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Abstract
Background: Understanding the evolutionary relationships among species based on their genetic
information is one of the primary objectives in phylogenetic analysis. Reconstructing phylogenies
for large data sets is still a challenging task in Bioinformatics.

Results: We propose a new distance-based clustering method, the shortest triplet clustering
algorithm (STC), to reconstruct phylogenies. The main idea is the introduction of a natural definition
of so-called k-representative sets. Based on k-representative sets, shortest triplets are reconstructed
and serve as building blocks for the STC algorithm to agglomerate sequences for tree
reconstruction in O(n2) time for n sequences.

Simulations show that STC gives better topological accuracy than other tested methods that also
build a first starting tree. STC appears as a very good method to start the tree reconstruction.
However, all tested methods give similar results if balanced nearest neighbor interchange (BNNI)
is applied as a post-processing step. BNNI leads to an improvement in all instances. The program
is available at http://www.bi.uni-duesseldorf.de/software/stc/.

Conclusion: The results demonstrate that the new approach efficiently reconstructs phylogenies
for large data sets. We found that BNNI boosts the topological accuracy of all methods including
STC, therefore, one should use BNNI as a post-processing step to get better topological accuracy.

Background
Reconstructing the evolutionary relationships among spe-
cies based on their genetic information is one of the pri-
mary objectives in phylogenetic analysis. In recent years,
numerous heuristics to reconstruct phylogenies for large
data sets have been proposed [1-11]. In addition, parallel
tree-reconstruction programs have been implemented
[12-15].

To date, distance-based methods introduced by Cavalli-
Sforza and Edwards [16] and by Fitch and Margoliash [17]
appear most appropriate to reconstruct phylogenies based
on thousands of sequences. These methods are a compro-
mise between computational speed and topological accu-
racy [1,3,5-7] and run typically in O(n3) time for n
sequences [1,3,5] or in O(n2) for recently suggested
approaches [6,7]. Clustering algorithms form a major
class of distance-based methods [18]. They do not have an
explicit objective function that needs to be optimized.
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They rather group sequences (or taxa) iteratively to recon-
struct a distance-based phylogenetic tree. UPGMA is a
popular method to infer phylogenies with the constraint
that a molecular clock is imposed on the evolutionary
process. Other clustering approaches have been proposed
to relax the molecular clock assumption [1,3,5,19-21].

An attempt to boost the accuracy and to reduce the com-
putational burden is the introduction of k-representative
set concepts [10,11]. k-representative sets consist of at
most k elements but retain the most important informa-
tion from whole sets. In this paper, we extend our original
approach [10] by introducing a more natural k-represent-
ative set concept. In a nutshell, representative sets are
regarded as components to construct shortest triplets,
each of which comprises three closely related sequences
from three k-representative sets. The collection of shortest
triplets serves as building block for a new distance-based
clustering method called shortest triplet clustering algo-
rithm (STC).

Results
Simulations were run on a PC cluster with 16 nodes. Each
node has two 1.8 GHz processors and 2 GB RAM. Seq-Gen
[22] was used to evolve sequences along trees using the
Kimura two-parameter model [23] with a transition/
transversion ratio of 2.0. We generated 100 simulated data
sets of 500 sequences each with sequence lengths 500,
1000 and 2000 nucleotides (nt), respectively. As one
model tree, we used the rbcl gene tree with diameter 0.36
substitutions per site as inferred from an alignment of 500
rbcl-genes [10]. We call this the rbcl-simulation.

In a second experiment, the so-called large simulation, tree
topologies were drawn from the Yule-Harding distribu-
tion [24], and edge lengths were drawn from an exponen-
tial distribution and subsequently rescaled such that the
mean diameter of the tree was either 0.1, 0.5, 1.0, or 1.5.
For each value of the diameter we generated 100 trees with
1000 sequences and 100 trees with 5000 sequences. Thus,
a total of 800 trees were used.

Finally, we tested the accuracy and runtime of the STC and
compared it with six other commonly used distance-based
methods. More specifically, we investigate the perform-
ance of the Neighbor-Joining method (NJ) [1] imple-
mented in PAUP* 4.0 [25], BIONJ [3], Weighbor 1.2 [5],
Harmony Greedy Triplet and Four Point Condition
(HGT/FP) [7] as well as Greedy Minimum Evolution
(GME) and Balanced Minimum Evolution (BME) [6].
Unfortunately, no distance-based program is available for
the disc-covering method [4]. All methods were com-
bined with DNADIST version 3.5 [26] and pairwise dis-
tances were corrected for multiple hits according to the
model used in the simulation. Moreover, we examined

the performance of all methods when the balanced near-
est neighbor interchange (BNNI) [6] is used as a post-
processing step.

Further, to illustrate the performance of STC we re-ana-
lyzed the 96-taxon alignments of sequence length 500 nt,
that were analyzed in [6] and available at http://
www.lirmm.fr/~guindon/simul/. The 6000 trees were
split into three groups called "slow" (0.2 substitutions per
site), "moderate" (0.4 substitutions per site) and "fast"
(1.0 substitutions per site). We call this the re-analyzed
simulation.

The accuracy of a tree reconstruction method for a simu-
lated data set is measured by the Robinson and Foulds
(RF) distance [27] between the inferred tree and the
model tree used to generate the data set. The RF distance
between two trees is the number of bi-partitions present
in one of the two trees but not the other, divided by the
number of possible bi-partitions. Thus, the smaller the RF
distance between two trees the closer are their topologies.
In other words, the smaller the RF distance is between the
inferred tree and the model tree the higher is the topolog-
ical accuracy of the tree reconstruction method.

In the following we discuss the results of the rbcl-simula-
tion, and the large simulation and the re-analyzed simulation.

rbcl-simulation
Table 1 shows that the STC outperforms all other methods
analyzed in terms of topologlcal accuracy. For instance,
the RF distance between the STC-tree and the model tree
is on average 0.177 (with respect to the sequence length of
500 nt) and better than NJ (0.190), slightly better than the
second best method BME (0.184) and much better than
HGT/FP (0.512). Table 1 also demonstrates that all tested
methods including STC give higher topologlcal accuracy
when the sequence length is increased. However, Table 2
shows that other methods in combination with BNNI out-
perform STC without BNNI. The combination of STC and
BNNI shows similar performance as the combinations of
NJ (BIONJ, Weighbor) and BNNI and, slightly better
results than the combination of GME (HGT/FP) and
BNNI.

Large simulation
Due to the increase in runtime, Weighbor could not be
tested. Table 3 and 4 show that STC gives better results
than the other methods independent of the diameter. All
methods display a decrease in accuracy when the number
of sequences changes from 1000 to 5000. As shown in
Table 5 and 6, BNNI boosts the accuracy of all methods
including STC. All methods give similar results when
being used together with BNNI.
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Re-analyzed simulation
Except for STC, the accuracies for the other methods dis-
played in Table 7 and 8 were taken from [6]. Table 7
shows that STC outperforms the other methods in terms
of topological accuracy with the exception that Weighbor
is slightly better than STC with respect to the slow simula-
tion group. If BNNI is applied, all methods exhibit an
almost identical performance (see Table 8).

Another look at the performance
Instead of looking at the average RF distance, we suggest
to take a closer look at the simulated data. For each simu-
lated data set, that is subjected to the STC and six other
tree reconstruction methods mentioned above, we com-
pute the RF distance between the reconstructed tree and
the model tree for all methods. Figure 1 illustrates the
results for the large simulation when comparing STC with

Table 1: The average Robinson and Foulds distance of 100 simulated data sets of 500 sequences each with sequence lengths 500, 1000 
and 2000 nt (rbcl simulation). Methods are used without BNNI.

sequence length NJ BIONJ Weighbor HGT/FP GME BME STCk = 5

500 .190 .188 .194 .512 .240 .184 .177
1000 .100 .098 .099 .409 .144 .096 .088
2000 .049 .048 .050 .313 .082 .046 .040

Table 2: The average Robinson and Foulds distance of 100 simulated data sets of 500 sequences each with sequence lengths 500, 1000 
and 2000 nt (rbcl simulation). Methods are used with BNNI.

sequence length NJ BIONJ Weighbor HGT/FP GME BME STCk = 5

500 .162 .162 .162 .166 .163 .163 .162
1000 .079 .079 .079 .079 .080 .079 .079
2000 .035 .035 .035 .036 .036 .035 .035

Table 3: The average Robinson and Foulds distance of 100 simulated data sets of 1000 taxa for each tree diameter 0.1, 0.5, 1.0 and 1.5 
and with sequence length 1000 nt (large simulation). Methods are used without BNNI.

number sequences NJ BIONJ HGT/FP GME BME STCk = 5

1000 (0.1) .146 .146 .378 .168 .143 .139
1000 (0.5) .093 .089 .193 .126 .075 .066
1000 (1.0) .094 .090 .188 .132 .074 .062
1000 (1.5) .097 .091 .182 .138 .073 .061

Table 4: The average Robinson and Foulds distance of 100 data sets of 5000 taxa for each tree diameter 0.1, 0.5, 1.0 and 1.5 and with 
sequence length 1000 nt (large simulation). Methods are used without BNNI.

number sequences NJ BIONJ HGT/FP GME BME STCk = 5

5000 (0.1) .178 .179 .442 .207 .173 .170
5000 (0.5) .109 .105 .210 .156 .084 .072
5000 (1.0) .107 .102 .192 .155 .073 .064
5000 (1.5) .112 .106 .188 .164 .072 .063
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NJ (left column) and STC with the second best method
BME (right column). In each diagram specified by the
number of taxa and reconstruction methods, 400 points
are displayed, that resulted from 100 simulations for each
of the tree-diameters (0.1, 0.5, 1.0 and 1.5). Although four
tree-diameters were studied only two clouds of points are
discernible, where the cloud in the north-east corner of

each diagram represents the simulations with the tree-
diameter 0.1. The remaining 300 points gather in the
south-west cloud because the RF-distances from trees with
diameter 0.5, 1.0, 1.5 are not substantially different from
each other (see Table 3 and 4). More precisely, the hori-
zontal and vertical axes indicate the RF distances of STC
and NJ (or BME), respectively. Each point in the graph

Table 5: The average Robinson and Foulds distance of 100 simulated data sets of 1000 taxa for each tree diameter 0.1, 0.5, 1.0 and 1.5 
and with sequence length 1000 nt (large simulation). Methods are used with BNNI.

number sequences NJ BIONJ HGT/FP GME BME STCk = 5

1000 (0.1) .137 .137 .137 .137 .137 .138
1000 (0.5) .061 .061 .061 .061 .061 .061
1000 (1.0) .057 .057 .057 .057 .057 .056
1000 (1.5) .055 .055 .055 .055 .055 .055

Table 6: The average Robinson and Foulds distance of 100 data sets of 5000 taxa for each tree diameter 0.1, 0.5, 1.0 and 1.5 and with 
sequence length 1000 nt (large simulation). Methods are used with BNNI.

number sequences NJ BIONJ HGT/FP GME BME STCk = 5

5000 (0.1) .168 .168 .168 .168 .168 .168
5000 (0.5) .066 .066 .066 .066 .066 .066
5000 (1.0) .057 .057 .057 .057 .057 .057
5000 (1.5) .055 .055 .055 .055 .055 .055

Table 7: The average RF distance of the 96-taxon alignments of sequence length 500 nt, that were analyzed in [6]. The 6000 trees were 
split into three groups called "slow" (0.2 substitutions per site), "moderate" (0.4 substitutions per site) and "fast" (1.0 substitutions per 
site). Except for STC, the accuracies for the other methods were taken from [6]. Methods are used without BNNI.

number 
sequences

NJ BIONJ Weighbor HGT/FP GME BME STCk = 5

96 (slow) .183 .180 .178 .512 .199 .186 .179
96 (moderate) .136 .134 .129 .480 .158 .137 .125
96 (fast) .115 .112 .103 .465 .144 .117 .102

Table 8: The average RF distance of the 96-taxon alignments of sequence length 500 nt, that were analyzed in [6]. The 6000 trees were 
split into three groups called "slow" (0.2 substitutions per site), "moderate" (0.4 substitutions per site) and "fast" (1.0 substitutions per 
site). Except for STC, the accuracies for the other methods were taken from [6]. Methods are used with BNNI.

number 
sequences

NJ BIONJ Weighbor HGT/FP GME BME STCk = 5

96 (slow) .173 .173 .173 .175 .173 .173 .173
96 (moderate) .119 .118 .118 .123 .118 .118 .116
96 (fast) .090 .090 .091 .098 .091 .090 .090
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presents the RF distance for a simulated data set. Points
above the dotted line are examples where the RF distance
of the STC-tree is less than the RF distance of the NJ-tree
or BME-tree. Thus, the STC gives higher topological accu-
racy than NJ or BME with respect to the simulated data set.
For example, Figure 1a illustrates the comparison between
STC and NJ with respect to 1000 taxa data sets. 379 out of
400 points are above the diagonal, thus, STC gives better
results than NJ in about 95% of the simulations. For the
remaining 21 alignments (points), two methods showed
the same RF distance. Finally, we found 19 points below
the diagonal in which case NJ outperforms STC. For the
large simulation (5000 taxa), NJ is worse than STC in all
cases. However, the second best method BME is better

than STC in 11% and 5% of the cases with respect to 1000
and 5000 sequence data sets.

Figure 2 shows the same analysis for the rbcl simulation.
It shows that with increasing sequence length the cloud of
points moves towards zero. From Figure 2 we learn that in
some instances NJ (or BME) performs better (with regard
to the RF distance) than STC, i.e. 20%, 12%, 8% (or 34%,
17%, 14%) of the simulations for sequence lengths 500,
1000 and 2000 nt, respectively.

Similar results hold for the other methods. These results
are summarized in Table 9 where we show the percentage
of simulations in which STC is at least as good as the other
methods.

The comparisons of topological accuracy between STC, NJ and BME for the large simulationFigure 1
The comparisons of topological accuracy between STC, NJ and BME for the large simulation. Each point in the graph presents 
the Robinson and Foulds (RF) distance for a simulated data set. Points above the dotted line are examples where the RF dis-
tance of the STC-tree is less than the RF distance of the NJ-tree or BME-tree. Thus, the STC gives higher topological accuracy 
than NJ or BME with respect to the simulated data set.
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The comparisons of topological accuracy between STC, NJ and BME for the rbcl simulationFigure 2
The comparisons of topological accuracy between STC, NJ and BME for the rbcl simulation. Each point in the graph presents the 
Robinson and Foulds (RF) distance for a simulated data set. Points above the dotted line are examples where the RF distance of 
the STC-tree is less than the RF distance of the NJ-tree or BME-tree. Thus, the STC gives higher topological accuracy than NJ 
or BME with respect to the simulated data set.

Table 9: The percentage of cases where STC is at least as good as other tested methods in terms of RF distance. The number in 
parentheses is the percentage of cases where STC is equally good as other tested methods. Methods are used without BNNI.

number sequences NJ BIONJ Weighbor HGT/FP GME BME

96 (500 nt) 68 (16) 65 (15) 57 (16) 100 (0) 73 (10) 70 (14)
500 (500 nt) 80 (4) 76 (4) 88 (3) 100 (0) 100 (0) 66 (1)
500 (1000 nt) 88 (3) 79 (4) 84 (4) 100 (0) 100 (0) 83 (6)
500 (2000 nt) 92 (6) 90 (4) 92 (3) 100 (0) 100 (0) 86 (9)
1000 (1000 nt) 95 (2) 95 (1) n.d. 100 (0) 100 (0) 89 (15)
5000 (1000 nt) 100 (0) 99 (0) n.d. 100 (0) 100 (0) 95 (1)

Table 10: The percentage of cases where STC is better than other tested methods in terms of RF distance. The number in parentheses 
is the percentage of cases where STC is worse than other tested methods. Methods are used with BNNI.

number sequences NJ BIONJ Weighbor HGT/FP GME BME

96 (500 nt) 9 (8) 8 (8) 10 (10) 12 (10) 10 (8) 10 (9)
500 (500 nt) 34 (37) 35 (39) 35 (36) 59 (29) 46 (33) 41 (39)
500 (1000 nt) 22 (19) 17 (23) 18 (22) 23 (28) 30 (20) 24 (20)
500 (2000 nt) 10 (13) 8 (7) 10 (8) 9 (8) 12 (10) 7 (10)
1000 (1000 nt) 30 (28) 27 (29) n.d. 28 (22) 30 (24) 28 (27)
5000 (1000 nt) 48 (40) 42 (44) n.d. 45 (45) 52 (37) 43 (43)

 0.3  0.3

 0.2  0.2

 0.1  0.1

 0  0
 0.3  0.3 0.2  0.2 0.1  0.1 0  0

R
F 

of
 N

J

R
F 

of
 B

M
E

RF of STC RF of STC

(a) STC versus NJ (500 sequences) (a) STC versus BME (500 sequences)

500 nt 500 nt

1000 nt

2000 nt

1000 nt
2000 nt
Page 6 of 14
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:92 http://www.biomedcentral.com/1471-2105/6/92
Again, if BNNI is applied we observe that no substantial
difference among the various approaches. The accuracy of
the methods is mostly determined by BNNI (see Table
10).

Conclusion
We are presenting k-representative sets which allow us to
design a fast and accurate method to reconstruct phyloge-
nies from large data sets with 1000 or more taxa. Simula-
tions show that STC gives better results than other tested
methods in terms of topological accuracy. However, if
BNNI is introduced as a subsequent optimization step,
the differences in the performance disappear. All methods
show more or less the same accuracy. Thus, one should
apply BNNI to improve the topological accuracy.

The time to reconstruct a tree of up to 1000 sequences is
not really an issue for all tested distance-based methods,
with the exception of Weighbor. Weighbor needed about
19 minutes to reconstruct a tree with 500 sequences, thus
it is only applicable to data sets with up to some hundred
sequences. For data sets with up to 1000 sequences, the
remaining methods needed less than one minute to out-
put a tree, thus the difference between methods in terms
of runtime is not significant. For data sets with 5000
sequences, STC (GME, HGT/FP or BME) with BNNI took
about 2.0 (2.5, 3.0 or 3.5) minutes to reconstruct a tree.
NJ (BIONJ) with BNNI were slower and consumed
approximately six minutes to output a tree. In short, the
combination of STC and BNNI efficiently reconstruct trees
for large data sets in both terms of topological accuracy
and runtime.

Finally, we did not systematically evaluate the impact of
the number of representatives k. We present some prelim-
inary results for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40,
50, 60, 70, 80, 90 and 100. Figure 3 shows that the RF dis-
tance of STC decreases when k grows from 1 to 5. This
proves our intuition that a too small number of triplets
leads to an inaccurate estimate of path lengths and edge
lengths. When k ranges from 5 to 10, the RF distance
remains more or less unchanged. For k ≥ 10, the RF dis-
tance increases steadily indicating a loss of accuracy. The
decrease in accuracy is explained by the inclusion of tri-
plets with large distances which include noise and disturb
the reconstruction. Thus, we chose k = 5 as a good com-
promise between the accuracy and computational com-
plexity for all data sets. That is, the practical complexity of
the STC algorithm is only O(n2).

Methods
In this section we introduce a new clustering algorithm to
reconstruct phylogenies based on distance matrices.

Additive distances
Let S = {s1, s2,..., sn} be a set of n objects (typically contem-
porary sequences/taxa), let D = D(uv) be a distance matrix
where D(uv) is the distance between two objects u and v.

Definition 1
The distance matrix D is additive if and only if it satisfies the
four-point condition [28]: for any quartet {u, v, w, x},

D(uv) + D(wx) ≤ max{D(uw) + D(vx), D(ux) + D(vw)}.

In this case, the objects s ∈  S are related by a tree T = (V,
E) where V is the set of vertices such that S ⊂  V and E =
{{v1, v2}|v1, v2 ∈  V} is the set of edges. A vertex with one
adjacent edge is called a leaf, all other vertices are called
internal nodes. We let L ⊂  V be the leaf set of the tree T.
Note that we typically require L ⊆  S in the phylogenetic
setting.

If D is additive, then there exists a map  and a

length function  such that

for all u, v ∈  S where p(φ (u), φ(v)) is the unique path con-

necting φ(u) and φ(v) in T and  denotes the
distances between vertices in T (cf. [29]). �(e) is called
edge length of the edge e. To avoid unnecessary complica-
tion, we consider only one-to-one maps from S on the leaf
set L of T. If D is additive, the reconstruction of tree T and
� is trivial. If D is not additive, methods are available that
try to fit a tree T to D with respect to an objective function
(cf. [30]). Thus, in the following we consider arbitrary dis-

tance matrices and we want to reconstruct a tree 

together with a length function .

Estimating edge lengths using triplets

We consider a subset X of S, then  induces a
map on a subtree of T such that the relationships of
objects in X are displayed by the subtree with leaf set φ(X).
The complement S0(X) = S - X we will call the unclassified
object set, because the relationships of objects in S0(X) to X
is not known from the subtree. Note that we will use S0

instead of S0(X) if X is clear from the context.

Let denote Tr = (Vr, Er) a rooted tree with root r and leaf set
Lr, and let Sr be a subset of S such that φ(Sr) = Lr. For con-
venience, we use Sr and Lr interchangeably.

Now, we consider the most simple edge length estimation
problem. That is, we would like to estimate the edge
lengths for a triplet tree {a, b, c} with distance matrix D
(see Figure 4a). Edge lengths are estimated as follows

ϕ  :   S V#

: E R# +

D uv e D u v
e p u v T( ) ( ) ( ( ), ( ))

( ( ), ( ))
= ≡∈∑ ϕ ϕ ϕ ϕ

D V V RT : × +#

T̂
ˆ

ϕ X S L( ) : #
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Now consider a rooted Tr with the inferred tree-like metric

. The rooted tree Tr consists of two rooted subtrees 

and  (see Figure 4b). For convenience, we will use Ti

instead of  if ri is clear from the context. The leaf set Sr

= {S1 ∪  S2} where Sr ⊂  S and S0 = S - Sr is not represented
in Tr. Then we can compute

for each triplet (s0, s1, s2) ∈  (S0 × S1 × S2).

With (s1r1) and (s2r2) we denote the known dis-

tances of s1 and s2 to their roots r1 and r2. Thus, we can

The impact of the number of representatives kFigure 3
The impact of the number of representatives k. The RF distance of STC decreases when k grows from 1 to 5. When k ranges 
from 5 to 10, the RF distance remains more or less unchanged. For k ≥ 10, the RF distance increases steadily indicating a loss 
of accuracy.

 0.2

 0.1

 0
 100 90 80 70 60 50 40 30 20 10 5 1

R
ob

in
so

n 
an

d 
Fo

ul
ds

 d
is

ta
nc

e

number representatives

96 taxa data sets
500 taxa data sets

1000 taxa data sets
5000 taxa data sets

( | ) ( ( ) ( ) ( )) ( )ar abc D ab D ac D bc= + −1
2

1a

( | ) ( ( ) ( ) ( )) ( )br abc D ab D bc D ac= + −1
2

1b

( | ) ( ( ) ( ) ( )) ( )cr abc D ac D bc D ab= + −1
2

1c

DTr
Tr1

Tr2

Tri

( | ) ( ( ) ( ) ( )) ( )s r s s s D s s D s s D s s0 0 1 2 0 1 0 2 1 2
1
2

2= + − a

( | ) ( ( ) ( ) ( )) ( )s r s s s D s s D s s D s s1 0 1 2 0 1 1 2 0 2
1
2

2= + − b

( | ) ( ( ) ( ) ( )) ( )s r s s s D s s D s s D s s2 0 1 2 0 2 1 2 0 1
1
2

2= + − c

DT1
DT2
Page 8 of 14
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:92 http://www.biomedcentral.com/1471-2105/6/92
compute for each triplet {s0, s1, s2} the lengths �(r1r) and
�(r2r) as

Note that, if D is additive and T1, T2 are isometric subtrees
of T, the lengths �(r1r) and �(r2r) do not depend on the
choice of the triplet {s0, s1, s2}.

Regardless of additivity considerations, we may define the
average length for a fixed s0 ∈  S0 as

We can estimate edge lengths �(r1r) and �(r2r) by using all
possible triplets as

Recovering a tree from a distance matrix
The largest path length criterion
We want to reconstruct a tree T = (V, E) with respect to a
distance matrix D such that DT represents D. To this end,
we use triplets and the notation of a rooted tree Tr together
with Equations 4 and 5.

Our algorithm starts with the observation that if we take
an arbitrarily rooted tree Tm with m ∈  S and length func-

tion , then there must be a pair of leaves (neighboring

leaves) that share an immediate most recent common
ancestor mrca which is farthest away from the root m with

respect to . In Figure 5, the pair (3, 4) satisfies this

condition, we say this pair fulfills the largest path length cri-
terion. The largest path length criterion easily generalizes
to arbitrarily rooted subtrees Ti and Tj of Tm, where all
descendants from the roots of Ti and Tj are in the vertex
sets Vi or Vj, respectively.

On the left, estimation of edge lengths �(ar|abc), �(br|abc) and �(cr|abc) of the triplet tree {a, b, c}Figure 4
On the left, estimation of edge lengths �(ar|abc), �(br|abc) and �(cr|abc) of the triplet tree {a, b, c}. On the right, estimation of 
path length �(s0r|s0s1s2) and edge lengths �(r1r|s0s1s2), �(r2r|s0s1s2) based on the triplet tree {s0, s1, s2}.
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Let  be the set of rooted subtrees of Tm (each leaf l ∈
Lm is considered as a rooted subtree Tl). Now consider two
disjoint rooted subtrees Ti and Tj of Tm where i, j ∈  Vm.
Then the distance �(m, mrca|mSiSj) from the mrca of Ti and
Tj to m is computed according to Equation 4, where Si and
Sj are the leaf sets of Ti and Tj, respectively. Then we pick

( , ) = argmax{�(m, mrca|mSiSj) | Ti, Tj ∈  }  (6)

as a pair of neighbors (if we detect more than one pair, we

randomly select one). By construction, ( , ) fulfills

the largest path length criterion.

If D is additive, �(m, mrca|mSiSj) is exactly the path length
from the mrca of (Ti, Tj) to m. In other words, the path

length from the mrca of ( , ) to m is large stand ( ,

) is a true neighboring pair. However, in real applica-

tions D is rarely additive, therefore the root m is selected
so as to avoid noise from stochastic errors involved with
large distance estimates [17]. To this end, m is selected
such that the distance from the farthest object to root m is
minimal,

med = argminm'∈ S{max{D(m'x)|x = 1,..., n}}  (7)

med is called a median object.

Moreover, to reduce the computational complexity of

finding a pair of neighbors ( , ) using Equation 6,

we store for each Ti ∈   its potential neighbor Ti' ∈  
such that

Ti' = argmax{�(med, mrca|med, Si, Sj)|Tj ∈  }.  (8)

Now the neighboring pair ( , ) fulfilling the largest

path length criterion is determined as follows

( , ) = argmax{�(med, mrca|med, Si, Si')|Ti ∈  }.

(9)

In the following, we present a natural clustering algorithm
to reconstruct trees based on distance matrices and the
largest path length criterion

Clustering Algorithm
• Initial step: Find the median object med using Equation

7. Set  = {T1,..., Tn} - {Tmed}. Find for each Ti ∈   its

potential neighbor Ti' ∈   using Equation 8.

• Selection step (largest path length criterion): Find the

neighboring pair ( , ) using Equation 9.

• Agglomeration step: Combine  and  into a new

rooted tree  with root i0j0, and estimate new edge

lengths of  using Equation 5. Delete  and 

and add  to . Find the potential neighbor for

the new rooted tree . using Equation 8, and replace

Ti' for each Ti ∈   by  if  is its potential

neighbor.

• Stopping step: If | | > 1 goto the Selection step, oth-
erwise output the tree.

This algorithm is similar to approaches described else-
where [19-21], however, an essential difference is that we
estimate path lengths and edge lengths by using triplets.
Local rearrangement
The heart of the clustering algorithm is the largest path
length criterion, at which the path length from the mrca of
(Ti, Tj) to med is estimated by �(med, mrca|med, Si, Sj)
using Equation 4. Thus, as path length we take the average
of the lengths obtained from at most O(n2 triplets {med, si,

The tree is rooted at leaf 5Figure 5
The tree is rooted at leaf 5. In the tree, leaves 3 and 4 with 
the largest path length from their most recent common 
ancestor to the root 5 are neighbors.
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sj} ∈  med × Si × Sj. This average may not be the represent-
ative estimate of the true path length. Moreover the root
med may be too far way from the mrca and this leads to an
inaccurate estimate of the path length.

To take these problems into account, we extend the clus-
tering algorithm. To this end, imagine the algorithm has
clustered Ti and Tj with corresponding disjoint leaf sets Si,
Sj ⊂  S (we have finished the agglomeration step). Thus, we
have created the newly rooted tree T{ij} with leaf set Sij =
{Si ∪  Sj} and the set of unclassified objects S0(Sij) = S - Sij.
In the following, we describe the nearest neighbor inter-
change operation around the root of Ti upon condition
that Ti consists of two rooted subtrees Tx, Ty (Figure 6a).
First, we estimate average path lengths from the unclassi-
fied object set S0(Sij) to the mrca of (Tx, Ty), (Tx, Tj) and (Ty,
Tj) as

For convenience, we will use �(S0(Sij)|SxSy) instead of
�(S0(Sij)SxSy|SxSy). We now use the average path lengths
from Equation 10 to decide which pair of subtrees among
(Tx, Ty), (Tx, Tj) and (Ty, Tj) is preferred. More specifically,
if

�(S0(Sij)|SxSy) ≥ max{�(S0(Sij)|SxSj), �(S0(Sij)|SySj)}

we stick to the suggested grouping of Tx and Ty (see Figure
6a). Otherwise, if �(S0(Sij)|SxSj) or �(S0(Sij)|SySj) is larger
than the remaining average path lengths, we swap Ty and
Tj or Tx and Tj as displayed in Figure 6b or 6c, respectively.
Note that, this decision can be considered as a correction
of the largest path length criterion by taking all possible
triplets into account. We call the correction the largest aver-
age path length criterion.

We now explain the preorder traversal procedure [31] to
reconstruct the rooted tree Ti using the nearest neighbor
interchange operation based on the largest average path
length criterion (Ti is a subtree of T{ij} = (Ti, Tj)):

Preorder traversal procedure (Ti)
• Step 1: If Ti is a single leaf, return.

• Step 2: Otherwise, Ti consists of two subtrees Tx and Ty.
Do the nearest neighbor interchange operation around
the root of Ti based on the largest average path length
criterion (Equation 10). If Tx and Tj (or Ty and Tj) were
exchanged, estimate new edge lengths using Equation 5.

• Step 3: Apply the preorder traversal procedure to two
rooted subtrees of Ti.

Representative sets and shortest triplets
For a set S of sequences (or taxa), the (genetic) distance
matrix D is typically not additive due to stochastic errors

Reconstruction of new rooted tree T{ij} using the the preorder traversal procedure based on the largest average path length criterionFigure 6
Reconstruction of new rooted tree T{ij} using the the preorder traversal procedure based on the largest average path length 
criterion. If (Tx, Ty) is the neighboring pair, we stick to the suggested grouping of Ti and Tj (see Figure 6a). Otherwise, if (Tx, Tj) 
or (Ty, Tj) is the neighboring pair, we switch to the trees displayed in Figure 6b or 6c, respectively.
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[17]. Larger distances between two sequences are less
accurately estimated. This leads to a low performance of
both the clustering algorithm and the preorder traversal
procedure for divergent data sets.

In earlier work [10,11], we have presented simple repre-
sentative concepts to reduce stochastic error involved in
large distances. Here, we extend our work by introducing
the so-called k-representative set concept. We use now
genetic distances instead of topological distances (all
edges have length 1). Our motivation is to reduce the
computational complexity and to exclude objects far away
from the root under consideration. In the clustering algo-
rithm, the path length from the mrca of (Ti, Tj) to med (see
Figure 7) can be estimated by two approaches. The first
method picks randomly one pair (si, sj) ∈  Si × Sj then
computes

The second approach takes the average distance

Both approaches suffer from noise. Estimating the path
length using Equation 11 may be inaccurate because it
randomly picks a pair (si, sj) which may not be really rep-
resentative. Equation 12 may be problematic, especially
since it might be susceptible to noise, due to the possibil-
ity of including long- distances with large stochastic
errors.

To overcome these problems, we select only min(k, |Si|)
and min(k, |Sj|) closest leaves to the root of Ti and Tj with
respect to the path length, respectively. To illustrate, for k
= 3 we pick {1, 2} from Ti and {4, 5, 6} from Tj in Figure 7.

We now define  as the set of min(k, |Si|) closest leaves

to the root of Ti.  is called the k-representative leaf set.
Hereafter, we estimate similar to Equation 4 the path
length from the mrca of (Ti, Tj) to med as

which is only based on the k-representative leaf sets. Now
we can perform the clustering algorithm with reduced
complexity. However, we also want to improve the preor-
der traversal procedure. The average path length from the
unclassified object set S0(Sij) to the mrca of (Ti, Tj) is esti-
mated by Equation 10 which also suffers from noise. To
overcome this problem, we select only min(k, |S0(Sij)|)
unclassified objects closest to the root of tree T{ij} with

respect to distances  where s0 ∈  S0(Sij). We

call the subset, denoted (Sij), k-representative unclassified
object set.

We now define  a shortest tri-

plet, which contains three representatives of the three k-

representative sets. By construction,  are close to

the root of T{ij} and close to each other. Therefore, the

edge length estimates based on shortest triplet { }

are less susceptible to estimation errors.

we select only min(k, |Si|) and min(k, |Sj|) closest leaves to the root of Ti and Tj with respect to the path length, respectively, i.e. for k = 3 we pick {1, 2} from  and {4, 5, 6} from Figure 7
we select only min(k, |Si|) and min(k, |Sj|) closest leaves to the 
root of Ti and Tj with respect to the path length, respectively, 

i.e. for k = 3 we pick {1, 2} from  and {4, 5, 6} from . 
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We now rewrite Equation 10 to estimate the average path
length from the representative unclassified object set

(Sij) to the mrca of (Ti, Tj) using only shortest triplets as

In short, the preorder traversal procedure uses only short-
est triplets to estimate path lengths as well as edge lengths.

Shortest triplet clustering algorithm (STC)
We introduce now the shortest triplet clustering algorithm
by combining the clustering algorithm, the local rear-
rangement, the k-representative sets, and the shortest tri-
plets approach.

Shortest triplet clustering algorithm (STC)
• Initial step:

- (i): Find the median object med using Equation 7.

- (ii): Set  = {T1,..., Tn} - {Tmed} and for each Ti ∈  

its representative leaf set  = {i}.

- (iii): Find for each Ti ∈   its potential neighbor Ti' ∈  
using Equation 8.

• Selection step (largest path length criterion): Find the

neighboring pair ( , ) using Equation 9.

• Agglomeration step:

- (i): Combine  and  into a new rooted tree 

with root i0j0, and estimate new edge lengths of 

using Equation 5 based on shortest triplets.

- (ii): Compute the k-representative leaf set  of

. based on k-representative leaf sets  and  of

 and , respectively.

- (iii): Compute the k-representative unclassified object

set  of .

- (iv): Delete  and  and add  to .

- (v): Find the potential neighbor for the new rooted tree

 using Equation 8 based on representative sets, and

replace Ti' for each Ti ∈   by  if  is its poten-

tial neighbor.

• Local rearrangement step: Apply the preorder traversal

procedure to the rooted subtrees  and  of the new

rooted tree  based on only shortest triplets.

• Stopping step: If | | > 1, goto Selection step, other-
wise output the tree.

The complexity of STC
Now we briefly describe the complexity of the STC. At the
initial step, (i), (ii), and (iii) are done in O(n2), O(n) and
O(n2) time, respectively. Thus, the complexity of the ini-
tial step is O(n2). The selection step is done in O(n). At the
agglomeration step, (i), (ii), (iii), (iv), and (v) are done in
O(k3), O(k), O(nk2), O(1), and O(nk2) time, respectively.
Thus, the complexity of the agglomeration step is O(nk2 +
k3). Finally, we are estimating the complexity of the preor-
der traversal procedure based on only shortest triplets.
Step 1 is done in constant time. Step 2, the nearest neigh-
bor interchange operation around the root of Ti costs
O(k3). Estimating new edge lengths is done in O(k3) time.

Re-computing the k-representative leaf set  of Ti based
on k-representative leaf sets of its rooted subtrees Tx and Ty

costs O(k) time. Finally, re-computing the k-representative

unclassified object set (Si) of Ti based on the k-repre-

sentative leaf set  of Tj and the k-representative unclas-

sified object set (Sij) of T{ij} is done in O(k) time. Thus,

the complexity of step 2 is O(k3). Step 3 is done in con-
stant time. Step 1, step 2, and step 3 are repeated O(n)
times so the complexity of the preorder traversal proce-
dure is O(nk3).

In the STC algorithm, the selection step, the agglomera-
tion step and the local rearrangement step are repeated (n
- 2) times so the overall complexity of the STC algorithm
is O(n2k3). Practically, we chose k = 5 as a good compro-
mise between the accuracy and computational complexity
for all data sets. That is, the practical complexity of the
STC algorithm is only O(n2).
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