Table 5.
Efficiency and safety evaluation of included SR/meta-analysis.
Index | Study | Effect | 95% CI | P | Note |
---|---|---|---|---|---|
The overall clinical efficacy rate | Tang, R 2017[19] | 2.85 | 1.75, 4.63 | <.001 | |
Yu, F 2018[20] | 1.22 | 1.17, 1.28 | <.00001 | Control: blank control, merger effect | |
1.25 | 1.13, 1.38 | <.0001 | Control: blank control within 48 hours of cerebral infarction | ||
1.21 | 1.15, 1.27 | <.00001 | Control: blank control after 48 hours of cerebral infarction | ||
1.21 | 1.10, 1.32 | <.0001 | Control: Citicoline | ||
0.75 | 0.67, 0.84 | <.00001 | Control: Edaravone (prevailing side) | ||
NIHSS score | Wang, Z 2017[16] | 1.03 | 0.83, 1.28 | .77 | |
Bornstein, NM 2017[17] | 0.60 | 0.56, 0.64 | <.0001 | ||
0.54 | 0.49, 0.59 | .10 | z | ||
0.64 | 0.57, 0.72 | .0001 | Early changes of NIHSS in patients with moderate to severe stroke | ||
Guekht, A 2017[18] | 0.59 | 0.53, 0.64 | .0016 | Baseline change in the NIHSS on the 14th day | |
0.59 | 0.54, 0.64 | .001 | Baseline change in the NIHSS on the 21st day | ||
Tang, R 2017[19] | −1.77 | −2.33, −1.21 | <.001 | ||
Yu, F 2018[20] | −2.21 | −3.56, −0.85 | – | ||
MESSS score | Yu, F 2018[20] | −4.44 | −6.55, −2.34 | – | |
ARAT score | Guekht, A 2017[18] | 0.62 | 0.57, 0.68 | <.0001 | All randomized patients |
0.61 | 0.54, 0.68 | .0015 | ARAT baseline score > 0 | ||
BI score | Wang, Z 2017[16] | 0.96 | 0.84, 1.08 | .44 | |
Zhang, D 2017[15] | 6.80 | −0.55, 14.16 | .07 | ||
Tang, R 2017[19] | 7.30 | 3.48, 11.13 | <.001 | ||
Yu, F 2018[20] | 4.34 | 3.15, 5.53 | – | ||
mRS score | Bornstein, NM 2017[17] | 0.61 | 0.52, 0.69 | .01 | |
Wang, Z 2017[16] | 1.33 | 0.79, 2.24 | .28 | ||
Zhang, D 2017[15] | 1.32 | 0.88, 1.99 | .18 | Two-category data analysis | |
−0.49 | −1.21, 0.24 | .19 | Continuous data analysis | ||
Whole blood viscosity | Yu, F 2018[20] | −0.66 | −0.89, −0.43 | <.00001 | High shear rate |
−1.28 | −1.86, −0.69 | <.0001 | Low shear rate | ||
Fibrinogen content | Yu, F 2018[20] | −0.75 | −1.19, −0.31 | .0009 | |
Plasma viscosity | Yu, F 2018[20] | −0.27 | −0.74, −0.20 | .26 | |
Mortality rate | Zhang, D 2017[15] | 0.82 | 0.55, 1.22 | .33 | |
Wang, Z 2017[16] | 0.86 | 0.57, 1.31 | .49 | ||
Bornstein, NM 2017[17] | 0.81 | 0.50, 1.31 | .49 | ||
Ziganshina, LE 2020[21] | 0.90 | 0.61, 1.32 | .58 | ||
Strilciuc, S 2021[22] | 0.83 | 0.57, 1.23 | .36 | ||
Tang, R 2017[19] | 0.79 | 0.52, 1.19 | .25 | ||
Adverse reactions/adverse events | Zhang, D 2017[15] | 0.98 | 0.90, 1.08 | .75 | |
Wang, Z 2017[16] | 0.98 | 0.88, 1.09 | .67 | ||
Bornstein, N. M 2017[17] | 1.02 | 0.83, 1.26 | .84 | Fixed effect model | |
0.99 | 0.70, 1.38 | .94 | Random effect model | ||
Ziganshina, L. E 2020[21] | 0.97 | 0.85, 1.10 | .62 | ||
Strilciuc, S 2021[22] | 0.98 | 0.88, 1.09 | .73 | ||
Tang R 2017[19] | 1.04 | 0.85, 1.27 | .72 | ||
Men P 2016[28] | 1.37 | 0.95, 1.97 | >.05 | ||
Serious adverse reactions/serious adverse events | Zhang, D 2017[15] | 1.18 | 0.85, 1.64 | .31 | |
Wang, Z 2017[16] | 1.20 | 0.86, 1.66 | .29 | ||
Bornstein, NM 2017[17] | 1.08 | 0.73, 1.59 | .70 | ||
Ziganshina, LE 2020[21] | 1.15 | 0.81, 1.65 | .44 | ||
2.15 | 1.01, 4.55 | .047 | Non-fatal serious adverse event | ||
0.90 | 0.59, 1.38 | .63 | Fatal, serious adverse event | ||
Strilciuc, S 2021[22] | 0.99 | 0.74, 1.32 | .95 | ||
Tang, R 2017[19] | 0.01 | −0.02, 0.04 | .51 | ||
Men P 2016[28] | 0.96 | 0.83, 1.11 | >.05 | ||
Strilciuc, S 2021[22] | 1.18 | 0.75, 1.86 | .46 | ||
Disability rate | Tang R 2017[19] | 0.46 | 0.2, 1.03 | .06 | |
Non-fatal loss | Ziganshina, L. E 2020[21] | 0.97 | 0.45, 2.06 | .93 |