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Abstract

In this paper, we leverage over-parameterization to design regularization-free algorithms for the 

high-dimensional single index model and provide theoretical guarantees for the induced implicit 

regularization phenomenon. Specifically, we study both vector and matrix single index models 

where the link function is nonlinear and unknown, the signal parameter is either a sparse vector 

or a low-rank symmetric matrix, and the response variable can be heavy-tailed. To gain a better 

understanding of the role played by implicit regularization without excess technicality, we assume 

that the distribution of the covariates is known a priori. For both the vector and matrix settings, 

we construct an over-parameterized least-squares loss function by employing the score function 

transform and a robust truncation step designed specifically for heavy-tailed data. We propose to 

estimate the true parameter by applying regularization-free gradient descent to the loss function. 

When the initialization is close to the origin and the stepsize is sufficiently small, we prove 

that the obtained solution achieves minimax optimal statistical rates of convergence in both the 

vector and matrix cases. In addition, our experimental results support our theoretical findings 

and also demonstrate that our methods empirically outperform classical methods with explicit 

regularization in terms of both ℓ2-statistical rate and variable selection consistency.
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1 Introduction

With the astonishing empirical success in various application domains such as computer 

vision [Voulodimos et al., 2018], natural language processing [Otter et al., 2020, Torfi et 
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al., 2020], and reinforcement learning [Arulkumaran et al., 2017, Li, 2017], deep learning 

[LeCun et al., 2015, Goodfellow et al., 2016, Fan et al., 2021a] has become one of the most 

prevalent classes of machine learning methods. When applying deep learning to supervised 

learning tasks such as regression and classification, the regression function or classifier is 

represented by a deep neural network, which is learned by minimizing a loss function of the 

network weights. Here the loss function is defined as the empirical risk function computed 

based on the training data and the optimization problem is usually solved by gradient-based 

optimization methods. Due to the nonlinearity of the activation function and the multi-layer 

functional composition, the landscape of the loss function is highly nonconvex, with many 

saddle points and local minima [Dauphin et al., 2014, Swirszcz et al., 2016, Yun et al., 

2019]. Moreover, oftentimes the neural network is over-parameterized in the sense that the 

total number of network weights exceeds the number of training data, making the regression 

or classification problem ill-posed from a statistical perspective. Surprisingly, however, it 

is often observed empirically that simple algorithms such as (stochastic) gradient descent 

tend to find the global minimum of the loss function despite non-convexity. Moreover, the 

obtained solution also generalizes well to unseen data with small test error [Neyshabur et 

al., 2015, Zhang et al., 2017]. These mysterious observations cannot be fully explained 

by the classical theory of nonconvex optimization and generalization bounds via uniform 

convergence.

To understand such an intriguing phenomenon, Neyshabur et al. [2015], Zhang et al. 

[2017] show empirically that the generalization stems from an “implicit regularization” of 

the optimization algorithm. Specifically, they observe that, in over-parametrized statistical 

models, although the optimization problems consist of bad local minima with large 

generalization error, the choice of optimization algorithm, usually a variant of gradient 

descent algorithm, usually guard the iterates from bad local minima and prefers the solution 

that generalizes well. Thus, without adding any regularization term in the optimization 

objective, the implicit preference of the optimization algorithm itself plays the role 

of regularization. Implicit regularization has been shown indispensable in training deep 

learning models [Neyshabur et al., 2015, 2017, Zhang et al., 2017, Keskar et al., 2017, 

Poggio et al., 2017, Wilson et al., 2017].

With properly designed algorithm, Gunasekar et al. [2017] and Li et al. [2018] provide 

empirical evidence and theoretical guarantees for the implicit regularization of gradient 

descent for least-squares regression with a two-layer linear neural network, i.e., low-rank 

matrix sensing. They show that gradient descent biases towards the minimum nuclear norm 

solution when the initialization is close to the origin, stepsizes are sufficiently small, and 

no explicit regularization is imposed. More specifically, when the true parameter is a 

rank r positive-semidefinite matrix in ℝd × d, they rewrite the parameter as UU⊤, where 

U ∈ ℝd × d, and propose to estimate the true parameter by updating U via gradient descent. 

Li et al. [2018] proves that, with O r2d  i.i.d. observations of the model, gradient descent 

provably recovers the true parameter with accuracy, where O( ⋅ ) hides absolute constants 

and polylogarithmic terms. Thus, in over-parametrized matrix sensing problems, the implicit 

regularization of gradient descent can be viewed as equivalent to adding a nuclear norm 

penalty explicitly. See also Arora et al. [2019] for a related topic on deep linear network.
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Moreover, Zhao et al. [2019], Vaškevičius et al. [2019] recently design a noval 

regularization-free algorithm and study the implicit regularization of gradient descent 

for high-dimensional linear regression with a sparse signal parameter, which is a vector 

in ℝp with s nonzero entries. They propose to re-parametrize the parameter using two 

vectors in ℝp via the Hadamard product and estimate the true parameter via un-regularized 

gradient descent with proper initialization, stepsizes, and the number of iterations. They 

prove independently that, with n = O s2 log p  i.i.d. observations, gradient descent yields an 

estimator of the true parameter with the optimal statistical accuracy. More interestingly, 

when the nonzero entries of the true parameter all have sufficiently large magnitude, the 

proposed estimator attains the oracle O( s log s/n) rate that is independent of the ambient 

dimension p. Hence, for sparse linear regression, the implicit regularization of gradient 

descent has the same effect as the folded concave penalties [Fan et al., 2014] such as 

smoothly clipped absolute deviation (SCAD) [Fan and Li, 2001] and minimax concave 

penalty (MCP) [Zhang et al., 2010].

The aforementioned works all design algorithms and establish theoretical results for linear 

statistical models with light-tailed noise, which is slightly restricted since linear models with 

sub-Gaussian noise only comprise a small proportion of the models of interest in statistics. 

For example, in the field of finance, linear models only bring limited contributions and the 

datasets are always corrupted by heavy-tailed noise. Thus, one questions is left open:

Can we leverage over-parameterization and implicit regularization to establish 

statistically accurate estimation procedures for a more general class of high-

dimensional statistical models with possibly heavy-tailed data?

In this work, we focus on the single index model, where the response variable Y and the 

covariate X satisfy Y = f(〈X, β*〉) + ϵ, with β* being the true parameter, ϵ being the 

random noise, and f:ℝ ℝ being an unknown (nonlinear) link function. Here β* is either 

a s-sparse vector in ℝp or a rank r matrix in ℝd × d. Since f is unknown, the norm of β 
is not identifiable. Thus, for the vector and matrix cases respectively, we further assume 

that the ℓ2- or Frobenius norms of β* are equal to one. Our goal is to recover the true 

parameter β* given n i.i.d. observations of the model. Such a model can be viewed as the 

misspecified version of the compressed sensing [Donoho, 2006, Candés, 2008] and phase 

retrieval [Shechtman et al., 2015, Candés et al., 2015] models, which corresponds to the 

identical and quadratic link functions respectively.

In a single index model, due to the unknown link function, it is infeasible to directly estimate 

β* via nonlinear least-squares. Moreover, jointly minimizing the least-squares loss function 

with respect to β* and f is computationally intractable. To overcome these challenges, 

a recent line of research proposes to estimate β* by the method of moments when the 

distribution of X is known. This helps us provide a deep understanding on the implicit 

regularization induced by over-parameterization in the nonlinear models without excessive 

technicality and eliminate other complicated factors that convolve insights. Specifically, 

when X is a standard Gaussian random variable, Stein’s identity [Stein et al., 1972] 

implies that the expectation of Y · X is proportional to β*. Thus, despite the nonlinear 

link function, β* can be accurately estimated by neglecting f and fitting a regularized 
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least-squares regression. In particular, when β* is a sparse vector, Plan and Vershynin 

[2016], Plan et al. [2017] prove that the Lasso estimator achieves the optimal statistical 

rate of convergence. Subsequently, such an approach has been extended to the cases beyond 

Gaussian covariates. In particular, Goldstein et al. [2018], Wei [2018], Goldstein and Wei 

[2019] allow the covariates to follow an elliptically symmetric distribution that can be 

heavy-tailed. In addition, utilizing a generalized version of Stein’s identity [Stein et al., 

2004], Yang et al. [2017] extends the Lasso approach to the setting where the covariate X 
has a known density p0. Specifically, when p0 is known, we can define the score function 

Sp0( ⋅ ) as Sp0( ⋅ ) = − ∇ log p0( ⋅ ), which enjoys the property that E Y ⋅ Sp0(X)  identifies the 

direction of β*. Thus, the true parameter can be estimated via M-estimation with Sp0(X)
serving as the covariate.

To answer the question given above, in this work, we leverage over-parameterization 

to design regularization-free algorithms for single index model and provide theoretical 

guarantees for the induced implicit regularization phenomenon. To be more specific, we first 

adopt the quadratic loss function in Yang et al. [2017] and rewrite the parameter of interest 

by over-parameterization. When β* is a sparse vector in ℝp, we adopt a Hadamard product 

parameterization [Hoff, 2017, Zhao et al., 2019, Vaškevičius et al., 2019] and write β* as 

w ⊙ w − v ⊙ v, where both w and v are vectors in ℝp. We propose to minimize the loss 

function as a function of the new parameters via gradient descent, where both w and v 
are initialized near an all-zero vector and the stepsizes are fixed to be a sufficiently small 

constant η > 0. Furthermore, when β* is a low-rank matrix, we similarly represent β* as 

WW⊤ − VV⊤ and propose to recover β* by applying the gradient descent algorithm to the 

quadratic loss function under the new parameterization.

Furthermore, the analysis of our algorithm faces the following two challenges. First, due 

to over-parameterization, there exist exponentially many stationary points of the population 

loss function that are far from the true parameter. Thus, it seems that the gradient descent 

algorithm would be likely to return a stationary point that incurs a large error. Second, both 

the response Y and the score Sp0(X) can be heavy-tailed random variables. Thus, the gradient 

of the empirical loss function can deviate significantly from its expectation, which poses an 

additional challenge to establishing the statistical error of the proposed estimator.

To overcome these difficulties, in our algorithm, instead of estimating E Y ⋅ Sp0(X)  by 

its empirical counterpart, we construct robust estimators via proper truncation techniques, 

which have been widely applied in high-dimensional M-estimation problems with heavy-

tailed data [Fan et al., 2021c, Zhu, 2017, Wei and Minsker, 2017, Minsker, 2018, Fan 

et al., 2021b, Ke et al., 2019, Minsker and Wei, 2020]. These robust estimators are then 

employed to compute the update directions of the gradient descent algorithm. Moreover, 

despite the seemingly perilous loss surface, we prove that, when initialized near the origin 

and sufficiently small stepsizes, the gradient descent algorithm guard the iterates from bad 

stationary points. More importantly, when the number of iterations is properly chosen, 

the obtained estimator provably enjoys (near-)optimal O( s log p/n)  and O( rd log d/n) ℓ2-

statistical rates under the sparse and low-rank settings, respectively. Moreover, for sparse β*, 

when the magnitude of the nonzero entries is sufficiently large, we prove that our estimator 

Fan et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enjoys an oracle O( s log n/n) ℓ2-statistical rate, which is independent of the dimensionality 

p. Our proof is based on a jointly statistical and computational analysis of the gradient 

descent dynamics. Specifically, we decompose the iterates into a signal part and a noise part, 

where the signal part share the same sparse or low-rank structures as the true signal and 

the noise part are orthogonal to the true signal. We prove that the signal part converges to 

the true parameter efficiently whereas the noise part accumulates at a rather slow rate and 

thus remains small for a sufficiently large number of iterations. Such a dichotomy between 

the signal and noise parts characterizes the implicit regularization of the gradient descent 

algorithm and enables us to establish the statistical error of the final estimator.

Furthermore, our method has several merits compared with classical regularized methods. 

From the theoretical perspective, our strengths are two-fold. First, as we mentioned in the 

last paragraph, under mild conditions, our estimator enjoys oracle statistical rate whereas 

the most commonly used ℓ1-regularized method always results in large bias. In this case, 

our method is equivalent with adding folded-concave regularizers (e.g. SCAD, MCP) 

to the loss function. Second, for all estimators inside the wide optimal time interval, 

our range of choosing the truncating parameter to achieve variable selection consistency 

(rank consistency) is much wider than classical regularized methods. Thus, our method is 

more robust than all regularized methods in terms of selecting the truncating parameter. 

Meanwhile, from the aspect of applications, our strengths are three-fold. First, in terms 

of ℓ2-statistical rate, numerical studies show that our method generalizes even better than 

adding folded-concave penalties. Second, from the aspect of variable selection, experimental 

results also show that the robustness of our method helps reduce false positive rates greatly. 

Last but not least, as we only need to run gradient descent and the gradient information 

is able to be efficiently transferred among different machines, our method is easier to be 

paralleled and generalized to large-scale problems. Thus, our method can be applied to 

modern machine learning applications such as federated learning.

To summarize, our contribution is several-fold. First, for sparse and low-rank single 

index models where the random noise is possible heavy-tailed, we employ a quadratic 

loss function based on a robust estimator of E Y ⋅ Sp0(X)  and propose to estimate β* 

by combining over-parameterization and regularization-free gradient descent. Second, we 

prove that, when the initialization, stepsizes, and stopping time of the gradient descent 

algorithm are properly chosen, the proposed estimator achieves optimal statistical rates 

of convergence up to logarithm terms under both the sparse and low-rank settings. This 

captures the implicit regularization phenomenon induced by our algorithm. Third, in order 

to corroborate our theories, we did extensive numerical studies. The experimental results 

support our theoretical findings and also show that our method outperforms classical 

regularized methods in terms of both ℓ2-statistical rates and variable selection consistency.

1.1 Related Works

Our work belongs to the recent line of research on understanding the implicit regularization 

of gradient-based optimization methods in various statistical models. In addition, our work is 

also closely related to the large body of literature on single index models. Due to the space 

limit, we defer the discussions on related works to Appendix A in the supplement.
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1.2 Notation

In this subsection, we give an introduction to our notations. Throughout this work, we use 

[n] to denote the set {1, 2, …, n}. For a subset S in [n] and a vector u, we use uS to denote 

the vector whose i-th entry is ui if i ∈ S and 0 otherwise. For any vector u and q ⩾ 0, we use 

‖u‖ℓq to represent the vector ℓq norm. In addition, the inner product 〈u, v〉 between any pair 

of vectors u, v is defined as the Euclidean inner product u⊤v. Moreover, we define u⊙v as 

the Hardmard product of vectors u, v. For any given matrix X ∈ ℝd1 × d2, we use ∥X∥op, ∥X∥F 

and ∥X∥* to represent the operator norm, Frobenius norm and nuclear norm of matrix X 

respectively. In addition, for any two matrices X, Y ∈ ℝd1 × d2, we define their inner product 

〈X, Y〉 as 〈X, Y〉 = tr(X⊤Y). Moreover, if we write X ≽ 0 or X ≼ 0, then the matrix X is 

meant to be positive semidefinite or negative semidefinite. We let {an, bn}n⩾1 be any two 

positive series. We write an ≲ bn if there exists a universal constant C such that an ⩽ C · bn 

and we write an ≪ bn if an/bn → 0. In addition, we write an ≍ bn, if we have an ≲ bn and bn 

≲ an and the notations of an = O bn  and an = o(bn) share the same meaning with an ≲ bn and 

an ≪ bn. Moreover, an = O bn  means an ⩽ Cbn up to some logarithm terms. Finally, we use an 

= Ω(bn) if there exists a universal constant c > 0 such that an/bn ⩾ c and we use an = Θ(bn) if 

c ⩽ an/bn ⩽ C where c, C > 0 are universal constants.

1.3 Roadmap

The organization of our paper is as follows. We introduce the background knowledge in 

§2. In §3 and §4 we investigate the implicit regularization effect of gradient descent in over-

parameterized SIM under the vector and matrix settings, respectively. Extensive simulation 

studies are presented in §B to corroborate our theory.

2 Preliminaries

In this section, we introduce the phenomenon of implicit regularization via over-

parameterization, high dimensional single index model, and generalized Stein’s identity 

[Stein et al., 2004].

2.1 Related Works on Implicit Regularization

Both Gunasekar et al. [2017] and Li et al. [2018] have studied least squares objectives over 

positive semidefinite matrices β ∈ ℝd × d of the following form

min 
β ⩾ 0

F(β) = 1
n ∑

i = 1

n
yi − Xi, β 2,

(1)

where the labels yi i = 1
n  are generated from linear measurements yi = 〈Xi, β*〉, i ∈ [n], with 

β* ∈ ℝd × d being positive semidefinite and low rank. Here β* is of rank r where r is much 

smaller than d.
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Instead of working on parameter β directly, they write β as β = UU⊤ where U ∈ ℝd × d, and 

study the optimization problem related to U,

min 
U ∈ ℝd × d

f(U) = 1
2n ∑

i = 1

n
yi − Xi, UU⊤ 2 .

(2)

The least-squares problem in (2) is over-parameterized because here β is parameterized by 

U, which has d2 degrees of freedom, whereas β*, being a rank-r matrix, has O(rd) degrees 

of freedom. Gunasekar et al. [2017] proves that when Xi i = 1
m  are commutative and U is 

properly initialized, if the gradient flow of (2) converges to a solution U such that β = UU⊤

is a globally optimal solution of (1), then U has the minimum nuclear norm over all global 

optima. Namely,

β ∈ argmin
β ≽ 0

‖β‖*,

subject to  Xi, β = yi,     ∀i ∈ [n] .

Subsequently, Li et al. [2018] assumes Xi i = 1
n  satisfy the restricted isometry property (RIP) 

condition [Candés, 2008] and proves that by applying gradient descent to (2) with the 

initialization close to zero and sufficiently small fixed stepsizes, the near exact recovery of 

β* is achieved.

Recently, Li et al. [2021] proves that the algorithm of gradient flow with infinitesimal 

initialization on the general covariate of (2) tends to be equivalent to the Greedy Low-Rank 

Learning (GLRL) algorithm, which is a greedy rank minimization algorithm. Results in 

Gunasekar et al. [2017] with commutable Xi i = 1
m  serves as a special case to Li et al. [2021].

As for noisy statistical model, both Zhao et al. [2019] and Vaškevičius et al. [2019] 

study over-parameterized high dimensional noisy linear regression problem independently. 

Specifically, here the response variables yi i = 1
n  are generated from a linear model

yi = xi
⊤β* + ϵi, i ∈ [n],

(3)

where β* ∈ ℝp and ϵi i = 1
n  are i.i.d. sub-Gaussian random variables that are independent with 

the covariates xi i = 1
n . Moreover, here β* has only s nonzero entries where s ≪ p. Instead of 

adding sparsity-enforcing penalties, they propose to estimate β* via gradient descent with 

respect to w, v on a loss function L,

min
w ∈ ℝp, v ∈ ℝp

L(w, v) = 1
2n ∑

i = 1

n
xi

⊤(w ⊙ w − v ⊙ v) − yi
2,
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(4)

where the parameter β is over-parameterized as β = w ⊙ w − v ⊙ v. Under the restricted 

isometry property (RIP) condition on the covariates, these works prove that, when the 

hyperparameters is proper selected, gradient descent on (4) finds an estimator of β* with 

optimal statistical rate of convergence.

2.2 High Dimensional Single Index Model

In this subsection, we first introduce the score functions associated with random vectors 

and matrices, which are utilized in our algorithms. Then we formally define the high 

dimensional single index model (SIM) in both the vector and matrix settings.

Definition 1. Let x ∈ ℝp be a random vector with density function p0(x):ℝp ℝ. The score 

function Sp0(x):ℝp ℝp associated with x is defined as

Sp0(x) ≔ − ∇xlog p0(x) = − ∇xp0(x)/p0(x) .

Here the score function Sp0(x) relies on the density function p0(x) of the covariate x. In order 

to simplify the notations, in the rest of the paper, we omit the subscript p0 from Sp0 when the 

underlying distribution of x is clear to us.

Remark: If the covariate X ∈ ℝd × d is a random matrix whose entries are i.i.d. with a 

univariate density p0(x):ℝ ℝ, we then define the score function S(X) ∈ ℝd × d entrywisely. 

In other words, for any {i, j} ∈ [d] × [d], we obtain

S(X)i, j ≔ − p0
′ Xi, j /p0 Xi, j .

(5)

Next, we introduce the first-order general Stein’s identity.

Lemma 1. (First-Order General Stein’s Identity, [Stein et al., 2004]) We assume that 

the covariate x ∈ ℝp follows a distribution with density function p0(x):ℝp ℝ which is 

differentiable and satisfies the condition that |p0(x)| converges to zero as ∥x∥2 goes to 
infinity. Then for any differentiable function f(x) with E[ |f(x)S(x) | ] ∨ E ‖∇xf(x)‖2 < ∞, it 

holds that,

E[f(x)S(x)] = E ∇xf(x) ,

where S(x) = −∇xp0(x)/p0(x) is the score function with respect to x defined in Definition 1.

Remark: In the case of having matrix covariate, we are able to achieve the same conclusion 

by simply replacing x ∈ ℝp by X ∈ ℝd × d in Lemma 1 with the definition of matrix score 

function in (5).
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In the sequel, we introduce the single index models considered in this work. We first define 

sparse vector single index models as follows.

Definition 2. (Sparse Vector SIM) We assume the response Y ∈ ℝ is generated from model

Y = f x, β* + ϵ,

(6)

with unknown link f:ℝ ℝ, p-dimensional covariate x as well as signal β* which is the 
parameter of interest. Here, we let ϵ ∈ ℝ be an exogenous random noise with mean zero. In 

addition, if not particularly indicated, we assume the entries of x are i.i.d. random variables 
with a known univariate density p0(x). As for the underlying true signal β*, it is assumed to 
be s-sparse with s ≪ p. Note that the length of β* can be absorbed by the unknown link f, we 
then let ∥β*∥2 = 1 for model identifiability.

By the definition of sparse vector SIM, we notice that many well-known models 

are included in this category, such as linear regression yi = xi
⊤β* + ϵ, phase retrieval 

yi = xi
⊤β* 2 + ϵ, as well as one-bit compressed sensing y = sign xi

⊤β* + ϵ.

Finally, we define the low rank matrix SIM as follows.

Definition 3. (Symmetric Low Rank Matrix SIM) For the low rank matrix SIM, we assume 
the response Y ∈ ℝ is generated from

Y = f X, β* + ϵ,

(7)

in which β* ∈ ℝd × d is a low rank symmetric matrix with rank r ≪ d and the link function 

f is unknown. For the covariate X ∈ ℝd × d, we assume the entries of X are i.i.d. with a 
known density p0(x). Besides, since ∥β*∥F can be absorbed in the unknown link function f, 
we further assume ∥β*∥F = 1 for model identifiability. In addition, the noise term ϵ is also 
assumed additive and mean zero.

As we have discussed in the introduction, almost all existing literature designs algorithms 

and studies the corresponding implicit regularization phenomenon in linear models with 

sub-Gaussian data. The scope of this work is to leverage over-parameterization to design 

regularization-free algorithms and delineate the induced implicit regularization phenomenon 

for a more general class of statistics models with possibly heavy-tailed data. Specifically, 

in §3 and §4, we design algorithms and capture the implicit regularization induced by the 

gradient descent algorithm for over-parameterized vector and matrix SIMs, respectively.

3 Main Results for Over-Parameterized Vector SIM

Leveraging our conclusion from Lemma 1 as well as our definition of sparse vector SIM in 

Definitions 2, we have
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E[Y ⋅ S(x)] = E f x, β* ⋅ S(x) = E f′ x, β* ⋅ β* ≔ μ*β*,

which recovers our true signal β* up to scaling. Here we define μ* = E f′ x, β* , which 

is assumed nonzero throughout this work. Hence, Y · S(x) serves as an unbiased estimator 

of μ*β*, and we can correctly identify the direction of β* by solving a population level 

optimization problem:

min 
β

L(β) ≔ β, β − 2 β, E[Y ⋅ S(x)] .

Since we only have access to finite data, we replace E[Y ⋅ S(x)] by its sample version 

estimator 1
n ∑i = 1

n yiS xi , and plug the sample-based estimator into the loss function. In a high 

dimensional SIM given in Definition 2, where the true signal β* is assumed to be sparse, 

various works [Plan and Vershynin, 2016, Plan et al., 2017, Yang et al., 2017] have shown 

that the ℓ1-regularized estimator β  given by

β ∈ argmin 
β

L(β) ≔ β, β − 2 β, 1
n ∑

i = 1

n
yiS xi + λ‖β‖1

(8)

attains the optimal statistical rate of convergence rate to μ*β*.

In contrast, instead of imposing an ℓ1-norm regularization term, we propose to obtain an 

estimator by minimizing the loss function L directly, with β re-parameterized using two 

vectors w and v in ℝp. Specifically, we write β as β = w ⊙ w − v ⊙ v and thus equivalently 

write the loss function L(β) as L(w, v), which is given by

L(w, v) = w ⊙ w − v ⊙ v, w ⊙ w − v ⊙ v − 2 w ⊙ w − v ⊙ v, 1
n ∑

i = 1

n
yiS xi .

(9)

Note that the way of writing β in terms of w and v is not unique. In particular, β has p 
degrees of freedom but we use 2p parameters to represent β. Thus, by using w and v instead 

of β, we employ over-parameterization in (9).

We briefly describe our motivation on over-parameterizing β by w ⊙ w – v ⊙ v. 

Suppose that β is sparse, an explicit regularization is to use ℓ1-penalty. Note that ∥β∥1 = 

minγ⊙δ=β{∥γ∥2 + ∥δ∥2}/2, where ⊙ denotes the Hadamard (componentwise) product. Thus, 

an explicit regularization is to minγ, δ∑i = 1
n Y i − f xi

Tγ ⊙ δ 2 + λ ‖γ‖2 + ‖δ‖2  for a penalty 

parameter λ, following the method in Hoff [2017]. To gain understanding on implicit 

regularization by over parametrization, we let w = (γ + δ)/2 and v = (γ − δ)/2. Then β = 

γ⊙δ = w⊙w − v⊙v with 2p new parameters w and v that over parameterize the problem. 
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This leads to the empirical loss L(w, v) = ∑i = 1
n Y i − f xi

T(w ⊙ w − v ⊙ v) 2. Following the 

neural network training, we drop the explicit penalty and run the gradient decent to 

minimize L(w, v).

To be more specific, for the sparse SIM, we propose to construct an estimator of β* 

by applying gradient descent to L in (9) with respect to w and v, without any explicit 

regularization. Such an estimator, if achieves desired statistical accuracy, demonstrates the 

efficacy of implicit regularization of gradient descent in over-parameterized sparse SIM. 

Specifically, the gradient updates for the vector (w⊤, v⊤)⊤ for solving (9) are given by

wt + 1 = wt − η∇wL wt, vt = wt − η wt ⊙ wt − vt ⊙ vt − 1
n ∑

i = 1

n
S xi yi ⊙ wt,

(10)

vt + 1 = vt + η∇vL wt, vt = vt + η wt ⊙ wt − vt ⊙ vt − 1
n ∑

i = 1

n
S xi yi ⊙ vt .

(11)

Here η > 0 is the stepsize. By the parameterization of β, {wt, vt}t⩾0 leads to a sequence of 

estimators {βt}t⩾0 given by

βt + 1 = wt + 1 ⊙ wt + 1 − vt + 1 ⊙ vt + 1 .

(12)

Meanwhile, in terms of chooisng initial values, since the zero vector is a stationary point 

of the algorithm, we cannot set the initial values of w and v to the zero vector. To utilize 

the structure of β*, ideally we would like to initialize w and v such that they share the 

same sparsity pattern as β*. That is, we would like to set the entries in the support of β* to 

nonzero values, and set those outside of the support to zero. However, such an initialization 

scheme is infeasible since the support of β* is unknown. Instead, we initialize w0 and v0 as 

w0 = v0 = α · 1p×1, where α > 0 is a small constant and 1p×1 is an all-one vector in ℝp. 

By setting w0 = v0, we equivalently set β0 to the zero vector. And more importantly, such a 

construction provides a good compromise: zero components get nearly zero initializations, 

which are the majority under the sparsity assumption, and nonzero components get nonzero 

initializations. Even though we initialize every component at the same value, the nonzero 

components move quickly to their stationary component, while zero components remain 

small. This is how over-parameterization differentiate active components from inactive 

components. We illustrate this by a simulation experiment.

A simulation study.

In this simulation, we fix sample size n = 1000, dimension p = 2000, number of non-zero 

entries s = 5. Let S ≔ i: βi
* > 0 . The responses yi i = 1

n  are generated from yi = f(〈x, β*〉) + 
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ϵi, i ∈ [n] with link functions f1(x) = x (linear regression) and f2(x) = sin(x). Here we assume 

β* is s-sparse with βi = 1/ s, i ∈ S, and xi i = 1
n  are standard Gaussian random vectors. We 

over-parameterize β as w⊙w − v⊙v and set w0 = v0 = 10−5 · 1p×1. Then we update w, v 
and β regarding equations (10), (11), and (12) with stepsize η = 0.01. The evolution of the 

distance between our unnormalized iterates βt and μ*β*, trajectories of βj,t for j ∈ S and 

maxj ∈ Sc βj, t  are depicted in Figures 1 and 2.

From the simulation results given in Figure 1-(a) and Figure 2-(a), we notice that there 

exists a time interval, where we can nearly recover μ*β*. From plots (b) in Figures 1 and 

2, we can see with over-parameterization, five nonzero components all increase rapidly and 

converge quickly to their stationary points. Meanwhile, the maximum estimation error for 

inactive component, represented by βSc, t ∞, still remains small, as shown in Figure 1-(c) and 

Figure 2-(c). In other words, running gradient descent with respect to over-parameterized 

parameters helps us distinguish non-zero components from zero components, while applying 

gradient descent to the ordinary loss can not.

It is worth noting that, with over-parameterization, there are Ω(2p) stationary points of 

L satisfying ∇wL(w, v) = ∇vL(w, v) = 0p×1, where 0p×1 is the zero vector. To see this, 

for any subset I ⊆ [p], we define vectors w and v as follows. For any j ∉ I, we set the 

j-th entries of w and v to zero. Meanwhile, for any j ∈ I, we choose wj and vj such that 

wj
2 − vj

2 = n−1∑i = 1
n S xi jyi, where wj , vj, and S(xi)j are the j-th entries of w, v, and S(xi), 

respectively. By direct computation, it can be shown that (w, v) is a stationary point of L, and 

thus there are at least 2p stationary points. However, our numerical results demonstrate that 

not all of these stationary points are likely to be found by the gradient descent algorithm — 

gradient descent favors the stationary points that correctly recover μ*β*. Such an intriguing 

observation captures the implicit regularization induced by the optimization algorithm and 

over-parameterization.

3.1 Gaussian Design

In this subsection, we discuss over-parameterized SIM with Gaussian covariates. In this 

subsection, we assume the distribution of x in (6) is N(μ, Σ), where both μ and Σ are 

assumed known. Moreover, only in this subsection, we slightly modify the identifiability 

condition in Definition 2 from assuming ∥β*∥2 = 1 to ∥Σ1/2β*∥2 = 1.

3.1.1 Theoretical Results for Gaussian Covariates—We first introduce an 

structural assumption on the SIM.

Assumption 1. Assume that μ* = E f′ x, β* ≠ 0 is a constant and the following two 
conditions hold.

a. Covariance matrix Σ is positive-definite and has bounded spectral norm. 

To be more specific, there exist constants Cmin and Cmax such that 
CminIp × p ≼ ∑ ⩽ CmaxIp × p holds, where Ip × p is the identity matrix.

b. Both f xi, β* i = 1
n  and ϵi i = 1

n  are i.i.d. sub-Gaussian random variables, with the 

sub-Gaussian norms denoted by f ψ2 = O(1)  and σ = O(1) respectively. Here we 
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let f ψ2 denote the sub-Gaussian norm of f(〈xi, β*〉). In addition, we further 

assume that μ* / f ψ2 = Θ(1), |μ*|/σ = Ω(1).

The score function for the Gaussian distribution N(μ, Σ) is S(x) = Σ−1(x – μ) and Assumption 

1-(a) makes the Gaussian distributed covariates non-degenerate. Assumption 1-(b) enables 

the the empirical estimator n−1∑i = 1
n yiS xi  to concentrate to its expectation μ*β*, and also 

sets a lower bound to the signal noise ratio |μ*|/σ. Note that this assumption is quite standard 

and easy to be satisfied by a broad class of models as long as there exists a lower bound on 

the signal noise ratio, which include models with link functions f(x) = x, sin x, tanh(x), and 

etc. In addition, in §3.2, the assumption that both f(〈x, β*〉) and the noise ϵ are sub-Gaussian 

random variables will be further relaxed to simply assuming they have bounded finite 

moments with perhaps heavy-tailed distributions.

We present the details of the proposed method for the Gaussian case in Algorithm 1. In 

the following, we present the statistical rates of convergence for the estimator constructed 

by Algorithm 1. Let us divide the support seta S = i: βi
* > 0  into S0 = i: βi ⩾ Cs log p/n

and S1 = i:0 < β* < Cs log p/n , which correspond to the sets of strong and weak signals, 

respectively. Here Cs is an absolute constant. We let s0 and s1 be the cardinalities of S0 and 

S1, respectively. In addition, we let sm = mini ∈ S0 βi
*  be the smallest value of strong signals.

Theorem 1. Apart from Assumption 1, if we further let our initial value α satisfy 
0 < α ⩽ M0

2/p and set stepsize η as 0 < η ⩽ 1/(12(|μ*| + M0)) in Algorithm 1 with M0 

being a constant proportional to max ‖f‖ψ2, σ , there exist absolute constants a1, a2 > 0 such 

that, with probability at least 1 − 2p−1 − 2n−2, we have

βT1 − μ*β* 2
2 ≲ s0log n

n + s1log p
n ,

for all T1 ∈ a1 log(1/α)/ η μ* sm − M0 log p/n , a2 log(1/α) n/log p/ ηM0 . Meanwhile, the 

statistical rate of convergence for the normalized iterates are given by

βT1

Σ1/2βT1 2

− μ*β*
μ*

2

2

≲ s0 log n
n + s1 log p

n .

Theorem 2. (Variable Selection Consistency) Under the setting of Theorem 1, for all

T1 ∈ a1 log(1/α)/ η μ* sm − M0 log p/n , a2 log(1/α) n/log p/ ηM0 ,
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we let βT1 i = βT1 i ⋅ I βT1 i ⩾ λ, for all i ∈ [p]. Then, with probability at least 1 – 2p−1 – 2n−2, for 

all λ ∈ α, Cs μ* − 2M0 log p/n , we have supp βT1 ⊂ supp β* . Moreover, when there only 

exists strong signals in S0. We further have supp βT1 = supp β*  and sign βT1 = sign β* .

Theorem 1 shows that if we just have strong signals, then with high probability, 

for any T1 ∈ a1 log(1/α)/ η μ* sm − M0 log p/n , a2 log(1/α) n/log p/ ηM0 , we get the oracle 

statistical rate O( s log n/n) in terms of the ℓ2-norm, which is independent of the ambient 

dimension p. Besides, when β* also consists of weak signals, we achieve O( s log p/n)
statistical rate in terms of the ℓ2-norm, where s is the sparsity of β*. Such a statistical rate 

matches the minimax rate of sparse linear regression [Raskutti et al., 2011] and is thus 

minimax optimal. Notice that the oracle rate is achievable via explicit regularization using 

folded concave penalties [Fan et al., 2014] such as SCAD [Fan and Li, 2001] and MCP 

[Zhang et al., 2010]. Thus, Theorem 1 shows that, with over-parameterization, the implicit 

regularization of gradient descent has the same effect as adding a folded concave penalty 

function to the loss function in (9) explicitly.

Furthermore, comparing our work to Plan and Vershynin [2016], Plan et al. [2017], which 

study high dimensional SIM with ℓ1-regularization, thanks to the implicit regularization 

phenomenon, we avoid bias brought by the ℓ1-penalty and attain the oracle statistical rate. 

Moreover, our another advantage over regularized methods is shown in Theorem 2. It shows 

that by properly truncating βT1 when T1 falls in the optimal time interval, we are able 

to recover the support of β* with high probability. Comparing to existing literatures on 

support recovery via using explicit regularization on single index model [Neykov et al., 

2016], our method offers a wider range for choosing tuning parameter λ with a known left 

boundary α, instead of only using λ = Θ( log p/n). This efficiently reduces false discovery 

rate, see §D.1 for more details. Last but not least, as we only need to run gradient descent, 

comparing to regularized methods, it is easier to parallel our algorithm since the gradient 

information is able to be efficiently transferred among different machines. The use of 

implicit regularization allows our methodology to be generalized to large-scale problems 

easily [McMahan et al., 2017, Richards and Rebeschini, 2020, Richards et al., 2020]. The 

detailed discussions are given in §C.5.

Theorem 1 and Theorem 2 generalizes the results in Zhao et al. [2019] and Vaškevičius et 

al. [2019] for the linear model to high-dimensional SIMs. In addition, to satisfy the RIP 

condition, their sample complexity is at least O s2 log p  if their covariate x follows the 

Gaussian distribution. Whereas, by using the loss function in (9) motivated by the Stein’s 

identity [Stein et al., 1972, 2004], the RIP condition is unnecessary in our analysis. Instead, 

our theory only requires that n−1∑i = 1
n S xi ⋅ yi concentrates at a fast rate. As a result, our 

sample complexity is O(s log p) for ℓ2-norm consistency, which is better than O s2 log p .

The ideas of proof behind Theorem 1 and Theorem 2 are as follows. First, we are able 

to control the strengths of error component, denoted by ‖βt ⊙ 1Sc‖∞, at the same order with 

the square root of their initial values until O log(1/α) ⋅ n/log p/ ηM0  steps. This gives 

us the right boundary of the stopping time T1. Meanwhile, every entry of strong signal 
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part βt ⊙ 1S0 grows at exponential rates to ϵ = O( log n/n) accuracy around μ*β* ⊙ 1S0 within 

O log(1/α)/ η μ* sm − M0 log p/n  steps, which offers us the left boundary of the stopping 

time T1. Finally, we prove for weak signals, their strengths will not exceed O( log p/n) for all 

steps as long as we properly choose the stepsize. Thus, by letting the stopping time T1 be in 

the interval given in Theorem 1, we obtain converged signal component and well controlled 

error component. The final statistical rates are obtained by combining the results on the 

active and inactive components together. Moreover, the conclusion of Theorem 2 holds by 

truncating the βt properly, since we are able to control the error component of βt uniformly 

as mentioned above. See Appendix §E.1 for the detail. As shown in the proof, we observe 

that with small initialization and over-parameterized loss function, the signal component 

converges rapidly to the true signal, while the the error component grows in a relatively 

slow pace. Thus, gradient descent rapidly isolates the signal components from the noise, and 

with a proper stopping time, finds a near-sparse solution with high statistical accuracy. Thus, 

with proper initialization, over-parameterization plays the role of an implicit regularization 

by favoring approximately sparse saddle points of the loss function in (9).

Finally, we remark that Theorem 1 establishes optimal statistical rates for the estimator βT1, 

where T1 is any stopping time that belongs to the interval given in Theorem 1. However, in 

practice, such an interval is infeasible to compute as it depends on unknown constants. To 

make the proposed method practical, in the following, we introduce a method for selecting a 

proper stopping time T1.

3.1.2 Choosing the Stopping Time T1—We split the dataset into training data and 

testing data. We utilize the training data to implement Algorithm 1 and get the estimator 

βt as well as the value of the training loss (9) at step t. We notice βt varies slowly inside 

the optimal time interval specified in Theorem 1, so that the fluctuation of the training 

loss (9) can be smaller than a threshold. Based on that, we choose m testing points on the 

flatted curve of the training loss (9) and denote their corresponding number of iterations as 

{tj}, j ∈ [m]. For each j ∈ [m], we then reuse the training data and normalized estimator 

βtj/ ∑1/2βtj 2, j ∈ [m] to fit the link function f. Let the obtained estimator be f j. For the 

testing dataset, we perform out-of-sample prediction and get m prediction losses:

lj = 1
ntest

∑
i = 1

ntest
Y i − f j xi, βtj/ Σ1/2βtj 2

2,     ∀j ∈ [m] .

Next, we choose T1 as tj* where we define j* = argminj∈[m] lj.

We remark that each f j can be obtained by any nonparametric regression methods. To show 

case our method, in the following, we apply univariate kernel regression to obtain each f j

and establish its theoretical guarantee.

3.1.3 Prediction Risk—We now consider estimating the nonparametric component and 

the prediction risk. Suppose we are given an estimator β  of β and n i.i.d. observations 

yi, xi i = 1
n  of the model. For simplicity of the technical analysis, we assume that β  is 
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independent of yi, xi i = 1
n , which can be achieved by data-splitting. Moreover, we assume 

that β  is an estimator of β* such that

β − β* 2 = o n−1/3 ,     Σ1/2β 2 = 1,    and     Σ1/2β* 2 = 1.

(13)

Our goal is to construct an estimate the regression function f(〈·, β*〉) based on β  and 

yi, xi i = 1
n .

Note that, when β* is known, we can directly estimate f based on yi and Zi
* ≔ xi

⊤β*, i ∈ [n] 

via standard non-parametric regression. When β  is accurate, a direct idea is to replace Zi
* by 

Zi ≔ xi
⊤β  and follow the similar route. For a new observation x, we define Z as Z ≔ x⊤β  and 

Z* as Z* ≔ x⊤ β* respectively.

To predict Y, we estimate function g(z) using kernel regression with data yi, xi
⊤β

i = 1

n
. 

Specifically, we let the function Kh(u) be Kh(u) ≔ 1/h · K(u/h), in which K:ℝ ℝ is a 

kernel function with K(u) = I u ⩽ 1  and h is a bandwidth. By the definitions of Z*, Z, and Zi, i 

∈ [n] given above, the prediction function g(Z) is defined as

g(Z) =
∑i = 1

n yiKℎ Z − Zi

∑i = 1
n Kℎ Z − Zi

, Z − μ⊤β ⩽ R,

0, otherwise,

(14)

where we follow the convention that 0/0 = 0. In what follows, we consider the ℓ2-prediction 

risk of g, which is given by

E g x, β − f x, β* 2 ,

where the expectation is taken with respect to x and xi, yi i = 1
n . Before proceeding to the 

theoretical guarantees, we make the following assumption on the regularity of f.

Assumption 2. There exists an α1 > 0 and a constant C > 0 such that |f(x)|, 

f′(x) ⩽ C + |x|α1.

For the rationality of the Assumption 2, we note that the constraint on f′(x) and f(x) given 

above is weaker than assuming f′(x) and f(x) are bounded functions directly. Next, we 

present Theorem 3 which characterizes the convergence rate of mean integrated error of our 

prediction function g(Z).

Theorem 3. If we set R = 2 log(n) and h ≍ n−1/3 in (14), under Assumption 2, the ℓ2-

prediction risk of g defined in (14) is given by
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E g x, β − f x, β* 2 ≲ polylog(n)
n2/3 ,

where β  is any vector that satisfies (13) and polylog(n) contains terms that are polynomials 
of log n.

It is worth noting that the estimator β = βT1/ Σ1/2βT1 2 constructed in Theorem 1 with any 

T1 belongs to the optimal time interval given in Theorem 1 satisfy (13). Thus, under such 

regimes, Theorem 3 also holds. The proof of Theorem 3 is given in §E.3. Note that it is 

possible to refine the analysis on the prediction risk for f with higher order derivatives by 

utilizing higher order kernels (see Tsybakov [2008] therein) this is not the key message of 

our paper.

3.2 General Design

In this subsection, we extend our methodology to the setting with covariates generated from 

a general distribution. Following our discussions at the beginning of §3, ideally we aim at 

solving the loss function with over-parameterized variable given in (9). However, when the 

distribution of x has density p0, the score S(x) can be heavy-tailed such that E[Y ⋅ S(x)] and 

its empirical counterpart may not be sufficiently close.

To remedy this issue, we modify the loss function in (9) by replacing yi and S(xi) by their 

truncated (Winsorized) version yi and S, respectively. Specifically, we propose to apply 

gradient descent to the following modified loss function with respect to u and v:

min w,v L(w, v) ≔ w ⊙ w − v ⊙ v, w ⊙ w − v ⊙ v − 2
n ∑

i = 1

n
yi w ⊙ w − v ⊙ v, S xi .

(15)

Let a ∈ ℝd denote the truncated version of vector a ∈ ℝd based on a parameter τ [Fan et 

al., 2021b]. That is, its entries are given by [a]j = [a]j if |ai| ⩽ τ and τ otherwise. Applying 

elementwise truncation to yi i = 1
n  and S xi i = 1

n  in (15), we allow the score S(x) and the 

response Y to both have heavy-tailed distributions. By choosing a proper threshold τ, such a 

truncation step ensures n−1∑i = 1
n yiS xi  converge to E[Y ⋅ S(x)] with a desired rate in ℓ∞-norm. 

Compared with Algorithm 1, here we only modify the definition of the loss function. Thus, 

we defer the details of the proposed algorithm for this setting to Algorithm 3 in §E.5.

Before stating our main theorem, we first present an assumption on the distributions of the 

covariate and the response variables.

Assumption 3. Assume there exists a constant M such that

E Y 4 ⩽ M,     E S(x)j
4 ⩽ M,     ∀j ∈ [p] .
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Here S(x)j is the j-th entry of S(x). Moreover, recall that we denote μ* = E f′ x, β* . We 
assume that μ* is a nonzero constant such that M/|μ*| = Θ(1).

Assuming the fourth moments exist and are bounded is significant weaker than the 

sub-Gaussian assumption. Moreover, such an assumption is prevalent in robust statistics 

literature [Fan et al., 2021c, 2018, 2019]. Now we are ready to introduce the theoretical 

results for the setting with general design.

Theorem 4. Under Assumption 3, we set the thresholding parameter τ = (M · n/log p)1/4/2, 

let the initialization parameter α satisfy 0 < α ⩽ Mg
2/p, and set the stepsize η such that 0 < η 

⩽ 1/(12(|μ*| + Mg)) in Algorithm 3 given in §E.5 where Mg is a constant proportional to M. 

There exist absolute constants a3, a4, such that, with probability at least 1 − 2p−2,

βT1 − μ*β* 2
2 ≲ s log p

n

holds for all T1 ∈ a3 log(1/α)/ η μ* sm − Mg log p/n , a4 log(1/α) n/log p/ ηMg . Here s is the 

cardinality of the support set S and sm = mini ∈ S0 βj
* , where S0 = j ∈ i: βi ⩾ Cs log p/n  is the 

set of strong signals. In addition, for the normalized iterates, we further have

βT1
βT1 2

− μ*β*
μ* 2

2

≲ s log p
n ,

with probability at least 1 − 2p−2.

Compared with Theorem 1 for the Gaussian design, here we achieve the O( s log p/n)
statistical rate of convergence in terms of the ℓ2-norm. These rates are the same of those 

achieved by adding an ℓ1-norm regularization explicitly [Plan and Vershynin, 2016, Plan et 

al., 2017, Yang et al., 2017] and are minimax optimal [Raskutti et al., 2011]. Moreover, we 

note that here S(x) and Y can be both heavy-tailed and our truncation procedure successfully 

tackles such a challenge without sacrificing the statistical rates. Moreover, similar to the 

Gaussian case, here Cs can be set as a sufficiently large absolute constant, and the statistical 

rates established in Theorem 4 holds for all choices of Cs. In addition, for heavy-tailed case, 

we also let βT1 i = βT1 i ⋅ I βT1 i ⩾ λ, for all i ∈ [p]. Then for all λ ∈ α, Cs μ* − 2Mg log p/n , we 

obtain similar theoretical guarantees as in Theorem 2.

4 Main Results for Over-Parametrized Low Rank SIM

In this section, we present the results for over-parameterized low rank matrix SIM 

introduced in Definition 3 with both standard Gaussian and generally distributed covariates. 

Similar to the results in §3, here we also focus on matrix SIM with first-order links, i.e., 

we assume that μ* = E f′ X, β* ≠ 0, where β* is a low rank matrix with rank r. Note that 

we assume that the entries of covariate X ∈ ℝd × d are i.i.d. with a univariate density p0. 

Also recall that we define the score function S(X) ∈ ℝd × d in (5). Then, similar to the loss 

function in (9), we consider the loss function
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L(β) ≔ β, β − 2 β, 1
n ∑

i = 1

n
yiS Xi ,

where β ∈ ℝd × d is a symmetric matrix. Hereafter, we rewrite β as WW⊤ − VV⊤, where 

both W and V are matrices in ℝd × d. The intuitions of re-parameterizing β = WW⊤ 

− VV⊤ are as follows. Any (low rank) symmetric matrix is able to be written as the 

difference of two positive semidefinite matrices, namely WW⊤ − VV⊤ with W, V ∈ ℝd × d. 

Re-parameterizing the symmetric matrix this way is a generalization of re-parameterizing 

its eigenvalues by the Hadamard products. Thus this can be regarded as an extension of the 

re-parameterization mechanism from the vector case to the spectral domain. With such an 

over-parameterization, we propose to estimate β* by applying gradient descent to the loss 

function

L(W, V) ≔ WW⊤ − VV⊤, WW⊤ − VV⊤ − 2 WW⊤ − VV⊤, 1
n ∑

i = 1

n
yiS Xi .

(16)

Since the rank of β* is unknown, we initialization W0 and V0 as W0 = V0 = α ⋅ Id × d for a 

small α > 0 and construct a sequence of iterates {Wt, Vt, βt}t⩾0 via the gradient decent 

method as follows:

Wt + 1 = Wt − η WtWt
⊤ − VtVt

⊤ − 1
2n ∑

i = 1

n
S Xi yi − 1

2n ∑
i = 1

n
S Xi

⊤yi Wt,

(17)

Vt + 1 = Vt + η WtWt
⊤ − VtVt

⊤ − 1
2n ∑

i = 1

n
S Xi yi − 1

2n ∑
i = 1

n
S Xi

⊤yi Vt,

βt + 1 = WtWt
⊤ − VtVt

⊤,

(18)

where η in (17) and (18) is the stepsize. Note that here the algorithm does not impose any 

explicit regularization. In the rest of this section, we show that such a procedure yields an 

estimator of the true parameter β* with near-optimal statistical rates of convergence.

Similar to the vector case, for theoretical analysis, here we also divide eigenvalues of β* into 

different groups by their strengths. We let ri
*, i ∈ [d] be the i-th eigenvalue of β*. The support 

set R of the eigenvalues is defined as R ≔ i: ri
* > 0 , whose cardinality is r. We then divide 

the support set R into R0 ≔ i: ri
* ⩾ Cms d log d/n  and R1 ≔ i:0 < ri

* < Cms d log d/n , which 

correspond to collections of strong and weak signals with cardinality denoting by r0 and r1, 
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respectively. Here Cms > 0 is an absolute constant and we have R = R0 ⋃ R1. Moreover, we 

use rm to denote the minimum strong eigenvalue in magnitude, i.e. rm = mini ∈ R0 ri
* .

4.1 Gaussian Design

In this subsection, we focus on the model in (7) with the entries of covariate X being i.i.d. 

N(0, 1) random variables. In this case, S(Xi) = Xi. This leads to Algorithm 4 given in §F.1, 

where we place S(Xi) by Xi in (16)–(18).

Similar to the case in §3.1, here we also impose the following assumption for the function 

class of the low rank SIM.

Assumption 4. We assume that μ* = E f′ X, β*  is a nonzero constant. Moreover, we 
assume that both f Xi, β* i = 1

n  and ϵi i = 1
n  are i.i.d. sub-Gaussian random variables, 

with sub-Gaussian norm denoted by f ψ2 = O(1)  and σ = O(1) respectively. Here we 

let f ψ2 denote the sub-Gaussian norm of f(〈X, β*〉). In addition, we further assume 

μ* / f ψ2 = Θ(1), |μ*|/σ = Ω(1).

The following theorem establishes the statistical rates of convergence for the estimator 

constructed by Algorithm 4.

Theorem 5. We set and stepsize 0 < α ⩽ Mm
2 /d and stepsize 0 < η ⩽ 1/ 12 μ* + Mm  in 

Algorithm 4, where Mm is a constant proportional to max f ψ2, σ . Under Assumption 4, 

there exist constants a5, a6 such that, with probability at least 1 – 1/(2d) – 3/n2, we have

βT1 − μ*β* F
2 ≲ rd log d

n

for all T1 ∈ a5 log(1/α)/ η μ* rm − Mm d log d/n , a6 log(1/α) n/(d log d)/ ηMm . Moreover, for 

the normalized iterates βt/∥βt∥F, we have

βT1
βT1 F

− μ*β*
μ* F

2

≲ rd log d
n .

Similar to the vector case given in §3.1, as shown in the proof in Appendix §F, here 

we require Cms to satisfy Cms ⩾ max{(a5/a6 + 1)Mm{|μ*|, 2Mm/|μ*|} in order to let 

the strong signals in R0 dominate the noise and let the interval for T1 to exist. The 

statistical rates hold for all such a Cms. As shown in Theorem 5, with the proper 

choices of initialization parameter α, stepsize η, and the stopping time T1, Algorithm 

4 constructs an estimator that achieves near-optimal statistical rates of convergence 

(up to logarithmic factors compared to minimax lower bound [Rohde and Tsybakov, 

2011]). Notice that the statistical rates established in Theorem 5 are also enjoyed by 

the M-estimator based on the least-squares loss function with nuclear norm penalty 

[Plan and Vershynin, 2016, Plan et al., 2017]. Thus, in terms of statistical estimation, 

applying gradient descent to the over-parameterized loss function in (16) is equivalent to 

adding a nuclear norm penalty explicitly, hence demonstrating the implicit regularization 
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effect. Except for obtaining the optimal ℓ2-statistical rate, we are able to recover the 

true rank with high-probability by properly truncating the eigenvalues of βT1 for all 

T1 ∈ a5 log(1/α)/ η μ* rm − Mm d log d/n , a6 log(1/α) n/(d log d)/ ηMm . Comparing with the 

literature Lee et al. [2015] which studies the rank consistency via ℓ1-regularization, we offer 

a wider range for choosing the tuning parameter with known left boundary α, instead of only 

setting the nuclear tuning parameter λ = Θ( rd/n).

Theorem 6. (Rank Consistency) Under the setting of Theorem 5, for all

T1 ∈ a5 log(1/α)/ η μ* rm − Mm d log d/n , a6 log(1/α) n/(d log d)/ ηMm ,

we let βT1 = ∑i = 1
d uiui

⊤λi βT1 ⋅ I λi βT1 ⩾ λ , for all i ∈ [d]. Here uk, k ∈ [d] are eigenvectors of βT1. 

Then, with probability at least 1 − 2d−1 − 3n−2, for all λ ∈ α, Cms μ* − 2Mm d log d/n , we 

have βT1 enjoys the conclusion of Theorem 5, and rank βT1 ⩽ rank β* . Moreover, when there 

only exists strong signals in R0, we further have rank βT1 = rank β* .

Furthermore, our method extends the existing works that focus on designing algorithms 

and studying implicit regularization phenomenon in noiseless linear matrix sensing models 

with positive semidefinite signal matrices [Gunasekar et al., 2017, Li et al., 2018, Arora 

et al., 2019, Gidel et al., 2019]. Specifically, we allow a more general class of (noisy) 

models and symmetric signal matrices. Compared with Li et al. [2018], our methodology 

possesses several strengths, which include achieving low sample complexity (O(rd) insted 

of O(r2d)., allowing weak signals (mini ∈ R ri
* zO (1/n)1/2  instead of mini ∈ R ri

* ≳ O (1/n)1/6 ), 

getting tighter statistical rate under noisy models (O(dr/n) instead of O(κrd/n)), and applying 

to a more general class of noisy statistical models. These strengths are achieved by the use 

of score transformation together with a refined trajectory analysis, which involves studying 

the dynamics of eigenvalues inside the strong signal set elementwisely with multiple stages 

instead of only studying the dynamics of the minimum eigenvalue with two stages.

The way of choosing stopping time T1 in the case of matrix SIM is almost the same with 

our method in §3.1.2. The only difference between them is that here we replace x⊤β* by 

tr(X⊤β*) Indeed, as we assume ∥Σ1/2β*∥2 = 1 in vector SIM and ∥β*∥F = 1 in matrix version 

for model identifiability, both x⊤βt and tr(X⊤βt) follow the standard normal distribution. 

Thus, our results on the prediction risk in §3.1.3 can be applied here directly.

4.2 General Design

In the rest of this section, we focus on the low rank matrix SIM beyond Gaussian covariates. 

Hereafter, we assume the entries of X are i.i.d. random variables with a known density 

function p0:ℝ ℝ. Recall that, according to the remarks following Definition 1, the score 

function S(X) ∈ ℝd × d is defined as

S(X)j, k ≔ S Xj, k = − p′0 Xj, k /p0 Xj, k ,
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where S(X)j,k and Xj,k are the (j, k)-th entries of S(X) and X for all j, k ∈ [d]. However, 

similar to the results in §3.2, the entries of S(X) can have heavy-tailed distributions and 

thus n−1∑i = 1
n yi ⋅ S Xi  may not converge its expectation E[Y ⋅ S(X)] efficiently in terms of 

spectral norm. Here Xi is the i-th observation of the covariate X. To tackle such a challenge, 

we employ a shrinkage approach [Catoni et al., 2012, Fan et al., 2021c, Minsker, 2018] to 

construct a robust estimator of E[Y ⋅ S(X)]. Specifically, we let

ϕ(x) =
log 1 − x + x2/2 , x ⩽ 0,

log 1 + x + x2/2 , x > 0
,

which is approximately x when x is small and grows at logarithmic rate for large x. The 

rescaled version λ−1ϕ(λx) for λ → 0 behaves like a soft-winsorizing function, which has 

been widely used in statistical mean estimation with finite bounded moments [Catoni et al., 

2012, Brownlees et al., 2015]. For any matrix X ∈ ℝd × d, we apply spectral decomposition 

to its Hermitian dilation and obtain

X* ≔
0 X

X⊤ 0
= QΣ*Q⊤,

where Σ* ∈ ℝ2d × 2d is a diagonal matrix. Based on such a decomposition, we define 

X = Qϕ Σ* Q⊤, where ϕ applies elementwisely to Σ*. Then we write X as a block matrix as

X ≔
X11 X12

X21 X22
,

where each block of X is in ℝd × d. We further define a mapping ϕ1:ℝd × d ℝd × d by letting 

ϕ1(X) ≔ X12, which is a regularized version of X. Given data y1, X1, we finally define ℋ( ⋅ )
as

ℋ y1S X1 , κ ≔ 1/κ ⋅ ϕ1 κy1 ⋅ S X1 ,      ∀κ > 0,

(19)

where κ is a thresholding parameter, converging to zero. This method is in a similar spirit of 

robustifying the singular value of X. Based on the operator ℋ defined in (19), we define a 

loss function L(W, V) as

L(W, V) ≔ WW⊤ − VV⊤, WW⊤ − VV⊤ − 2
n ∑

i = 1

n
WW⊤ − VV⊤, ℋ yiS Xi , κ .

(20)
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After over-parameterizing β as WW⊤ − VV⊤, we propose to construct an estimator of β* by 

applying gradient descent on the following loss function in (20) with respect to W, V. See 

Algorithm 5 in §F.5 for the details of the algorithm.

In the following, we present the statistical rates of convergence for the obtained estimator. 

We first introduce the assumption on Y and p0.

Assumption 5. We assume that both the response variable Y and entries of S(X) have 
bounded fourth moments. Specifically, there exists an absolute constant M such that

E Y 4 ⩽ M,     E S(X)i, j
4 ⩽ M,     ∀(i, j) ∈ [d] × [d] .

Moreover, we assume that μ* = E f′ X, β*  is a nonzero constant such that |μ*|/M = Θ(1).

Next, we present the main theorem for low rank matrix SIM.

Theorem 7. In Algorithm 5, we set parameter κ in (19) as κ = log(4d)/(nd ⋅ M)
and let the initialization parameter α and the stepsize η satisfy 0 < α ⩽ Mmg

2 /d  and 

0 < η ⩽ 1/ 12 μ* + Mmg , where Mmg is a constant proportional to M. Then, under 

Assumption 5, there exist absolute constants a7, a8 such that, with probability at least 1 

– (4d)−2, we have

βT1 − μ*β* F
2 ≲ rd log d

n ,

for all T1 ∈ a7 log(1/α)/ η μ* rm − Mmg d log d/n , a8 log(1/α) n/(d log d)/ ηMmg , Moreover, 

for the normalized iterate βt/∥βt∥F, we have

βT1
βT1 F

− μ*β*
μ* F

2

≲ rd log d
n .

For low rank matrix SIM, when the hyperparameters of the gradient descent algorithm 

are properly chosen, we also capture the implicit regularization phenomenon by applying 

a simple optimization procedure to over-parameterized loss function with heavy-tailed 

measurements. Here, applying the thresholding operator ℋ in (19) can also be viewed as 

a data pre-processing step, which arises due to handling heavy-tailed observations. Note that 

the way of choosing Cms here is similar with the way in Theorem 5, in order to ensure 

the convergence rate and existence of a time interval, so we omit the details. Note that the 

ℓ2-statistical rate given in Theorem 7 are minimax optimal up to a logarithmic term [Rohde 

and Tsybakov, 2011]. Similar results were also obtained by Plan and Vershynin [2016], Yang 

et al. [2017], Goldstein et al. [2018], Na et al. [2019] via adding explicit nuclear norm 

regularization. Thus, in terms of statistical recovery, when employing the thresholding in 

(19) and over-parameterization, gradient descent enforces implicit regularization that has 

the same effect as the nuclear norm penalty. In addition, in terms of the rank consistency 
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result for the heavy-tailed case, if we also let βT1 = ∑i = 1
d uiui

⊤λi βT1 ⋅ I λi βT1 ⩾ λ , then for all 

λ ∈ α, Cs μ* − 2Mmg d log d/n , we achieve the same results with Theorem 6.

5 Conclusion

In this paper, we leverage over-parameterization to design regularization-free algorithms for 

single index model and provide theoretical guarantees for the induced implicit regularization 

phenomenon. We consider the case where the link function is unknown, the distribution 

of the covariates is known as a prior, and the signal parameter is either a s-sparse vector 

in ℝp or a rank-r matrix in ℝd × d. Using the score function and the Stein’s identity, 

we propose an over-parameterized nonlinear least-squares loss function. To handle the 

possibly heavy-tailed distributions of the score functions and the response variables, we 

adopt additional truncation techniques that robustify the loss function. For both the vector 

and matrix SIMs, we construct an estimator of the signal parameter by applying gradient 

descent to the proposed loss function, without any explicit regularization. We prove that, 

when initialized near the origin, gradient descent with a small stepsize finds an estimator 

that enjoys minimax-optimal statistical rates of convergence. Moreover, for vector SIM with 

Gaussian design, we further obtain the oracle statistical rates that are independent of the 

ambient dimension. Furthermore, our experimental results support our theoretical findings 

and also demonstrate that our methods empirically outperform classical methods with 

explicit regularization in terms of both ℓ2-statistical rate and variable selection consistency.
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Figure 1: 
With link function f(x) = x, (a) characterizes the evolution of distance βt − μ*β* 2

2 against 

iteration number t; (b) depicts the trajectories βj,t (j ∈ S) for five nonzero components, and 

(c) presents the trajectory maxj ∈ Sc βj, t .
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Figure 2: 
With link function f(x) = sin(x), similar to Figure 1, here (a) characterizes the evolution of 

distance βt − μ*β* 2
2 against iteration number t; (b) depicts the trajectories βj,t (j ∈ S) for five 

nonzero components, and (c) presents the trajectory maxj ∈ Sc βj, t .
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