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Abstract

3D image reconstruction from a limited number of 2D images has been a long-standing challenge 

in computer vision and image analysis. While deep learning-based approaches have achieved 

impressive performance in this area, existing deep networks often fail to effectively utilize the 

shape structures of objects presented in images. As a result, the topology of reconstructed objects 

may not be well preserved, leading to the presence of artifacts such as discontinuities, holes, or 

mismatched connections between different parts. In this paper, we propose a shape-aware network 

based on diffusion models for 3D image reconstruction, named SADIR, to address these issues. 

In contrast to previous methods that primarily rely on spatial correlations of image intensities for 

3D reconstruction, our model leverages shape priors learned from the training data to guide the 

reconstruction process. To achieve this, we develop a joint learning network that simultaneously 

learns a mean shape under deformation models. Each reconstructed image is then considered as a 

deformed variant of the mean shape. We validate our model, SADIR, on both brain and cardiac 

magnetic resonance images (MRIs). Experimental results show that our method outperforms the 

baselines with lower reconstruction error and better preservation of the shape structure of objects 

within the images.

1 Introduction

The reconstruction of 3D images from a limited number of 2D images is fundamental 

to various applications, including object recognition and tracking [12], robot navigation 

[44], and statistical shape analysis for disease detection [4,36]. However, inferring the 

complete 3D geometry and structure of objects from one or multiple 2D images has been a 

long-standing ill-posed problem [25]. A bountiful literature has been investigated to recover 

the data from a missing dimension [9,32,34,37]. Initial approaches to address this challenge 

focused on solving an inverse problem of projecting 3D information onto 2D images from 

geometric aspects [8]. These solutions typically require images captured from different 

viewing angles using precisely calibrated cameras or medical imaging machines [7,28]. In 

spite of producing a good quality of 3D reconstructions, such methods are often impractical 

or infeasible in many real-world scenarios.
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Recent advancements have leveraged deep learning (DL) techniques to overcome the 

limitations posed in previous methods [5,15,27]. Extensive research has explored various 

network architectures for 3D image reconstruction, including UNets [30], transformers 

[14,22], and state-of-the-art generative diffusion models [37]. These works have 

significantly improved the reconstruction efficiency by learning intricate mappings between 

stacks of 2D images and their corresponding 3D volumes. While the DL-based approaches 

have achieved impressive results in reconstructing detailed 3D images, they often lack 

explicit consideration of shape information during the learning process. Consequently, 

important geometric structures of objects depicted in the images may not be well preserved. 

This may lead to the occurrence of artifacts, such as discontinuities, holes, or mismatched 

connections between different parts, that break the topology of the reconstructed objects.

Motivated by recent studies highlighting the significance of shape in enhancing image 

analysis tasks using deep networks [6,20,26,39,43], we introduce a novel shape-aware 3D 

image reconstruction network called SADIR. Our methodology builds upon the foundation 

of diffusion models while incorporating shape learning as a key component. In contrast 

to previous methods that mainly rely on spatial correlations of image intensities for 3D 

reconstruction, our SADIR explicitly incorporates the geometric shape information aiming 

to preserve the topology of reconstructed images. To achieve this goal, we develop a joint 

deep network that simultaneously learns a shape prior (also known as a mean shape) from a 

given set of full 3D volumes. In particular, an atlas building network based on deformation 

models [39] is employed to learn a mean shape representing the average information of 

training images. With the assumption that each reconstructed object is a deformed variant 

of the estimated mean shape, we then utilize the mean shape as a prior knowledge to guide 

the diffusion process of reconstructing a complete 3D image from a stack of sparse 2D 

slices. To evaluate the effectiveness of our proposed approach, we conduct experiments on 

both real brain and cardiac magnetic resonance images (MRIs). The experimental results 

show the superiority of SADIR over the baseline approaches, as evidenced by substantially 

reduced reconstruction errors. Moreover, our method successfully preserves the topology of 

the images during the shape-aware 3D image reconstruction process.

2 Background: Fréchet Mean via Atlas Building

In this section, we briefly review an unbiased atlas building algorithm [21], a widely 

used technique to estimate the Fréchet mean of group-wise images. With the underlying 

assumption that objects in many generic classes can be described as deformed versions of an 

ideal template, descriptors in this class arise naturally by matching the mean (also referred as 

atlas) to an input image [21,38,45,42,46]. The resulting transformation is then considered as 

a shape that reflects geometric changes.

Given a number of N images Y1, ⋯, YN , the problem of atlas building is to find a mean or 

template image S and deformation fields ϕ1, ⋯ϕN with derived initial velocity fields v1, ⋯vt

that minimize the energy function
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E S, ϕn = ∑
n = 1

N 1
σ2Dist S ∘ ϕn vt , Yn + Reg ϕn vt ,

(1)

where σ2 is a noise variance and ∘ denotes an interpolation operator that deforms image Yn

with an estimated transformation ϕn. The Dist ⋅ , ⋅  is a distance function that measures 

the dissimilarity between images, i.e., sum-of-squared differences [3], normalized cross 

correlation [2], and mutual information [40]. The Reg ⋅  is a regularizer that guarantees the 

smoothness of transformations.

Given an open and bounded d-dimensional domain Ω ⊂ ℝd, we use Diff Ω  to denote a space 

of diffeomorphisms (i.e., a one-to-one smooth and invertible smooth transformation) and its 

tangent space V = TDiff Ω . A well-developed algorithm, large deformation diffeomorphic 

metric mapping (LDDMM) [3], provides a regularization that guarantees the smoothness of 

deformation fields and preserves the topological structures of objects for the atlas building 

framework (Eq. (1)). Such a regularization is formulated as an integral of the Sobolev norm 

of the time-dependent velocity field vn t ∈ V t ∈ 0,1  in the tangent space, i.e.,

Reg ϕn vt = ∫
0

1
Lvt, vt dt, with dϕn t

dt = − Dϕn t ⋅ vn t ,

(2)

where L:V V * is a symmetric, positive-definite differential operator that maps a tangent 

vector vt ∈ V  into its dual space as a momentum vector mt ∈ V *. We write mt = Lvt, or 

vt = Kmt, with K being an inverse operator of L. The operator D denotes a Jacobian matrix 

and ⋅ represents element-wise matrix multiplication. In this paper, we use a metric of the 

form L = − αΔ + γI 3, in which Δ is the discrete Laplacian operator, α is a positive regularity 

parameter that controls the smoothness of transformation fields, γ is a weighting parameter, 

and I denotes an identity matrix.

The minimum of Eq. (2) is uniquely determined by solving an Euler-Poincaré differential 

equation (EPDiff) [1,29] with a given initial condition of velocity fields, noted as v0. This 

is known as the geodesic shooting algorithm [35], which nicely proves that the deformation-

based shape descriptor ϕn can be fully characterized by an initial velocity field vn 0 . The 

mathmatical formulation of the EPDiff equation is

∂vn t
∂t = − K Dvn t T ⋅ mn t + Dmn t ⋅ vn t + mn t ⋅ divvn t ,

(3)

where the operator D denotes a Jacobian matrix, div is the divergence, and ⋅ represents 

element-wise matrix multiplication.
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We are now able to equivalently minimize the atlas building energy function in Eq. (1) as

E S, ϕn = ∑
n = 1

N 1
σ2Dist S ∘ ϕn vn t , Yn + Lvn 0 , vn 0 , s.t.Eq. (2) & (3) .

(4)

For notation simplicity, we will drop the time index in the following sections.

3 Our Method: SADIR

In this section, we present SADIR, a novel reconstruction network that incorporates shape 

information in predicting 3D volumes from a limited number of input 2D images. We 

introduce a sub-module of the atlas building framework, which enables us to learn shape 

priors from a given set of full 3D images. It is worth mentioning that while the backbone 

of our proposed SADIR is a diffusion model [16], the methodology can be generalized to a 

variety of network architectures such as UNet [33], UNet++ [47], and Transformer [11].

3.1 Shape-Aware Diffusion Models Based on Atlas Building Network

Given a number of N training data In, Yn n = 1
N , where In is a stack of sparse 2D images with 

its associated full 3D volume Yn. Our model SADIR consists of two submodules:

i. An atlas building network, parameterized by θa, that provides a mean image S of 

Yn . In this paper, we employ the network architecture of Geo-SIC [39];

ii. A reconstruction network, parameterized by θr, that considers each reconstructed 

image Ŷn as a deformed variant of the obtained atlas, i.e., Ŷn ≜ S ∘ ϕn vn θr . 

In contrast to current approaches learning the reconstruction process based on 

image intensities, our model is developed to learn the geometric shape variations 

represented by the predicted velocity field vn.

Next, we introduce the details of our shape-aware diffusion models for reconstruction, which 

is a key component of SADIR. Similar to existing diffusion models [16,37], we develop a 

forward diffusion and a reverse diffusion process to predict the velocity fields associated 

with the pair of input training images and an atlas image. For the purpose of simplified math 

notations, we omit the index n for each subject in the following sections.

Forward diffusion process.—Let y0 denote the original 3D image with full volumes and 

τ denote the time point of the diffusion process. We assume the data distribution of yτ is a 

normal distribution with mean μ and variance β, i.e., yτ N μ, β . The forward diffusion of 

yτ − 1 to yτ is then recursively given by

p yτ ∣ yτ − 1 = N yτ; 1 − βτyτ − 1, βτI ,

(5)
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where I denotes an identity matrix, and βτ ∈ 0,1  denotes a known variance increased along 

the time steps with β1 < β2 < ⋯ < βτ. The forward diffusion process is repeated for a fixed, 

predefined number of time steps.

It is shown in [16] that repeated application of Eq. (5) to the original image y0 and setting 

ατ = 1 − βτ and α‾τ = ∏i = 1
τ αi yields

p yτ ∣ y0 = N yτ; ατy0, 1 − ατ I .

Therefore, we can write yτ in terms of y0 as

yτ = ατy0 + 1 − ατϵ with ϵ N 0, I .

Reverse diffusion process.—Given a concatenation of a sparse stack of 2D images 

I, an atlas image S, and yτ from the forward process, our diffusion model is designed to 

remove the added noise in the reverse process. Following the work of [41], we will now 

predict yτ − 1 from the input yτ. The joint probability distribution p yτ − 1 ∣ yτ  is predicted by 

a trained neural network (e.g., UNet) in each reverse time step for all τ ∈ 1, ⋯, T , where T
is the maximal time step. With the network model parameters denoted by θr, we can write 

the reverse process as

pθr yτ − 1 ∣ yτ = N yτ − 1; μθr yτ, τ , Σθr yτ, τ .

Similarly, we can write yτ − 1 backward in terms of yτ as

yτ − 1 = 1
ατ yτ 1 − ατ

1 − ατ ϵθr yτ, τ + σtz,

where στ is the variance scheme the model can learn, the component z is a stochastic 

sampling process. The model is trained with input yτ to subtract the noise scheme ϵθr yτ, τ
from yτ to produce yτ − 1.

The output of this reverse process is a predicted velocity field v θr , which is then used to 

generate its associated transformation ϕ v θr  to deform the atlas S. Such a deformed atlas is 

the reconstructed image Ŷ = S ∘ ϕ v θr .

An overview of the proposed SADIR network architecture is shown in Fig. 1.

3.2 Network Loss and Optimization

The network loss function of our model, SADIR, is a joint loss of the atlas building network 

and the diffusion reconstruction network. We first define the atlas building loss as
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ℒ θa = ∑
n = 1

N 1
σ2 S θa ∘ ϕn vn − Yn 2

2
+ Lvn, vn + reg θa ,

(6)

where reg ⋅  denotes a regularization on the network paramters.

We then define the loss function of the diffusion reconstruction network as a combination 

of sum-of-squared differences and Sørensen—Dice coefficient [10] loss (for distinct 

anatomical structure, e.g., brain ventricles or myocardium) between the predicted 

reconstruction and ground-truth in following

ℒ θr = ∑
n = 1

N
S ∘ ϕn vn θr − Yn 2

2
+ η 1 − Dice S ∘ ϕn vn θr , Yn + reg θr ,

(7)

where η is the weighting parameter, and Dice Ŷ, Yn = 2 Ŷ ∩ Yn / Ŷ + Yn , considering 

Ŷn ≜ S ∘ ϕn vn θr . Defining λ as a weighting parameter, we are now ready to write the joint 

loss of SADIR as

ℒ = ℒ θa + λℒ θr .

Joint network learning with an alternative optimization.—We use an alternative 

optimization scheme [31] to minimize the total loss ℒ in Eq. (3.2). More specifically, we 

jointly optimize all network parameters by alternating between the training of the atlas 

building and diffusion reconstruction network, making it end-to-end learning. A summary of 

our joint training of SADIR is presented in Alg. 1.

4 Experimental Evaluation

We demonstrate the effectiveness of our proposed model, SADIR, for 3D image 

reconstruction from 2D slices on both brain and cardiac MRI scans.

3D Brain MRIs: For 3D real brain MRI scans, we include 214 public T1-weighted 

longitudinal brain scans from the latest released Open Access Series of Imaging 

Studies (OASIS-III) [23]. All subjects include both healthy and disease individuals, 

Jayakumar et al. Page 6

Shape Med Imaging (2023). Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aged from 42 to 95. All MRIs were pre-processed as 256 × 256 × 256,1.25mm3

isotropic voxels, and underwent skull-stripped, intensity normalized, bias field 

corrected and pre-aligned with affine transformation. To further validate the 

performance of our proposed model on specific anatomical shapes, we select left 

and right brain ventricles available in the OASIS-III dataset [23].

3D Cardiac MRIs: For 3D real cardiac MRI, we include 215 publicly available 3D 

myocardium mesh data from MedShapeNet dataset [24]. We convert the mesh data 

to binary label maps using 3D slicer [13]. All the images were pre-processed as 

222 × 222 × 222 and pre-aligned with affine transformation.

4.1 Experimental Settings

We first validate our proposed model, SADIR, on reconstructing 3D brain ventricles, as 

well as brain MRIs from a sparse stack of eight 2D slices. We compare our model’s 

performance with three state-of-the-art deep learning-based reconstruction models: 3D-UNet 

[9]; DDPM, a probabilistic diffusion model [16]; and DISPR, a diffusion model based 

shape reconstruction model with geometric topology considered [37]. Three evaluation 

metrics, including the Sørensen-Dice coefficient (DSC) [10], Jaccard Similarity [19], and 

RHD95 score [18], are used to validate the prediction accuracy of brain ventricles for all 

methods. For brain MR images, we show the error maps of reconstructed images for all the 

experiments.

To further validate the performance of SADIR on different datasets, we run tests on a 

relatively small dataset of cardiac MRIs to reconstruct 3D myocardium.

Parameter setting: We set the mean and standard deviation of the forward diffusion 

process to be 0 and 0.1, respectively. The scheduling is linear for the noising process and 

is scaled to reach an isotropic Gaussian distribution irrespective of the value of T . For the 

atlas building network, we set the depth of the UNet architecture as 4. We set the number 

of time steps for Euler integration in EPDiff (Eq. (3)) as 10, and the noise variance σ = 0.02. 

For the shooting, we use a kernel map valued [0.5, 0, 1.0]. Besides, we set the parameter 

α = 3 for the operator L. Similar to [37], we set the batch size as 1 for all experiments. We 

utilize the cosine annealing learning rate scheduler that starts with a learning rate of η = 1e−3

for network training. We run all models on training and validation images using the Adam 

optimizer and save the networks with the best validation performance.

In the reverse process of the diffusion network, we set the depth of the 3D attention-UNet 

backbone as 6. We introduce the attention mechanism via spatial excitation channels [17], 

with ReLU (Rectified Linear Unit) activation. The UNet backbone has ELU activation 

(Exponential Linear Unit) in the hidden convolution layers and GeLU (Gaussian error 

Linear Unit) activation with tanh approximation. For each training experiment, we utilize 

Rivanna (high-performance computing servers of the University of Virginia) with NVIDIA 

A100 and V100 GPUs for 18 hours (till convergence). For all the experimental datasets, we 

split all the training datasets into 70% training, 15% validation, and 15% testing. For both 

training and testing, we downsample all the image resolutions to 64 × 64 × 64.
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4.2 Experimental Results

Fig. 2 visualizes examples of ground truth and reconstructed 3D volumes of brain ventricles 

from all methods. It shows that SADIR outperforms all baselines in well preserving the 

structural information of the brain ventricles. In particular, models without considering the 

shape information of the images (i.e., 3D-UNet and DDPM) generate unrealistic shapes such 

as those with joint ventricles, holes in the volume, and deformed ventricle tails. While the 

other algorithm, DISPR, shows improved performance of enforcing topological consistency 

on the object surface, its predicted results of 3D volumes are inferior to SADIR.

Tab. 1 reports the average scores along with the standard deviation of the Dice similarity 

coefficient (DSC), Jaccard similarity, and Hausdorff distance computed between the brain 

ventricles reconstructed by all the models and the ground truth. Compared to all the 

baselines, SADIR achieves the best performance with a 1.6% – 5.6% increase in the average 

DSC with the lowest standard deviations across all metrics.

Fig. 3 visualizes the ground truth and reconstructed 3D brain MRIs as a result of evaluating 

DDMP and our method SADIR on the test data, along with their corresponding error maps. 

The error map is computed as absolute values of an element-wise subtraction between the 

ground truth and the reconstructed image. The images reconstructed by SADIR outperform 

the DDPM with a low absolute reconstruction error. Our method also preserves crucial 

anatomical features such as the shape of the ventricles, corpus callosum and gyri, which 

cannot be seen in the images reconstructed by the DDPM. This can be attributed to the lack 

of incorporating the shape information to guide the 3D MRI reconstruction. Moreover, our 

model has little to no noise in the background as compared to the DDPM.

Tab. 2 reports the average scores of DSC, Jaccard similarity, and Hausdorff distance 

evaluated between the reconstructed myocardium from all algorithms and the ground truth. 

Our method proves to be competent in reconstructing 3D volumes without discontinuities, 

artifacts, jagged edges or amplified structures, as can be seen in results from the other 

models. Compared to the baselines, SADIR achieves the best performance in terms of DSC, 

Jaccard similarity, and RHD95 with the lowest standard deviations across all metrics.

Fig. 4 visualizes a comparison of the reconstructed 3D myocardium between the ground 

truth and all models. It shows that our method consistently produces reconstructed volumes 

that preserve the original shape of the organ with less artifacts.

Fig. 5 shows examples of the superior, left, anterior and left-anterior views of the 3D 

ground truth and SADIR-reconstructed volumes of the myocardium for different subjects. 

We observe that the results predicted by SADIR have little to no difference from the ground 

truth, thereby efficiently preserving the anatomical structure of the myocardium.

5 Conclusion

This paper introduces a novel shape-aware image reconstruction framework based on 

diffusion model, named as SADIR. In contrast to previous approaches that mainly rely 

on the information of image intensities, our model SADIR incorporates shape features in the 
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deformation spaces to preserve the geometric structures of objects in the reconstruction 

process. To achieve this, we develop a joint deep network that simultaneously learns 

the underlying shape representations from the training images and utilize it as a prior 

knowledge to guide the reconstruction network. To the best of our knowledge, we are the 

first to consider deformable shape features into the diffusion model for the task of image 

reconstruction. Experimental results on both 3D brain and cardiac MRI show that our model 

efficiently produces 3D volumes from a limited number of 2D slices with substantially low 

reconstruction errors while better preserving the topological structures and shapes of the 

objects.
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Fig. 1. 
An overview of our proposed 3D reconstruction model SADIR.
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Fig. 2. 
Top to bottom: examples of reconstructed 3D brain ventricles from sparse 2D slices; Left to 

right: a comparison of brain ventricles of all reconstruction models with ground truth.
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Fig. 3. 
Left to right: a comparison of ground truth, DDPM, and SADIR along with the error map.
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Fig. 4. 
A comparison of reconstructed 3D myocardium between ground truth, 3D-UNet, DDPM, 

DISPR, and SADIR over four different views.
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Fig. 5. 
3D myocardium reconstructed from sparse 2D slices by SADIR over four different views.
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Table 1.

A comparison of 3D brain ventricle reconstruction for all methods.

Model DSC ↑ Jaccard similarity ↑ RHD95 ↓

3D-Unet 0.878 ± 0.0128 0.804 ± 0.0204 4.366 ± 1.908

DDPM 0.731 ± 0.0292 0.652 ± 0.0365 8.827 ± 9.212

DISPR 0.918 ± 0.0097 0.861 ± 0.0158 1.041 ± 0.130

SADIR 0.934 ± 0.013 0.900 ± 0.021 1.414 ± 0.190
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Table 2.

A comparison of 3D myocardium reconstruction for all methods.

Model DSC ↑ Jaccard similarity ↑ RHD95 ↓

3D-Unet 0.870 ± 0.0158 0.771 ± 0.024 0.840 ± 0.202

DDPM 0.823 ± 0.014 0.668 ± 0.019 1.027 ± 0.093

DISPR 0.950 ± 0.017 0.906 ± 0.031 0.347 ± 0.032

SADIR 0.978 ± 0.016 0.957 ± 0.031 0.341 ± 0.023
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