].—Each client trains a local model, and then the gradients from each 

client are aggregated to calculate a global model. The global model is then applied to all the 

test data in each client for assessment, as shown in Fig. 7(d). The number of iterations for 

local model training is set to 10.

(6) FedProx [168].—Every client trains its own model with an additional proximal term 

(the coefficient μ is set to 0.1). Local training is conducted only once. The model weights of 

each client are aggregated to get a global model. The trained global model is then assessed 

on the test data in each client, as shown in Fig. 7(d).

6.2. Result and analysis

The classification result of different methods is shown in Table 2. In the “Cross” setting, the 

client dataset for training is denoted as “<client> (tr)”. Since there is only one test dataset in 

this setting, no standard deviation is reported.
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From Table 2, we can get the following observations. (1) The “mix” strategy has the 

best performance. This is because it combines all the training data of the clients and the 

learning model can get access to the largest amount of data information than the other 

methods. (2) The “cross” strategy has the worst performance. This should be caused by the 

well-known “domain shift” problem. Since ADNI-1 and ADNI-2 have different scanning 

parameters, then directly transferring a model may not achieve good classification results. 

(3) Federated learning methods achieve satisfactory performance. This can be explained 

by FL can leverage more data information than the baseline methods (i.e., “cross” and 

“single”), even without cross-site data sharing. (4) Among the FL methods, we find that 

aggregation of model weights (i.e., FedAvg, FedProx) can be more advantageous than a 

fusion of the gradients of each client model (i.e., FedSGD).

7. Discussion

7.1. Challenges of federated learning for medical image analysis

7.1.1. Data heterogeneity among clients—Data heterogeneity is widespread in real-

world medical image sites. Such heterogeneity can hardly be avoided in practice due to the 

following factors. (1) Medical images from different sites/datasets are typically acquired 

by different scanners or scanning protocols. (2) Patients in different sites/hospitals have 

different distributions. The heterogeneous data distribution, i.e., “domain shift” or “client 

shift”, may cause significant degradation or biased performance of a federated learning 

system. How to alleviate the negative influence of data heterogeneity is one of the most 

important and challenging research problems for federated learning in medical imaging.

7.1.2. Privacy leakage/poisoning attacks—In classic FL, only the model parameters 

are exchanged and updated without data sharing. This is considered an effective way of 

privacy protection. But further research reveals that FL still faces privacy and security risks, 

including privacy leakage [87–89] and poisoning attacks [169,170]. These issues can happen 

at both the server end and the client end. Since an FL system contains the communication 

and interaction of many entities/parties, how to effectively protect individual privacy and 

data security is a very challenging problem.

7.1.3. Technological limitations—While a majority of research is centered on 

algorithm design for various medical applications, the practical implementation of FL 

systems encounters significant technological hurdles. For instance, certain FL algorithms 

demand substantial computational resources, posing challenges for the underlying hardware 

infrastructure. Furthermore, addressing communication costs, optimizing network resource 

allocation, and ensuring synchronization are all formidable obstacles when striving to 

construct a robust and functional FL system in real life.

7.1.4. Long-term viability of FL-based medical image analysis—Federated 

Learning is not just a novel machine learning algorithm; it represents a dynamic and 

systematic approach to engineering. It is imperative to focus on the long-term viability 

of FL systems when applied to medical image analysis. This involves addressing critical 

issues such as scalability, sustainability, and evolving regulations. In real-world scenarios, 
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unforeseen challenges emerge, such as clients leaving or joining the training process, as 

well as unexpected technical and connectivity issues. Effectively managing an FL system for 

robust and stable long-term medical image analysis is a complex endeavor.

7.2. Future research directions

7.2.1. Dealing with client shift—Domain shift between client datasets (client shift) 

has become a major concern of federated learning in medical image analysis. To tackle this 

problem, domain adaptation [3] has attracted extensive interest. Classic domain adaptation 

methods typically need access to both source and target domains which may violate 

the privacy protection restraint in FL. Thus, developing more efficient federated domain 

adaptation methods will be a promising research direction. Another promising solution is 

personalized FL techniques [40,171] which utilize local data to further optimize a trained 

global model.

7.2.2. Multi-modality fusion for federated learning—Numerous imaging 

techniques/tools have been developed to create various visual representations of every 

subject, such as structural MRI, functional MRI, computed tomography (CT), and positron 

emission tomography (PET). Most existing FL studies only focus on images of a single 

modality. How to leverage multi-modal imaging data in an FL system is an interesting 

problem with practical value. Currently, a few works make early steps on FL with multi-

modal medical data [172]. More research work is expected on this topic in the future.

7.2.3. Model generalizability for unseen clients—Most existing FL studies focus 

on model training and test within a fixed federation system. That is, a global model is 

trained on and applied to the same client datasets (internal clients). An interesting question 

is: When facing data from unseen sites that are outside of a federation (outside clients), how 

to guarantee the generalizability of an FL model? This is typically a domain generalization 

problem [173,174] or a test-time adaptation problem (i.e., using inference samples as a 

clue of the unseen distribution to facilitate adaptation) [175,176]. Currently, there are a few 

works that introduce domain generalization into federated learning [45,148]. In the future, 

evaluating and enhancing the generalizability of a trained FL model to unseen sites or even 

unseen classes (i.e., open-set recognition [177,178]) will be a promising research direction.

7.2.4. Weakly-supervised learning for federated learning—Weakly-supervised 

learning is a promising technique that handles data with incomplete, inexact, and inaccurate 

labels. These problems are common and widespread in medical imaging data. How to deal 

with these “imperfect” data (e.g., learning from noisy labels [179]) in an FL system is 

worthy of further exploration.

7.2.5. Federated learning security: Attack and defense—Several existing FL 

systems have been shown to be vulnerable to internal or external attacks, concerning system 

robustness and data privacy [169]. Further exploration of strong defense strategies in FL 

is helpful to enhance the security of FL systems. Another interesting question is: if an 

institution wants to withdraw from a federation, how to guarantee its data has been removed 
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from the trained FL model? One solution is the data auditing technique [180] which can also 

be used to check if a poisoned/suspicious dataset is used in FL training.

7.2.6. Blockchain and decentralization of federated learning—Most existing FL 

methods on medical tasks employ a centralized paradigm which demands a trustworthy 

central server. This pattern gradually shows many disadvantages such as vulnerability 

to poisonous attacks and lack of credibility. Recently, blockchain has been identified as 

a potentially promising solution to this problem [181]. Using blockchain can avoid the 

dependence on the central server which can be the bottleneck of the whole federation. 

Some work has made efforts on this point for medical image analysis through leveraging 

blockchain [182,183] or other decentralization methods [184]. Currently, very limited work 

has been performed in this direction for medical image analysis, thus, there is much room 

for future research.

7.2.7. Federated learning for medical video analysis—Most existing FL systems 

focus on combining cross-site medical images. As an extension of 2D/3D medical images, 

medical videos have been rarely explored. Some pioneering work has employed FL to 

effectively take advantage of medical video from multiple sites/datasets for surgical phase 

recognition [74]. In the future, FL systems consisting of medical videos for surgical or other 

applications will attract more research attention.

7.2.8. Large-scale medical image benchmark for federated learning—Most 

existing medical image databases for FL research only consist of relatively small datasets 

for each client. Some work just split a single large dataset (e.g., CheXpert [107]) into 

different parts which are simulated as different client datasets. There is a lack of large-scale 

federations that include various sites across the world. Only a few works have leveraged 

real-world datasets from multiple cities or countries. Li et al. [34] collect chest X-ray 

images from different cities for COVID-19 detection. Roth et al. [185] leverage seven 

clinical institutions from across the world to build a federated learning model for breast 

density classification. Dayan et al. [100] build a large-scale federation through international 

cooperation. Building large-scale benchmarks (including publicly available medical imaging 

databases and state-of-the-art FL algorithms) through extensive international cooperation is 

beneficial for FL applications in medicine.

7.2.9. Model interpretability—In clinical practice, one of the most significant hurdles 

in adopting machine learning and AI lies in the “black box” nature of certain machine 

learning systems, such as deep learning [186]. Even as FL emerges as a promising 

machine learning prototype, it encounters similar challenges. Thus, the issue of model 

interpretability remains a critical factor to address for the seamless integration of FL into 

clinical practice. While some researchers have made an early effort towards this topic [187], 

more explorations are expected in the future.

7.2.10. Real-world implementation and practical issues—The majority of 

research on FL in medical imaging has primarily focused on algorithm development and 

simulation. FL methods, while promising, can encounter difficulties during real-world 

implementation, such as compatibility with existing hospital systems, integration challenges, 
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and user adoption hurdles. Addressing these practical considerations is crucial for advancing 

the application of FL in medical image analysis.

8. Conclusion

In this paper, we review the recent advances in federated learning (FL) for medical image 

analysis. We summarize existing FL methods from a system view and categorize them into 

client-end, server-end, and client–server communication methods. For each category, we 

provide a novel “question–answer” paradigm to elaborate on the motivation and mechanism 

of different FL methods in medical image analysis. We also introduce existing benchmark 

medical image datasets that have been used for federated learning. In addition, we conduct 

an experiment to empirically compare representative FL methods on a popular benchmark 

imaging database (i.e., ADNI). We further discuss current challenges, potential research 

opportunities, and future directions of FL in medical image analysis. We hope that this 

survey paper will provide researchers with a clear picture of the recent development of FL 

in medical image analysis and that more research efforts can be inspired and initiated in this 

exciting research field.
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Fig. 1. 
Overview of federated learning (FL) for medical image analysis, including a server and 

multiple clients. Each selected client trains a model on its local dataset. The server collects 

the local models and calculates a global model that is broadcast to all the selected clients for 

deployment.
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Fig. 2. 
Overview of the number of papers (in terms of published years) that have been collected for 

this survey on federated learning in medical image analysis.
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Fig. 3. 
Overview of federated learning (FL) methods for medical image analysis.
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Fig. 4. 
Domain shift among different medical sites (domains). Domain adaptation aims to reduce 

domain differences and enhance machine learning performance across different sites.

Source: Image courtesy to Guan et al. [38].
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Fig. 5. 
Different local updates for clients with different computation and data resources.
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Fig. 6. 
Corrupted clients will lead to a corrupted global model, thus negatively influencing the 

entire federated learning system.
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Fig. 7. 
Different settings for performance comparison.
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