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ORIGINAL CLINICAL REPORT

External Validation of Prognostic Models in 
Critical Care: A Cautionary Tale From  
COVID-19 Pneumonitis
OBJECTIVES (BACKGROUND): To externally validate clinical prediction mod-
els that aim to predict progression to invasive ventilation or death on the ICU in 
patients admitted with confirmed COVID-19 pneumonitis.

DESIGN:  Single-center retrospective external validation study.

DATA SOURCES: Routinely collected healthcare data in the ICU electronic pa-
tient record. Curated data recorded for each ICU admission for the purposes of 
the U.K. Intensive Care National Audit and Research Centre (ICNARC).

SETTING: The ICU at Manchester Royal Infirmary, Manchester, United Kingdom.

PATIENTS: Three hundred forty-nine patients admitted to ICU with confirmed 
COVID-19 Pneumonitis, older than 18 years, from March 1, 2020, to February 28, 
2022. Three hundred two met the inclusion criteria for at least one model. Fifty-
five of the 349 patients were admitted before the widespread adoption of dexa-
methasone for the treatment of severe COVID-19 (pre-dexamethasone patients).

OUTCOMES: Ability to be externally validated, discriminate, and calibrate.

METHODS: Articles meeting the inclusion criteria were identified, and those that 
gave sufficient details on predictors used and methods to generate predictions 
were tested in our cohort of patients, which matched the original publications’ in-
clusion/exclusion criteria and endpoint.

RESULTS: Thirteen clinical prediction articles were identified. There was insuffi-
cient information available to validate models in five of the articles; a further three 
contained predictors that were not routinely measured in our ICU cohort and 
were not validated; three had performance that was substantially lower than previ-
ously published (range C-statistic = 0.483–0.605 in pre-dexamethasone patients 
and C = 0.494–0.564 among all patients). One model retained its discriminative 
ability in our cohort compared with previously published results (C = 0.672 and 
0.686), and one retained performance among pre-dexamethasone patients but 
was poor in all patients (C = 0.793 and 0.596). One model could be calibrated 
but with poor performance.

CONCLUSIONS: Our findings, albeit from a single center, suggest that the 
published performance of COVID-19 prediction models may not be replicated 
when translated to other institutions. In light of this, we would encourage bedside 
intensivists to reflect on the role of clinical prediction models in their own clinical 
decision-making.

KEYWORDS: acute respiratory distress syndrome; clinical prediction modeling; 
COVID-19 pneumonitis; external validation; intensive care

The COVID-19 pandemic has created an unprecedented amount of re-
search with over 300,000 articles published (1). Prognostic modeling 
of COVID-19 outcomes has received much attention but systematic 

review has found that many models suffer from poor methodology and are 
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at high risk of bias (2). An individual participant data 
meta-analysis by de Jong et al (3) examining models 
for 30-day in-hospital mortality observed that there 
was substantial variation in the prognostic value of the 
models, even when models with a high risk of bias had 
been excluded.

For a prediction model to be adopted into prac-
tice, its predictions must be accurate, reliable, and 
explainable and derived from data that is routinely 
recorded at most institutions. However, many mod-
els are not externally validated or perform poorly 
when validated (3–5). As a consequence, they have 
limited clinical utility. We have previously exter-
nally validated a model for predicting continuous 
positive airway pressure failure in COVID-19 
patients developed early in the pandemic and dem-
onstrated how its performance fell markedly in 
patients in whom new standards of care had been 
adopted. This prompted further examination of 
available models (6).

The quality of the reporting of prognostic models 
is often poor despite the common requirement from 
journals to use the Transparent Reporting of a multi-
variable prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD) guidelines (2, 7–9) in model re-
porting. Key aspects of COVID-19 models are often 
not reported, including the parameters used and the 
coefficients of the model (2). A recent systematic re-
view found 32 of 43 mortality prediction models in 
critical care did not provide sufficient detail to be rep-
licated (10).

Many COVID-19 prognostic models were devel-
oped in the early stages of the pandemic (2). Since then, 
there have been significant advances in management of 
the disease, with an increasing role for immunomodu-
latory and anti-viral therapies and changing attitudes 
among physicians concerning the role of noninvasive 
ventilation in the management of COVID-19 pneu-
monitis (11–13). In addition, there have been changes 
in the immune status of the general population both 
through virus exposure and from widespread uptake 
of effective vaccination (14). We anticipated these 
changes may have impacted the performance of models 
that aim to predict survival for patients with COVID-
19, particularly in an ICU setting. There have been ex-
ternal validations of COVID-19 prediction models, 
but there is yet to be one that specifically focuses on 
models developed in ICUs rather than general wards 
(3, 15–18).

This article addresses the following questions:
 1] Are published ICU multivariable prediction models suffi-

ciently described to allow new predictions to be generated, 
and performance compared with the original publication?

 2] Do these models use parameters that are routinely recorded 
in most ICUs?

 3] Is the performance (by discrimination and/or calibration) 
of these models replicable in patients from a similar period 
to when the model was developed, either pre- or post-the 
introduction of dexamethasone?

 4] Is the performance (by discrimination and/or calibration) 
of these models replicable using patients for the duration of 
the pandemic?

METHODS

This work is reported in line with TRIPOD (8, 9) fo-
cusing on the methods and results components of 
the TRIPOD checklist. Prospective models for inclu-
sion were identified by three methods (Fig. 1): articles 
identified from the “living systematic review” (fourth 
update) by Wynants et al (2); PubMed search was con-
ducted; and further articles by reverse citation.

We included models where the study population 
used to develop the original model was adults (over 16 
yr old) admitted to the ICU with a diagnosis of COVID 
pneumonitis confirmed by polymerase chain reaction 
test or confirmed clinically by a senior ICU doctor 
using a combination of radiographic results and symp-
toms; models that required at least two predictor vari-
ables, and which were measured within 24 hours of, 

 
KEY POINTS

Question: Can we externally validate prognostic 
models for COVID-19 pneumonitis in ICU?

Findings: Incomplete reporting and use of predic-
tors that are not routinely collected meant multiple 
models could not undergo validation. Those that 
did have sufficient information had a mixed perfor-
mance in validation.

Meaning: Significant improvements in method-
ology and reporting are needed for intensive care 
prognosis models. Large-scale collaboration is 
recommended if models are to be reliable and 
widely adopted.
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or before, ICU admission or 24 hours before onset of 
invasive mechanical ventilation (IMV), depending on 
the model, or demographic data. We included models 
where the endpoint was death at any point, need for 
IMV, or length of stay in ICU.

Articles underwent title and abstract screening 
and if required full-text screening with included arti-
cles agreed by consensus with the study team authors. 
The whole team extracted the model parameters as 
published. The clinical team reviewed the predictors 
listed within the articles and determined whether 
they were collected at our institution. Disagreements 
were solved by consensus. Models failing to meet the 
criteria for question 1 or question 2 (Fig. 1) were not 
evaluated for questions 3 and 4. The criteria for pass-
ing question 1 included models specifying all pre-
dictors and a method for generating predictions (or 
at least ranked predictions). The criteria for passing 
question 2 were that all predictors were collected on 
our ICU, or could be calculated post hoc, and suffi-
ciently well-defined.

Data Source

Patient data were extracted for all patients admitted to 
the ICU at Manchester Royal Infirmary, Manchester, 
United Kingdom, from March 1, 2020, to February 
28, 2022, with confirmed or strongly suspected 
COVID pneumonitis using the patient electronic re-
cord systems (EPRs) (Ethical approval 21/HRA/3518). 
Extraction techniques and general characteristics of 
COVID-19 patients from our ICU have been previ-
ously described in detail (19, 20). Patients, who in the 

opinion of the treating phy-
sician, had an incidental 
COVID-19 finding or who 
had expressed a wish to not 
take part in research via the 
National Health Service 
National Data Opt-Out 
were excluded. The sample 
size was pragmatic based 
on all patients available at 
our center.

The data for each model 
validation only included 
patients meeting the in-
clusion/exclusion criteria 

for the model and with a complete set of parameters. 
The characteristics of the patients who contributed 
data to each validation cohort are summarized in 
Supplementary Tables 1 and 2 (http://links.lww.com/
CCX/B325). For composite parameters not calculated 
within the EPR but for which all components were col-
lected, values were calculated post hoc. Data were not 
imputed.

For models that used the Sequential Organ Failure 
Assessment (SOFA) score, this was determined using 
the worst value for each component in the first 24 hours 
of ICU stay unless specified otherwise (21). Where rel-
evant, patient notes were consulted. A conversion fac-
tor of 0.1 was used to convert C-reactive protein (CRP) 
to high-sensitivity CRP (22). The “pre-dexamethasone 
era” is defined as patients admitted before June 16, 
2020, and “post-dexamethasone era” otherwise. This 
date was chosen because it coincided with when the 
results from the RECOVERY trial into dexamethasone 
were published and practice changed almost overnight 
(23). For question 3, models trained on patients in the 
pre-dexamethasone era were tested using all patients 
in the dataset admitted in the pre-dexamethasone era 
and further matching for the study’s inclusion and ex-
clusion criteria (Supplementary Table 2, http://links.
lww.com/CCX/B325). No blinding was performed as 
outcomes were retrospectively extracted.

Statistical Analysis

Where articles passed questions 1 and 2 and were able 
to be validated, predictions were generated for each 
patient in our dataset and the C-statistic (also known 

Figure 1. Studies included.
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as concordance or area under the curve of the receiver 
operator characteristic) calculated for the popula-
tion (or for survival models, Harrell’s C). Calibration 
curves were calculated where sufficient detail was pro-
vided. Where only ranked predictions could be de-
termined (e.g., the intercept was missing but relative 
weights given), discrimination was calculated without 
calibration.

RESULTS

In total, 13 articles and 22 models were included 
(Fig. 1). Table 1 shows the articles with their charac-
teristics and whether they met the requirements of 
questions 1 and 2.

Among the five models that failed to pass question 
1 (ability to be validated), Vaid et al (29) and Vaid et 
al (30) did not list the predictors used in their model; 
Gerotziafas et al (24) and Pan et al (27) did not report 
model coefficients.

Of the models that did not report their model coef-
ficients, all four articles used machine learning algo-
rithms to develop their models (Gerotziafas et al [24] 
used the t-distributed stochastic neighbor embed-
ding algorithm, and the remainder used [XGBoost] 
[37, 38]). The models that used XGBoost had a very 
large number of candidate predictors, which were then 
shrunk as part of the model fitting. The articles using 
machine learning did report the variable importance 
but not the exact specification of the model, which pre-
vents the articles from being validated.

The Instrumental Activities of Daily Living Scale 8 
and biomarkers interleukin-6, soluble E-selectin, sol-
uble platelet selectin, angiopoietin-2, soluble intercel-
lular adhesion molecule-1, and von Willebrand factor 
are not routinely measured in our institution and chest 
tightness was neither well defined by the publication 
nor routinely measured in our institution so Falandry 
et al (33), Popadic et al (28), Vassiliou et al (31), and 
Wang et al (32) were not able to be validated.

Table 2 shows the characteristics of the patients in-
cluded in our validation cohort. Three hundred forty-
nine patients were included in the full dataset of which 
47 did not meet the inclusion criteria for any of the 
four studies.

Table 3 shows the concordance of each of the mod-
els that were validated against the originally published 
outcome. Three of the models performed poorly rel-
ative to their original publication; one (Arina et al 

[25]) performed poorly after the introduction of dex-
amethasone, and one (Moisa et al [36]) remained sim-
ilar but had lower discriminative ability at publication. 
Calibration was performed for Arina et al (25) and the 
plot is in Supplementary Figure 1 (http://links.lww.
com/CCX/B325). Cao et al (26) did not publish an in-
tercept and Leoni et al (34), Leoni et al (35), and Moisa 
et al (36) did not publish baseline survival so calibra-
tion could not be performed.

Only Cao et al (26) provided a cutoff for high- and 
low-risk patients. In the pre-dexamethasone era, this 
model yielded sensitivity, specificity, positive predictive 
value, and negative predictive values of 0.70, 0.50, 0.54, 
and 0.67, respectively. For all patients in our cohort, 
the values were 0.8, 0.36, 0.50, and 0.71, respectively.

DISCUSSION

In this article, we reviewed 13 COVID-19 predic-
tion articles intended for use in ICU settings, which 
incidentally were developed during the first wave 
of the pandemic. We were able to externally validate 
five of these models using routinely collected data 
from a large ICU in the United Kingdom and found 
that only one model showed acceptable reproduci-
bility in a pre-dexamethasone cohort and that all the 
models performed poorly when using the entire co-
hort comprising patients from both pre- and post- 
dexamethasone eras.

van Royen et al (39) described the “leaky prognostic 
model pipeline” and the reasons why prognostic mod-
els are not adopted into clinical practice. In this study, 
we examined aspects of this “pipeline” and identified 
articles that failed, in the terminology by van Royen 
et al (39), either as a result of “incomplete reporting of 
prediction model,” “expensive, unavailable predictors,” 
“predictions not trusted,” or “predictions outdated.”

Our first finding is the difficulty in externally vali-
dating published models due to incomplete reporting 
of the model. The models included in this study rep-
resent a broad scope of models in the literature and 
for the majority (8/13 articles), there were insufficient 
details to allow external validation. This is not the first 
study to identify deficiencies in reporting quality and 
that the adoption of the TRIPOD guidelines by authors 
to clearly report their models is imperative (2, 40–42).

Secondly ambiguities in how each predictor was han-
dled and when the data were collected were common. In 
critical care, timing is key, and there can be rapid changes 

http://links.lww.com/CCX/B325
http://links.lww.com/CCX/B325
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TABLE 2.
The Characteristics of the Patients Included in Our Validation Cohort

Characteristic All Patients, n = 302 Pre-Dexamethasone, n = 55

Age (yr) 57.5 (49.8–66.2) 57.0 (49.5–70.0)

Male 207 (67.2%) 40 (72.7%)

Ethnicity

  White 123 (39.9%) 28 (50.9%)

  Asian 88 (28.6%) 14 (25.5%)

  Black 54 (17.5%) 9 (16.4%)

  Other 6 (1.9%) 2 (3.6%)

  Not stated 37 (12.0%) 2 (3.6%)

BMI (kg/m²) 29.4 (26.2–35.2) 27.8 (25.1–32.5)

Obese (BMI > 30) 147 (47.7%) 20 (36.4%)

Sequential Organ Failure Assessment score 6.0 (3.0–8.0) 5.5 (3.0–8.8)

Modified NUTrition Risk In the Critically ill score 4.0 (2.0–5.0) 4.0 (3.0–5.0)

C-reactive protein (mg/L) 121.0 (71.2–189.8) 156.0 (102.0–239.0)

Lymphocytes (×109/L) 0.70 (0.50–0.90) 0.70 (0.50–1.00)

Neutrophils (×109/L) 7.9 (5.6–10.5) 7.4 (6.0–10.0)

Neutrophil-to-lymphocyte ratio 12.4 (7.6–19.4) 12.4 (7.6–19.4)

Procalcitonin (ng/mL) 0.30 (0.14–0.92) 0.60 (0.22–1.30)

Urea (mmol/L) 6.8 (4.9–10.4) 6.2 (3.9–12.1)

Invasive mechanical ventilation 143 (46.4%) 23 (41.8%)

Died 132 (42.9%) 28 (50.9%)

BMI = body mass index.
n is all patients included in one of the four models being externally validated. See Supplementary Tables 1 and 2 (http://links.lww.com/
CCX/B325) for demographics of patients included in each validation. Data reported as n (%) or median (interquartile range). Pre-
dexamethasone era defined as before June 16, 2020.

TABLE 3.
The Concordance of Each of the Models That Were Validated Using Patients in the  
Pre-Dexamethasone Era and the Entire Validation Cohort

References

Original Publication Pre-Dexamethasone Era All Patients

n Reported Concordance Statistic n Concordance Statistic n Concordance Statistic

Arina et al (25) 93 0.804 (0.728– 0.880) 27 0.793 (0.618–0.968) 103 0.596 (0.482–0.710)

Cao et al (26) 77 0.857 (0.77–0.94) 22 0.567 (0.321–0.813) 141 0.558 (0.460–0.655)

Leoni et al (34) 229 0.821 (0.766–0.876) 33 0.605 (0.471–0.739) 204 0.564 (0.506–0.622)

Leoni et al (35) 98 0.720 (0.67–0.79) 34 0.560 (0.428–0.692) 201 0.546 (0.484–0.608)

Moisa et al (36) 425 0.697 (0.755–0.833) 53 0.672 (0.574–0.770) 291 0.686 (0.640–0.732)

The originally published outcomes are displayed for reference.

http://links.lww.com/CCX/B325
http://links.lww.com/CCX/B325
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in patients’ health meaning that over a 24-hour period, 
two very different measurements could be taken. The 
most complex parameter to handle was the SOFA score, 
which we calculated retrospectively. It is well recognized 
that when and how to calculate a SOFA score can be open 
to interpretation (21, 43). It serves as a useful illustration 
of the importance of ensuring that predictor variables are 
specified in detail when models are reported.

Attributing reasons why the models tested were not 
able to reproduce the same level of discrimination is 
complex. Each study used was developed in a single or 
small number of centers without large, multinational 
cohorts. Many of the models were generated during an 
evolving pandemic, in which the treatment pathways 
and the COVID-19 virus itself were changing (44, 45). 
There are potentially intrinsic differences in healthcare 
systems, the patient populations and host response to the 
COVID-19 virus (46, 47). Differences in care pathways 
may also affect which patients were included in each 
dataset. For example, Cao et al (26) used patients who re-
ceived IMV but the criteria for initiation of IMV may be 
different in their center compared with others. Similarly, 
the criteria for ICU admission may vary between centers.

Our findings are in keeping with those of Meijs et 
al (18) who used data from a regional clinical network 
to validate COVID-19 models in ICU, although these 
were developed on general wards and tested in ICUs. 
Even in 2020, the low quality, high volume of published 
COVID-19 models was recognized as a significant 
problem with calls for better data sharing and better 
reporting (48). In ICU, where the pressure on beds is 
high and the decisions around such resource use so 
important, clinical prediction models are particularly 
appealing and yet demonstrably unhelpful at present. 
On the basis of our findings, we would encourage bed-
side intensivists to reflect on the role of clinical predic-
tion models in their clinical decision-making.

A positive outcome from the COVID-19 pandemic 
has been the agility of the clinicians and academics to 
investigate and implement new treatments for COVID-
19. However, it has proved difficult to match this per-
formance with clinical prediction models on account 
of the challenges described above. Arguably, these 
challenges may be overcome by improved specification 
and reporting of prediction models and by collabora-
tion between institutions to create larger training data-
sets, which may yield more generalizable results. We 
concede that numerous data security and governance 

barriers make such collaboration complex and per-
haps more so in the accelerated pandemic timescales. 
It is encouraging to see the development of multi-
center, collaborative critical care datasets such as the 
Critical Care Health Informatics Collaborative in the  
United Kingdom or the electronic ICU dataset in  
the United States (49, 50). These have the potential to 
overcome many of the above challenges in the future.

We acknowledge several limitations. Our validation 
data are drawn from a single U.K. center and may not 
be representative of all ICUs. However, this does not 
prevent our study from highlighting the need for cau-
tion when applying predictive models in new contexts. 
A number of laboratory parameters and subjective 
assessments are not routinely collected at our institu-
tion, which prevented validation of some models. This 
is likely to be true for many institutions and highlights 
the importance of building prediction models utiliz-
ing routinely collected and widely available prediction 
parameters. The sample size of the pre-dexamethasone  
cohort was small and led to large CIs. Finally, we rec-
ognize our data were extracted retrospectively and 
that patients were cared for with the standard of 
care at the time of admission, which changed rapidly 
throughout the pandemic. There were several signif-
icant changes in the standard of care, and it was the 
consensus of our study team to only examine across 
the first major change in care; the introduction of dex-
amethasone. This decision reflected the fact that the 
majority of the models assessed were developed before 
the RECOVERY trial’s results (12, 23). The introduc-
tion of other treatments for COVID-19 may, therefore, 
have influenced our findings but this only serves to un-
derline the importance of context when applying a pre-
dictive model in new circumstances.

CONCLUSIONS

This study highlights the caution required when inter-
preting COVID-19 prediction models in ICU and when 
translating results into clinical practice. Researchers 
should ensure models are fully reported and contain rou-
tinely collected, widely available predictors that are un-
ambiguously defined. Where possible, models should be 
developed and tested using multicenter research datasets, 
which are increasingly available. Clinicians should exer-
cise caution and ensure that any model they use has been 
externally validated and clinically tested.
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